239 lines
6.9 KiB
Rust
Raw Normal View History

use core::sync::atomic::{compiler_fence, fence, Ordering};
use embassy_net::PacketBuf;
use stm32_metapac::eth::vals::St;
use vcell::VolatileCell;
use crate::pac::ETH;
#[non_exhaustive]
#[derive(Debug, Copy, Clone)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum Error {
NoBufferAvailable,
// TODO: Break down this error into several others
TransmissionError,
}
/// Transmit and Receive Descriptor fields
#[allow(dead_code)]
mod tx_consts {
pub const TXDESC_0_OWN: u32 = 1 << 31;
pub const TXDESC_0_IOC: u32 = 1 << 30;
// First segment of frame
pub const TXDESC_0_FS: u32 = 1 << 28;
// Last segment of frame
pub const TXDESC_0_LS: u32 = 1 << 29;
// Transmit end of ring
pub const TXDESC_0_TER: u32 = 1 << 21;
// Second address chained
pub const TXDESC_0_TCH: u32 = 1 << 20;
// Error status
pub const TXDESC_0_ES: u32 = 1 << 15;
// Transmit buffer size
pub const TXDESC_1_TBS_SHIFT: usize = 0;
pub const TXDESC_1_TBS_MASK: u32 = 0x0fff << TXDESC_1_TBS_SHIFT;
}
use tx_consts::*;
/// Transmit Descriptor representation
///
/// * tdes0: control
/// * tdes1: buffer lengths
/// * tdes2: data buffer address
/// * tdes3: next descriptor address
#[repr(C)]
struct TDes {
tdes0: VolatileCell<u32>,
tdes1: VolatileCell<u32>,
tdes2: VolatileCell<u32>,
tdes3: VolatileCell<u32>,
}
impl TDes {
pub const fn new() -> Self {
Self {
tdes0: VolatileCell::new(0),
tdes1: VolatileCell::new(0),
tdes2: VolatileCell::new(0),
tdes3: VolatileCell::new(0),
}
}
/// Return true if this TDes is not currently owned by the DMA
pub fn available(&self) -> bool {
(self.tdes0.get() & TXDESC_0_OWN) == 0
}
/// Pass ownership to the DMA engine
fn set_owned(&mut self) {
// "Preceding reads and writes cannot be moved past subsequent writes."
fence(Ordering::Release);
compiler_fence(Ordering::Release);
self.tdes0.set(self.tdes0.get() | TXDESC_0_OWN);
// Used to flush the store buffer as fast as possible to make the buffer available for the
// DMA.
fence(Ordering::SeqCst);
}
fn set_buffer1(&mut self, buffer: *const u8) {
self.tdes2.set(buffer as u32);
}
fn set_buffer1_len(&mut self, len: usize) {
self.tdes1
.set((self.tdes1.get() & !TXDESC_1_TBS_MASK) | ((len as u32) << TXDESC_1_TBS_SHIFT));
}
// points to next descriptor (RCH)
fn set_buffer2(&mut self, buffer: *const u8) {
self.tdes3.set(buffer as u32);
}
fn set_end_of_ring(&mut self) {
self.tdes0.set(self.tdes0.get() | TXDESC_0_TER);
}
// set up as a part fo the ring buffer - configures the tdes
pub fn setup(&mut self, next: Option<&Self>) {
// Defer this initialization to this function, so we can have `RingEntry` on bss.
self.tdes0
.set(TXDESC_0_TCH | TXDESC_0_IOC | TXDESC_0_FS | TXDESC_0_LS);
match next {
Some(next) => self.set_buffer2(next as *const TDes as *const u8),
None => {
self.set_buffer2(0 as *const u8);
self.set_end_of_ring();
}
}
}
}
pub(crate) struct TDesRing<const N: usize> {
descriptors: [TDes; N],
buffers: [Option<PacketBuf>; N],
next_entry: usize,
}
impl<const N: usize> TDesRing<N> {
pub const fn new() -> Self {
const TDES: TDes = TDes::new();
const BUFFERS: Option<PacketBuf> = None;
Self {
descriptors: [TDES; N],
buffers: [BUFFERS; N],
next_entry: 0,
}
}
/// Initialise this TDesRing. Assume TDesRing is corrupt
///
/// The current memory address of the buffers inside this TDesRing
/// will be stored in the descriptors, so ensure the TDesRing is
/// not moved after initialisation.
pub(crate) fn init(&mut self) {
assert!(N > 0);
{
let mut previous: Option<&mut TDes> = None;
for entry in self.descriptors.iter_mut() {
if let Some(prev) = &mut previous {
prev.setup(Some(entry));
}
previous = Some(entry);
}
if let Some(entry) = &mut previous {
entry.setup(None);
}
}
self.next_entry = 0;
// Register txdescriptor start
// NOTE (unsafe) Used for atomic writes
unsafe {
ETH.ethernet_dma()
.dmatdlar()
.write(|w| w.0 = &self.descriptors as *const _ as u32);
}
// "Preceding reads and writes cannot be moved past subsequent writes."
#[cfg(feature = "fence")]
fence(Ordering::Release);
// We don't need a compiler fence here because all interactions with `Descriptor` are
// volatiles
// Start transmission
unsafe {
ETH.ethernet_dma()
.dmaomr()
.modify(|w| w.set_st(St::STARTED))
};
}
/// Return true if a TDes is available for use
pub(crate) fn available(&self) -> bool {
self.descriptors[self.next_entry].available()
}
pub(crate) fn transmit(&mut self, pkt: PacketBuf) -> Result<(), Error> {
if !self.available() {
return Err(Error::NoBufferAvailable);
}
let descriptor = &mut self.descriptors[self.next_entry];
let pkt_len = pkt.len();
let address = pkt.as_ptr() as *const u8;
descriptor.set_buffer1(address);
descriptor.set_buffer1_len(pkt_len);
self.buffers[self.next_entry].replace(pkt);
descriptor.set_owned();
// Ensure changes to the descriptor are committed before DMA engine sees tail pointer store.
// This will generate an DMB instruction.
// "Preceding reads and writes cannot be moved past subsequent writes."
fence(Ordering::Release);
// Move the tail pointer (TPR) to the next descriptor
self.next_entry = (self.next_entry + 1) % N;
// Request the DMA engine to poll the latest tx descriptor
unsafe { ETH.ethernet_dma().dmatpdr().modify(|w| w.0 = 1) }
Ok(())
}
pub(crate) fn on_interrupt(&mut self) -> Result<(), Error> {
let previous = (self.next_entry + N - 1) % N;
let td = &self.descriptors[previous];
// DMB to ensure that we are reading an updated value, probably not needed at the hardware
// level, but this is also a hint to the compiler that we're syncing on the buffer.
fence(Ordering::SeqCst);
let tdes0 = td.tdes0.get();
if tdes0 & TXDESC_0_OWN != 0 {
// Transmission isn't done yet, probably a receive interrupt that fired this
return Ok(());
}
// Release the buffer
self.buffers[previous].take();
if tdes0 & TXDESC_0_ES != 0 {
Err(Error::TransmissionError)
} else {
Ok(())
}
}
}