Refactor the Interpolate trait and add the Interpolator trait.
This commit represents 99% of the rework. From now on, implementing the API requires to provide the various interpolation implementations. This is actually a good thing, because people will now be able to either use the `impl_Interpolate!` macro, which implements the interpolation in a very “math” way (using std::ops::* traits and float literals), or by providing their own.
This commit is contained in:
		| @@ -42,277 +42,126 @@ use core::ops::{Add, Mul, Sub}; | ||||
| use std::f32; | ||||
| #[cfg(feature = "std")] | ||||
| use std::f64; | ||||
| #[cfg(feature = "std")] | ||||
| use std::ops::{Add, Mul, Sub}; | ||||
|  | ||||
| /// Keys that can be interpolated in between. Implementing this trait is required to perform | ||||
| /// sampling on splines. | ||||
| /// Types that can be used as interpolator in splines. | ||||
| /// | ||||
| /// `T` is the variable used to sample with. Typical implementations use [`f32`] or [`f64`], but | ||||
| /// you’re free to use the ones you like. Feel free to have a look at [`Spline::sample`] for | ||||
| /// instance to know which trait your type must implement to be usable. | ||||
| /// An interpolator value is like the fabric on which control keys (and sampled values) live on. | ||||
| pub trait Interpolator: Sized + Copy + PartialOrd { | ||||
|   /// Normalize the interpolator. | ||||
|   fn normalize(self, start: Self, end: Self) -> Self; | ||||
| } | ||||
|  | ||||
| macro_rules! impl_Interpolator { | ||||
|   ($t:ty) => { | ||||
|     impl Interpolator for $t { | ||||
|       fn normalize(self, start: Self, end: Self) -> Self { | ||||
|         (self - start) / (end - start) | ||||
|       } | ||||
|     } | ||||
|   }; | ||||
| } | ||||
|  | ||||
| impl_Interpolator!(f32); | ||||
| impl_Interpolator!(f64); | ||||
|  | ||||
| /// Values that can be interpolated. Implementing this trait is required to perform sampling on splines. | ||||
| /// | ||||
| /// [`Spline::sample`]: crate::spline::Spline::sample | ||||
| pub trait Interpolate<T>: Sized + Copy + Linear<T> { | ||||
| /// `T` is the interpolator used to sample with. Typical implementations use [`f32`] or [`f64`], but | ||||
| /// you’re free to use the ones you like. | ||||
| pub trait Interpolate<T>: Sized + Copy { | ||||
|   /// Step interpolation. | ||||
|   fn step(t: T, threshold: T, a: Self, b: Self) -> Self; | ||||
|  | ||||
|   /// Linear interpolation. | ||||
|   fn lerp(a: Self, b: Self, t: T) -> Self; | ||||
|   fn lerp(t: T, a: Self, b: Self) -> Self; | ||||
|  | ||||
|   /// Cosine interpolation. | ||||
|   fn cosine(t: T, a: Self, b: Self) -> Self; | ||||
|  | ||||
|   /// Cubic hermite interpolation. | ||||
|   /// | ||||
|   /// Default to [`lerp`]. | ||||
|   /// | ||||
|   /// [`lerp`]: Interpolate::lerp | ||||
|   fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self { | ||||
|     Self::lerp(a.0, b.0, t) | ||||
|   } | ||||
|   fn cubic_hermite(t: T, x: (T, Self), a: (T, Self), b: (T, Self), y: (T, Self)) -> Self; | ||||
|  | ||||
|   /// Quadratic Bézier interpolation. | ||||
|   fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self; | ||||
|   /// | ||||
|   /// `a` is the first point; `b` is the second point and `u` is the tangent of `a` to the curve. | ||||
|   fn quadratic_bezier(t: T, a: Self, u: Self, b: Self) -> Self; | ||||
|  | ||||
|   /// Cubic Bézier interpolation. | ||||
|   fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self; | ||||
|   /// | ||||
|   /// `a` is the first point; `b` is the second point; `u` is the output tangent of `a` to the curve and `v` is the | ||||
|   /// input tangent of `b` to the curve. | ||||
|   fn cubic_bezier(t: T, a: Self, u: Self, v: Self, b: Self) -> Self; | ||||
|  | ||||
|   /// Cubic Bézier interpolation – special case for non-explicit second tangent. | ||||
|   /// | ||||
|   /// This version does the same computation as [`Interpolate::cubic_bezier`] but computes the second tangent by | ||||
|   /// inversing it (typical when the next point uses a Bézier interpolation, where input and output tangents are | ||||
|   /// mirrored for the same key). | ||||
|   fn cubic_bezier_mirrored(t: T, a: Self, u: Self, v: Self, b: Self) -> Self; | ||||
| } | ||||
|  | ||||
| /// Set of types that support additions and subtraction. | ||||
| /// | ||||
| /// The [`Copy`] trait is also a supertrait as it’s likely to be used everywhere. | ||||
| pub trait Additive: Copy + Add<Self, Output = Self> + Sub<Self, Output = Self> {} | ||||
|  | ||||
| impl<T> Additive for T where T: Copy + Add<Self, Output = Self> + Sub<Self, Output = Self> {} | ||||
|  | ||||
| /// Set of additive types that support outer multiplication and division, making them linear. | ||||
| pub trait Linear<T>: Additive { | ||||
|   /// Apply an outer multiplication law. | ||||
|   fn outer_mul(self, t: T) -> Self; | ||||
|  | ||||
|   /// Apply an outer division law. | ||||
|   fn outer_div(self, t: T) -> Self; | ||||
| } | ||||
|  | ||||
| macro_rules! impl_linear_simple { | ||||
|   ($t:ty) => { | ||||
|     impl Linear<$t> for $t { | ||||
|       fn outer_mul(self, t: $t) -> Self { | ||||
|         self * t | ||||
| #[macro_export] | ||||
| macro_rules! impl_Interpolate { | ||||
|   ($t:ty, $v:ty, $pi:expr) => { | ||||
|     impl $crate::interpolate::Interpolate<$t> for $v { | ||||
|       fn step(t: $t, threshold: $t, a: Self, b: Self) -> Self { | ||||
|         if t < threshold { | ||||
|           a | ||||
|         } else { | ||||
|           b | ||||
|         } | ||||
|       } | ||||
|  | ||||
|       /// Apply an outer division law. | ||||
|       fn outer_div(self, t: $t) -> Self { | ||||
|         self / t | ||||
|       } | ||||
|     } | ||||
|   }; | ||||
| } | ||||
|  | ||||
| impl_linear_simple!(f32); | ||||
| impl_linear_simple!(f64); | ||||
|  | ||||
| macro_rules! impl_linear_cast { | ||||
|   ($t:ty, $q:ty) => { | ||||
|     impl Linear<$t> for $q { | ||||
|       fn outer_mul(self, t: $t) -> Self { | ||||
|         self * t as $q | ||||
|       fn cosine(t: $t, a: Self, b: Self) -> Self { | ||||
|         let cos_nt = (1. - (t * $pi).cos()) * 0.5; | ||||
|         <Self as $crate::interpolate::Interpolate<$t>>::lerp(cos_nt, a, b) | ||||
|       } | ||||
|  | ||||
|       /// Apply an outer division law. | ||||
|       fn outer_div(self, t: $t) -> Self { | ||||
|         self / t as $q | ||||
|       } | ||||
|     } | ||||
|   }; | ||||
| } | ||||
|  | ||||
| impl_linear_cast!(f32, f64); | ||||
| impl_linear_cast!(f64, f32); | ||||
|  | ||||
| /// Types with a neutral element for multiplication. | ||||
| pub trait One { | ||||
|   /// The neutral element for the multiplicative monoid — typically called `1`. | ||||
|   fn one() -> Self; | ||||
| } | ||||
|  | ||||
| macro_rules! impl_one_float { | ||||
|   ($t:ty) => { | ||||
|     impl One for $t { | ||||
|       #[inline(always)] | ||||
|       fn one() -> Self { | ||||
|         1. | ||||
|       } | ||||
|     } | ||||
|   }; | ||||
| } | ||||
|  | ||||
| impl_one_float!(f32); | ||||
| impl_one_float!(f64); | ||||
|  | ||||
| /// Types with a sane definition of π and cosine. | ||||
| pub trait Trigo { | ||||
|   /// π. | ||||
|   fn pi() -> Self; | ||||
|  | ||||
|   /// Cosine of the argument. | ||||
|   fn cos(self) -> Self; | ||||
| } | ||||
|  | ||||
| impl Trigo for f32 { | ||||
|   #[inline(always)] | ||||
|   fn pi() -> Self { | ||||
|     f32::consts::PI | ||||
|   } | ||||
|  | ||||
|   #[inline(always)] | ||||
|   fn cos(self) -> Self { | ||||
|     #[cfg(feature = "std")] | ||||
|     { | ||||
|       self.cos() | ||||
|     } | ||||
|  | ||||
|     #[cfg(not(feature = "std"))] | ||||
|     { | ||||
|       unsafe { cosf32(self) } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| impl Trigo for f64 { | ||||
|   #[inline(always)] | ||||
|   fn pi() -> Self { | ||||
|     f64::consts::PI | ||||
|   } | ||||
|  | ||||
|   #[inline(always)] | ||||
|   fn cos(self) -> Self { | ||||
|     #[cfg(feature = "std")] | ||||
|     { | ||||
|       self.cos() | ||||
|     } | ||||
|  | ||||
|     #[cfg(not(feature = "std"))] | ||||
|     { | ||||
|       unsafe { cosf64(self) } | ||||
|     } | ||||
|   } | ||||
| } | ||||
|  | ||||
| /// Default implementation of [`Interpolate::cubic_hermite`]. | ||||
| /// | ||||
| /// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time). | ||||
| pub fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V | ||||
| where | ||||
|   V: Linear<T>, | ||||
|   T: Additive + Mul<T, Output = T> + One, | ||||
| { | ||||
|   // some stupid generic constants, because Rust doesn’t have polymorphic literals… | ||||
|   let one_t = T::one(); | ||||
|   let two_t = one_t + one_t; // lolololol | ||||
|   let three_t = two_t + one_t; // megalol | ||||
|  | ||||
|   // sampler stuff | ||||
|   let t2 = t * t; | ||||
|   let t3 = t2 * t; | ||||
|   let two_t3 = t3 * two_t; | ||||
|   let three_t2 = t2 * three_t; | ||||
|  | ||||
|   // tangents | ||||
|   let m0 = (b.0 - x.0).outer_div(b.1 - x.1); | ||||
|   let m1 = (y.0 - a.0).outer_div(y.1 - a.1); | ||||
|  | ||||
|   a.0.outer_mul(two_t3 - three_t2 + one_t) | ||||
|     + m0.outer_mul(t3 - t2 * two_t + t) | ||||
|     + b.0.outer_mul(three_t2 - two_t3) | ||||
|     + m1.outer_mul(t3 - t2) | ||||
| } | ||||
|  | ||||
| /// Default implementation of [`Interpolate::quadratic_bezier`]. | ||||
| /// | ||||
| /// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time). | ||||
| pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V | ||||
| where | ||||
|   V: Linear<T>, | ||||
|   T: Additive + Mul<T, Output = T> + One, | ||||
| { | ||||
|   let one_t = T::one() - t; | ||||
|   let one_t_2 = one_t * one_t; | ||||
|   u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t) | ||||
| } | ||||
|  | ||||
| /// Default implementation of [`Interpolate::cubic_bezier`]. | ||||
| /// | ||||
| /// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time). | ||||
| pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V | ||||
| where | ||||
|   V: Linear<T>, | ||||
|   T: Additive + Mul<T, Output = T> + One, | ||||
| { | ||||
|   let one_t = T::one() - t; | ||||
|   let one_t_2 = one_t * one_t; | ||||
|   let one_t_3 = one_t_2 * one_t; | ||||
|   let three = T::one() + T::one() + T::one(); | ||||
|  | ||||
|   a.outer_mul(one_t_3) | ||||
|     + u.outer_mul(three * one_t_2 * t) | ||||
|     + v.outer_mul(three * one_t * t * t) | ||||
|     + b.outer_mul(t * t * t) | ||||
| } | ||||
|  | ||||
| macro_rules! impl_interpolate_simple { | ||||
|   ($t:ty) => { | ||||
|     impl Interpolate<$t> for $t { | ||||
|       fn lerp(a: Self, b: Self, t: $t) -> Self { | ||||
|       fn lerp(t: $t, a: Self, b: Self) -> Self { | ||||
|         a * (1. - t) + b * t | ||||
|       } | ||||
|  | ||||
|       fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self { | ||||
|         cubic_hermite_def(x, a, b, y, t) | ||||
|       fn cubic_hermite(t: $t, x: ($t, Self), a: ($t, Self), b: ($t, Self), y: ($t, Self)) -> Self { | ||||
|         // sampler stuff | ||||
|         let two_t = t * 2.; | ||||
|         let three_t = t * 3.; | ||||
|         let t2 = t * t; | ||||
|         let t3 = t2 * t; | ||||
|         let two_t3 = t3 * two_t; | ||||
|         let three_t2 = t2 * three_t; | ||||
|  | ||||
|         // tangents | ||||
|         let m0 = (b.1 - x.1) / (b.0 - x.0); | ||||
|         let m1 = (y.1 - a.1) / (y.0 - a.0); | ||||
|  | ||||
|         a.1 * (two_t3 - three_t2 + 1.) | ||||
|           + m0 * (t3 - t2 * two_t + t) | ||||
|           + b.1 * (three_t2 - two_t3) | ||||
|           + m1 * (t3 - t2) | ||||
|       } | ||||
|  | ||||
|       fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self { | ||||
|         quadratic_bezier_def(a, u, b, t) | ||||
|       fn quadratic_bezier(t: $t, a: Self, u: Self, b: Self) -> Self { | ||||
|         let one_t = 1. - t; | ||||
|         let one_t2 = one_t * one_t; | ||||
|  | ||||
|         u + (a - u) * one_t2 + (b - u) * t * t | ||||
|       } | ||||
|  | ||||
|       fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self { | ||||
|         cubic_bezier_def(a, u, v, b, t) | ||||
|       fn cubic_bezier(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self { | ||||
|         let one_t = 1. - t; | ||||
|         let one_t2 = one_t * one_t; | ||||
|         let one_t3 = one_t2 * one_t; | ||||
|         let t2 = t * t; | ||||
|  | ||||
|         a * one_t3 + (u * one_t2 * t + v * one_t * t2) * 3. + b * t2 * t | ||||
|       } | ||||
|  | ||||
|       fn cubic_bezier_mirrored(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self { | ||||
|         <Self as $crate::interpolate::Interpolate<$t>>::cubic_bezier(t, a, u, b + b - v, b) | ||||
|       } | ||||
|     } | ||||
|   }; | ||||
| } | ||||
|  | ||||
| impl_interpolate_simple!(f32); | ||||
| impl_interpolate_simple!(f64); | ||||
|  | ||||
| macro_rules! impl_interpolate_via { | ||||
|   ($t:ty, $v:ty) => { | ||||
|     impl Interpolate<$t> for $v { | ||||
|       fn lerp(a: Self, b: Self, t: $t) -> Self { | ||||
|         a * (1. - t as $v) + b * t as $v | ||||
|       } | ||||
|  | ||||
|       fn cubic_hermite( | ||||
|         (x, xt): (Self, $t), | ||||
|         (a, at): (Self, $t), | ||||
|         (b, bt): (Self, $t), | ||||
|         (y, yt): (Self, $t), | ||||
|         t: $t, | ||||
|       ) -> Self { | ||||
|         cubic_hermite_def( | ||||
|           (x, xt as $v), | ||||
|           (a, at as $v), | ||||
|           (b, bt as $v), | ||||
|           (y, yt as $v), | ||||
|           t as $v, | ||||
|         ) | ||||
|       } | ||||
|  | ||||
|       fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self { | ||||
|         quadratic_bezier_def(a, u, b, t as $v) | ||||
|       } | ||||
|  | ||||
|       fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self { | ||||
|         cubic_bezier_def(a, u, v, b, t as $v) | ||||
|       } | ||||
|     } | ||||
|   }; | ||||
| } | ||||
|  | ||||
| impl_interpolate_via!(f32, f64); | ||||
| impl_interpolate_via!(f64, f32); | ||||
| impl_Interpolate!(f32, f32, std::f32::consts::PI); | ||||
| impl_Interpolate!(f64, f64, std::f64::consts::PI); | ||||
|   | ||||
| @@ -1,5 +1,9 @@ | ||||
| //! Spline curves and operations. | ||||
|  | ||||
| #[cfg(feature = "std")] | ||||
| use crate::interpolate::{Interpolate, Interpolator}; | ||||
| use crate::interpolation::Interpolation; | ||||
| use crate::key::Key; | ||||
| #[cfg(not(feature = "std"))] | ||||
| use alloc::vec::Vec; | ||||
| #[cfg(not(feature = "std"))] | ||||
| @@ -10,12 +14,6 @@ use core::ops::{Div, Mul}; | ||||
| use serde_derive::{Deserialize, Serialize}; | ||||
| #[cfg(feature = "std")] | ||||
| use std::cmp::Ordering; | ||||
| #[cfg(feature = "std")] | ||||
| use std::ops::{Div, Mul}; | ||||
|  | ||||
| use crate::interpolate::{Additive, Interpolate, One, Trigo}; | ||||
| use crate::interpolation::Interpolation; | ||||
| use crate::key::Key; | ||||
|  | ||||
| /// Spline curve used to provide interpolation between control points (keys). | ||||
| /// | ||||
| @@ -104,8 +102,8 @@ impl<T, V> Spline<T, V> { | ||||
|   /// the sampling. | ||||
|   pub fn sample_with_key(&self, t: T) -> Option<SampledWithKey<V>> | ||||
|   where | ||||
|     T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd, | ||||
|     V: Additive + Interpolate<T>, | ||||
|     T: Interpolator, | ||||
|     V: Interpolate<T>, | ||||
|   { | ||||
|     let keys = &self.0; | ||||
|     let i = search_lower_cp(keys, t)?; | ||||
| @@ -114,26 +112,24 @@ impl<T, V> Spline<T, V> { | ||||
|     let value = match cp0.interpolation { | ||||
|       Interpolation::Step(threshold) => { | ||||
|         let cp1 = &keys[i + 1]; | ||||
|         let nt = normalize_time(t, cp0, cp1); | ||||
|         let value = if nt < threshold { cp0.value } else { cp1.value }; | ||||
|         let nt = t.normalize(cp0.t, cp1.t); | ||||
|         let value = V::step(nt, threshold, cp0.value, cp1.value); | ||||
|  | ||||
|         Some(value) | ||||
|       } | ||||
|  | ||||
|       Interpolation::Linear => { | ||||
|         let cp1 = &keys[i + 1]; | ||||
|         let nt = normalize_time(t, cp0, cp1); | ||||
|         let value = Interpolate::lerp(cp0.value, cp1.value, nt); | ||||
|         let nt = t.normalize(cp0.t, cp1.t); | ||||
|         let value = V::lerp(nt, cp0.value, cp1.value); | ||||
|  | ||||
|         Some(value) | ||||
|       } | ||||
|  | ||||
|       Interpolation::Cosine => { | ||||
|         let two_t = T::one() + T::one(); | ||||
|         let cp1 = &keys[i + 1]; | ||||
|         let nt = normalize_time(t, cp0, cp1); | ||||
|         let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t; | ||||
|         let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt); | ||||
|         let nt = t.normalize(cp0.t, cp1.t); | ||||
|         let value = V::cosine(nt, cp0.value, cp1.value); | ||||
|  | ||||
|         Some(value) | ||||
|       } | ||||
| @@ -147,13 +143,13 @@ impl<T, V> Spline<T, V> { | ||||
|           let cp1 = &keys[i + 1]; | ||||
|           let cpm0 = &keys[i - 1]; | ||||
|           let cpm1 = &keys[i + 2]; | ||||
|           let nt = normalize_time(t, cp0, cp1); | ||||
|           let value = Interpolate::cubic_hermite( | ||||
|             (cpm0.value, cpm0.t), | ||||
|             (cp0.value, cp0.t), | ||||
|             (cp1.value, cp1.t), | ||||
|             (cpm1.value, cpm1.t), | ||||
|           let nt = t.normalize(cp0.t, cp1.t); | ||||
|           let value = V::cubic_hermite( | ||||
|             nt, | ||||
|             (cpm0.t, cpm0.value), | ||||
|             (cp0.t, cp0.value), | ||||
|             (cp1.t, cp1.value), | ||||
|             (cpm1.t, cpm1.value), | ||||
|           ); | ||||
|  | ||||
|           Some(value) | ||||
| @@ -163,18 +159,14 @@ impl<T, V> Spline<T, V> { | ||||
|       Interpolation::Bezier(u) | Interpolation::StrokeBezier(_, u) => { | ||||
|         // We need to check the next control point to see whether we want quadratic or cubic Bezier. | ||||
|         let cp1 = &keys[i + 1]; | ||||
|         let nt = normalize_time(t, cp0, cp1); | ||||
|         let nt = t.normalize(cp0.t, cp1.t); | ||||
|  | ||||
|         let value = match cp1.interpolation { | ||||
|           Interpolation::Bezier(v) => { | ||||
|             Interpolate::cubic_bezier(cp0.value, u, cp1.value + cp1.value - v, cp1.value, nt) | ||||
|           } | ||||
|           Interpolation::Bezier(v) => V::cubic_bezier_mirrored(nt, cp0.value, u, v, cp1.value), | ||||
|  | ||||
|           Interpolation::StrokeBezier(v, _) => { | ||||
|             Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt) | ||||
|           } | ||||
|           Interpolation::StrokeBezier(v, _) => V::cubic_bezier(nt, cp0.value, u, v, cp1.value), | ||||
|  | ||||
|           _ => Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt), | ||||
|           _ => V::quadratic_bezier(nt, cp0.value, u, cp1.value), | ||||
|         }; | ||||
|  | ||||
|         Some(value) | ||||
| @@ -188,8 +180,8 @@ impl<T, V> Spline<T, V> { | ||||
|   /// | ||||
|   pub fn sample(&self, t: T) -> Option<V> | ||||
|   where | ||||
|     T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd, | ||||
|     V: Additive + Interpolate<T>, | ||||
|     T: Interpolator, | ||||
|     V: Interpolate<T>, | ||||
|   { | ||||
|     self.sample_with_key(t).map(|sampled| sampled.value) | ||||
|   } | ||||
| @@ -207,8 +199,8 @@ impl<T, V> Spline<T, V> { | ||||
|   /// This function returns [`None`] if you have no key. | ||||
|   pub fn clamped_sample_with_key(&self, t: T) -> Option<SampledWithKey<V>> | ||||
|   where | ||||
|     T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd, | ||||
|     V: Additive + Interpolate<T>, | ||||
|     T: Interpolator, | ||||
|     V: Interpolate<T>, | ||||
|   { | ||||
|     if self.0.is_empty() { | ||||
|       return None; | ||||
| @@ -242,8 +234,8 @@ impl<T, V> Spline<T, V> { | ||||
|   /// Sample a spline at a given time with clamping. | ||||
|   pub fn clamped_sample(&self, t: T) -> Option<V> | ||||
|   where | ||||
|     T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd, | ||||
|     V: Additive + Interpolate<T>, | ||||
|     T: Interpolator, | ||||
|     V: Interpolate<T>, | ||||
|   { | ||||
|     self.clamped_sample_with_key(t).map(|sampled| sampled.value) | ||||
|   } | ||||
| @@ -322,16 +314,6 @@ pub struct KeyMut<'a, T, V> { | ||||
|   pub interpolation: &'a mut Interpolation<T, V>, | ||||
| } | ||||
|  | ||||
| // Normalize a time ([0;1]) given two control points. | ||||
| #[inline(always)] | ||||
| pub(crate) fn normalize_time<T, V>(t: T, cp: &Key<T, V>, cp1: &Key<T, V>) -> T | ||||
| where | ||||
|   T: Additive + Div<T, Output = T> + PartialEq, | ||||
| { | ||||
|   assert!(cp1.t != cp.t, "overlapping keys"); | ||||
|   (t - cp.t) / (cp1.t - cp.t) | ||||
| } | ||||
|  | ||||
| // Find the lower control point corresponding to a given time. | ||||
| fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize> | ||||
| where | ||||
|   | ||||
		Reference in New Issue
	
	Block a user