Refactor all types in their own modules.
This commit is contained in:
parent
935565ca22
commit
99068fb2d0
79
src/interpolate.rs
Normal file
79
src/interpolate.rs
Normal file
@ -0,0 +1,79 @@
|
||||
#[cfg(feature = "std")] use std::ops::{Div, Mul};
|
||||
#[cfg(not(feature = "std"))] use core::ops::{Div, Mul};
|
||||
|
||||
use num_traits::Float;
|
||||
|
||||
/// Keys that can be interpolated in between. Implementing this trait is required to perform
|
||||
/// sampling on splines.
|
||||
///
|
||||
/// `T` is the variable used to sample with. Typical implementations use `f32` or `f64`, but you’re
|
||||
/// free to use the ones you like.
|
||||
pub trait Interpolate<T>: Sized + Copy {
|
||||
/// Linear interpolation.
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self;
|
||||
|
||||
/// Cubic hermite interpolation.
|
||||
///
|
||||
/// Default to `Self::lerp`.
|
||||
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
|
||||
Self::lerp(a.0, b.0, t)
|
||||
}
|
||||
}
|
||||
|
||||
// Default implementation of Interpolate::cubic_hermite.
|
||||
//
|
||||
// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub(crate) fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
|
||||
where V: Float + Mul<T, Output = V> + Div<T, Output = V>,
|
||||
T: Float {
|
||||
// some stupid generic constants, because Rust doesn’t have polymorphic literals…
|
||||
let two_t = T::one() + T::one(); // lolololol
|
||||
let three_t = two_t + T::one(); // megalol
|
||||
|
||||
// sampler stuff
|
||||
let t2 = t * t;
|
||||
let t3 = t2 * t;
|
||||
let two_t3 = t3 * two_t;
|
||||
let three_t2 = t2 * three_t;
|
||||
|
||||
// tangents
|
||||
let m0 = (b.0 - x.0) / (b.1 - x.1);
|
||||
let m1 = (y.0 - a.0) / (y.1 - a.1);
|
||||
|
||||
a.0 * (two_t3 - three_t2 + T::one()) + m0 * (t3 - t2 * two_t + t) + b.0 * (three_t2 - two_t3) + m1 * (t3 - t2)
|
||||
}
|
||||
|
||||
macro_rules! impl_interpolate_simple {
|
||||
($t:ty) => {
|
||||
impl Interpolate<$t> for $t {
|
||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
a * (1. - t) + b * t
|
||||
}
|
||||
|
||||
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_interpolate_simple!(f32);
|
||||
impl_interpolate_simple!(f64);
|
||||
|
||||
macro_rules! impl_interpolate_via {
|
||||
($t:ty, $v:ty) => {
|
||||
impl Interpolate<$t> for $v {
|
||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
a * (1. - t as $v) + b * t as $v
|
||||
}
|
||||
|
||||
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_interpolate_via!(f32, f64);
|
||||
impl_interpolate_via!(f64, f32);
|
||||
|
30
src/interpolation.rs
Normal file
30
src/interpolation.rs
Normal file
@ -0,0 +1,30 @@
|
||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
||||
|
||||
/// Interpolation mode.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub enum Interpolation<T> {
|
||||
/// Hold a [`Key`] until the interpolator value passes the normalized step threshold, in which
|
||||
/// case the next key is used.
|
||||
///
|
||||
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
|
||||
/// > between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
|
||||
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
|
||||
/// > used.
|
||||
Step(T),
|
||||
/// Linear interpolation between a key and the next one.
|
||||
Linear,
|
||||
/// Cosine interpolation between a key and the next one.
|
||||
Cosine,
|
||||
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
|
||||
CatmullRom
|
||||
}
|
||||
|
||||
impl<T> Default for Interpolation<T> {
|
||||
/// `Interpolation::Linear` is the default.
|
||||
fn default() -> Self {
|
||||
Interpolation::Linear
|
||||
}
|
||||
}
|
||||
|
36
src/iter.rs
Normal file
36
src/iter.rs
Normal file
@ -0,0 +1,36 @@
|
||||
use crate::{Key, Spline};
|
||||
|
||||
/// Iterator over spline keys.
|
||||
///
|
||||
/// This iterator type assures you to iterate over sorted keys.
|
||||
pub struct Iter<'a, T, V> where T: 'a, V: 'a {
|
||||
anim_param: &'a Spline<T, V>,
|
||||
i: usize
|
||||
}
|
||||
|
||||
impl<'a, T, V> Iterator for Iter<'a, T, V> {
|
||||
type Item = &'a Key<T, V>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let r = self.anim_param.0.get(self.i);
|
||||
|
||||
if let Some(_) = r {
|
||||
self.i += 1;
|
||||
}
|
||||
|
||||
r
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T, V> IntoIterator for &'a Spline<T, V> {
|
||||
type Item = &'a Key<T, V>;
|
||||
type IntoIter = Iter<'a, T, V>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
Iter {
|
||||
anim_param: self,
|
||||
i: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
28
src/key.rs
Normal file
28
src/key.rs
Normal file
@ -0,0 +1,28 @@
|
||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
||||
|
||||
use crate::interpolation::Interpolation;
|
||||
|
||||
/// A spline control point.
|
||||
///
|
||||
/// This type associates a value at a given interpolation parameter value. It also contains an
|
||||
/// interpolation hint used to determine how to interpolate values on the segment defined by this
|
||||
/// key and the next one – if existing.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub struct Key<T, V> {
|
||||
/// Interpolation parameter at which the [`Key`] should be reached.
|
||||
pub t: T,
|
||||
/// Held value.
|
||||
pub value: V,
|
||||
/// Interpolation mode.
|
||||
pub interpolation: Interpolation<T>
|
||||
}
|
||||
|
||||
impl<T, V> Key<T, V> {
|
||||
/// Create a new key.
|
||||
pub fn new(t: T, value: V, interpolation: Interpolation<T>) -> Self {
|
||||
Key { t, value, interpolation }
|
||||
}
|
||||
}
|
||||
|
379
src/lib.rs
379
src/lib.rs
@ -94,373 +94,14 @@
|
||||
#![cfg_attr(not(feature = "std"), feature(alloc))]
|
||||
#![cfg_attr(not(feature = "std"), feature(core_intrinsics))]
|
||||
|
||||
#[cfg(feature = "impl-nalgebra")] use nalgebra as na;
|
||||
pub mod interpolate;
|
||||
pub mod interpolation;
|
||||
pub mod iter;
|
||||
pub mod key;
|
||||
#[cfg(feature = "impl-nalgebra")] mod nalgebra;
|
||||
pub mod spline;
|
||||
|
||||
#[cfg(feature = "std")] use std::cmp::Ordering;
|
||||
#[cfg(feature = "std")] use std::ops::{Div, Mul};
|
||||
|
||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
||||
|
||||
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
|
||||
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
|
||||
#[cfg(not(feature = "std"))] use core::ops::{Add, Div, Mul, Sub};
|
||||
|
||||
use num_traits::{Float, FloatConst};
|
||||
|
||||
/// A spline control point.
|
||||
///
|
||||
/// This type associates a value at a given interpolation parameter value. It also contains an
|
||||
/// interpolation hint used to determine how to interpolate values on the segment defined by this
|
||||
/// key and the next one – if existing.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub struct Key<T, V> {
|
||||
/// Interpolation parameter at which the [`Key`] should be reached.
|
||||
pub t: T,
|
||||
/// Held value.
|
||||
pub value: V,
|
||||
/// Interpolation mode.
|
||||
pub interpolation: Interpolation<T>
|
||||
}
|
||||
|
||||
impl<T, V> Key<T, V> {
|
||||
/// Create a new key.
|
||||
pub fn new(t: T, value: V, interpolation: Interpolation<T>) -> Self {
|
||||
Key { t, value, interpolation }
|
||||
}
|
||||
}
|
||||
|
||||
/// Interpolation mode.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub enum Interpolation<T> {
|
||||
/// Hold a [`Key`] until the interpolator value passes the normalized step threshold, in which
|
||||
/// case the next key is used.
|
||||
///
|
||||
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
|
||||
/// > between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
|
||||
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
|
||||
/// > used.
|
||||
Step(T),
|
||||
/// Linear interpolation between a key and the next one.
|
||||
Linear,
|
||||
/// Cosine interpolation between a key and the next one.
|
||||
Cosine,
|
||||
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
|
||||
CatmullRom
|
||||
}
|
||||
|
||||
impl<T> Default for Interpolation<T> {
|
||||
/// `Interpolation::Linear` is the default.
|
||||
fn default() -> Self {
|
||||
Interpolation::Linear
|
||||
}
|
||||
}
|
||||
|
||||
/// Spline curve used to provide interpolation between control points (keys).
|
||||
#[derive(Debug, Clone)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
pub struct Spline<T, V>(Vec<Key<T, V>>);
|
||||
|
||||
impl<T, V> Spline<T, V> {
|
||||
/// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended
|
||||
/// to provide ascending sorted ones (for performance purposes).
|
||||
pub fn from_vec(mut keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
|
||||
keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||||
|
||||
Spline(keys)
|
||||
}
|
||||
|
||||
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys don’t have to be
|
||||
/// sorted.
|
||||
///
|
||||
/// # Note on iterators
|
||||
///
|
||||
/// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
|
||||
/// use `Spline::from_vec` if you are passing a `Vec<_>`. This will remove dynamic allocations.
|
||||
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
|
||||
Self::from_vec(iter.collect())
|
||||
}
|
||||
|
||||
/// Retrieve the keys of a spline.
|
||||
pub fn keys(&self) -> &[Key<T, V>] {
|
||||
&self.0
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time.
|
||||
///
|
||||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||||
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
||||
/// performance by using a slightly different spline type. If you are interested by this feature,
|
||||
/// an implementation for a dedicated type is foreseen yet not started yet.
|
||||
///
|
||||
/// # Return
|
||||
///
|
||||
/// `None` if you try to sample a value at a time that has no key associated with. That can also
|
||||
/// happen if you try to sample between two keys with a specific interpolation mode that makes the
|
||||
/// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If you’re
|
||||
/// near the beginning of the spline or its end, ensure you have enough keys around to make the
|
||||
/// sampling.
|
||||
pub fn sample(&self, t: T) -> Option<V> where T: Float + FloatConst, V: Interpolate<T> {
|
||||
let keys = &self.0;
|
||||
let i = search_lower_cp(keys, t)?;
|
||||
let cp0 = &keys[i];
|
||||
|
||||
match cp0.interpolation {
|
||||
Interpolation::Step(threshold) => {
|
||||
let cp1 = &keys[i+1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
Some(if nt < threshold { cp0.value } else { cp1.value })
|
||||
}
|
||||
|
||||
Interpolation::Linear => {
|
||||
let cp1 = &keys[i+1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
||||
}
|
||||
|
||||
Interpolation::Cosine => {
|
||||
let two_t = T::one() + T::one();
|
||||
let cp1 = &keys[i+1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let cos_nt = (T::one() - (nt * T::PI()).cos()) / two_t;
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
||||
}
|
||||
|
||||
Interpolation::CatmullRom => {
|
||||
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
|
||||
// None.
|
||||
if i == 0 || i >= keys.len() - 2 {
|
||||
None
|
||||
} else {
|
||||
let cp1 = &keys[i+1];
|
||||
let cpm0 = &keys[i-1];
|
||||
let cpm1 = &keys[i+2];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
|
||||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping.
|
||||
///
|
||||
/// # Return
|
||||
///
|
||||
/// If you sample before the first key or after the last one, return the first key or the last
|
||||
/// one, respectively. Otherwise, behave the same way as `Spline::sample`.
|
||||
///
|
||||
/// # Error
|
||||
///
|
||||
/// This function returns `None` if you have no key.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V> where T: Float + FloatConst, V: Interpolate<T> {
|
||||
if self.0.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
self.sample(t).or_else(move || {
|
||||
let first = self.0.first().unwrap();
|
||||
if t <= first.t {
|
||||
Some(first.value)
|
||||
} else {
|
||||
let last = self.0.last().unwrap();
|
||||
|
||||
if t >= last.t {
|
||||
Some(last.value)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// Iterator over spline keys.
|
||||
///
|
||||
/// This iterator type assures you to iterate over sorted keys.
|
||||
pub struct Iter<'a, T, V> where T: 'a, V: 'a {
|
||||
anim_param: &'a Spline<T, V>,
|
||||
i: usize
|
||||
}
|
||||
|
||||
impl<'a, T, V> Iterator for Iter<'a, T, V> {
|
||||
type Item = &'a Key<T, V>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let r = self.anim_param.0.get(self.i);
|
||||
|
||||
if let Some(_) = r {
|
||||
self.i += 1;
|
||||
}
|
||||
|
||||
r
|
||||
}
|
||||
}
|
||||
|
||||
impl<'a, T, V> IntoIterator for &'a Spline<T, V> {
|
||||
type Item = &'a Key<T, V>;
|
||||
type IntoIter = Iter<'a, T, V>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
Iter {
|
||||
anim_param: self,
|
||||
i: 0
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Keys that can be interpolated in between. Implementing this trait is required to perform
|
||||
/// sampling on splines.
|
||||
///
|
||||
/// `T` is the variable used to sample with. Typical implementations use `f32` or `f64`, but you’re
|
||||
/// free to use the ones you like.
|
||||
pub trait Interpolate<T>: Sized + Copy {
|
||||
/// Linear interpolation.
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self;
|
||||
|
||||
/// Cubic hermite interpolation.
|
||||
///
|
||||
/// Default to `Self::lerp`.
|
||||
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
|
||||
Self::lerp(a.0, b.0, t)
|
||||
}
|
||||
}
|
||||
|
||||
macro_rules! impl_interpolate_simple {
|
||||
($t:ty) => {
|
||||
impl Interpolate<$t> for $t {
|
||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
a * (1. - t) + b * t
|
||||
}
|
||||
|
||||
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_interpolate_simple!(f32);
|
||||
impl_interpolate_simple!(f64);
|
||||
|
||||
macro_rules! impl_interpolate_via {
|
||||
($t:ty, $v:ty) => {
|
||||
impl Interpolate<$t> for $v {
|
||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
a * (1. - t as $v) + b * t as $v
|
||||
}
|
||||
|
||||
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_interpolate_via!(f32, f64);
|
||||
impl_interpolate_via!(f64, f32);
|
||||
|
||||
macro_rules! impl_interpolate_na_vector {
|
||||
($($t:tt)*) => {
|
||||
#[cfg(feature = "impl-nalgebra")]
|
||||
impl<T, V> Interpolate<T> for $($t)*<V> where T: Float, V: na::Scalar + Interpolate<T> {
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_interpolate_na_vector!(na::Vector1);
|
||||
impl_interpolate_na_vector!(na::Vector2);
|
||||
impl_interpolate_na_vector!(na::Vector3);
|
||||
impl_interpolate_na_vector!(na::Vector4);
|
||||
impl_interpolate_na_vector!(na::Vector5);
|
||||
impl_interpolate_na_vector!(na::Vector6);
|
||||
|
||||
#[cfg(feature = "impl-nalgebra")]
|
||||
impl<T, N, D> Interpolate<T> for na::Point<N, D>
|
||||
where D: na::DimName,
|
||||
na::DefaultAllocator: na::allocator::Allocator<N, D>,
|
||||
<na::DefaultAllocator as na::allocator::Allocator<N, D>>::Buffer: Copy,
|
||||
N: na::Scalar + Interpolate<T>,
|
||||
T: Float {
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
// The 'coords' of a point is just a vector, so we can interpolate component-wise
|
||||
// over these vectors.
|
||||
let coords = na::Vector::zip_map(&a.coords, &b.coords, |c1, c2| Interpolate::lerp(c1, c2, t));
|
||||
na::Point::from(coords)
|
||||
}
|
||||
}
|
||||
|
||||
// Default implementation of Interpolate::cubic_hermite.
|
||||
//
|
||||
// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub(crate) fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
|
||||
where V: Float + Mul<T, Output = V> + Div<T, Output = V>,
|
||||
T: Float {
|
||||
// some stupid generic constants, because Rust doesn’t have polymorphic literals…
|
||||
let two_t = T::one() + T::one(); // lolololol
|
||||
let three_t = two_t + T::one(); // megalol
|
||||
|
||||
// sampler stuff
|
||||
let t2 = t * t;
|
||||
let t3 = t2 * t;
|
||||
let two_t3 = t3 * two_t;
|
||||
let three_t2 = t2 * three_t;
|
||||
|
||||
// tangents
|
||||
let m0 = (b.0 - x.0) / (b.1 - x.1);
|
||||
let m1 = (y.0 - a.0) / (y.1 - a.1);
|
||||
|
||||
a.0 * (two_t3 - three_t2 + T::one()) + m0 * (t3 - t2 * two_t + t) + b.0 * (three_t2 - two_t3) + m1 * (t3 - t2)
|
||||
}
|
||||
|
||||
// Normalize a time ([0;1]) given two control points.
|
||||
#[inline(always)]
|
||||
pub(crate) fn normalize_time<T, V>(
|
||||
t: T,
|
||||
cp: &Key<T, V>,
|
||||
cp1: &Key<T, V>
|
||||
) -> T where T: Float {
|
||||
assert!(cp1.t != cp.t, "overlapping keys");
|
||||
(t - cp.t) / (cp1.t - cp.t)
|
||||
}
|
||||
|
||||
// Find the lower control point corresponding to a given time.
|
||||
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize> where T: PartialOrd {
|
||||
let mut i = 0;
|
||||
let len = cps.len();
|
||||
|
||||
if len < 2 {
|
||||
return None;
|
||||
}
|
||||
|
||||
loop {
|
||||
let cp = &cps[i];
|
||||
let cp1 = &cps[i+1];
|
||||
|
||||
if t >= cp1.t {
|
||||
if i >= len - 2 {
|
||||
return None;
|
||||
}
|
||||
|
||||
i += 1;
|
||||
} else if t < cp.t {
|
||||
if i == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
i -= 1;
|
||||
} else {
|
||||
break; // found
|
||||
}
|
||||
}
|
||||
|
||||
Some(i)
|
||||
}
|
||||
pub use crate::interpolate::Interpolate;
|
||||
pub use crate::interpolation::Interpolation;
|
||||
pub use crate::key::Key;
|
||||
pub use crate::spline::Spline;
|
||||
|
36
src/nalgebra.rs
Normal file
36
src/nalgebra.rs
Normal file
@ -0,0 +1,36 @@
|
||||
use crate::Interpolate;
|
||||
|
||||
use nalgebra as na;
|
||||
|
||||
use num_traits::Float;
|
||||
|
||||
macro_rules! impl_interpolate_na_vector {
|
||||
($($t:tt)*) => {
|
||||
impl<T, V> Interpolate<T> for $($t)*<V> where T: Float, V: na::Scalar + Interpolate<T> {
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_interpolate_na_vector!(na::Vector1);
|
||||
impl_interpolate_na_vector!(na::Vector2);
|
||||
impl_interpolate_na_vector!(na::Vector3);
|
||||
impl_interpolate_na_vector!(na::Vector4);
|
||||
impl_interpolate_na_vector!(na::Vector5);
|
||||
impl_interpolate_na_vector!(na::Vector6);
|
||||
|
||||
impl<T, N, D> Interpolate<T> for na::Point<N, D>
|
||||
where D: na::DimName,
|
||||
na::DefaultAllocator: na::allocator::Allocator<N, D>,
|
||||
<na::DefaultAllocator as na::allocator::Allocator<N, D>>::Buffer: Copy,
|
||||
N: na::Scalar + Interpolate<T>,
|
||||
T: Float {
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
// The 'coords' of a point is just a vector, so we can interpolate component-wise
|
||||
// over these vectors.
|
||||
let coords = na::Vector::zip_map(&a.coords, &b.coords, |c1, c2| Interpolate::lerp(c1, c2, t));
|
||||
na::Point::from(coords)
|
||||
}
|
||||
}
|
175
src/spline.rs
Normal file
175
src/spline.rs
Normal file
@ -0,0 +1,175 @@
|
||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
||||
#[cfg(feature = "std")] use std::cmp::Ordering;
|
||||
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
|
||||
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
|
||||
|
||||
use crate::interpolate::Interpolate;
|
||||
use crate::interpolation::Interpolation;
|
||||
use crate::key::Key;
|
||||
|
||||
use num_traits::{Float, FloatConst};
|
||||
|
||||
/// Spline curve used to provide interpolation between control points (keys).
|
||||
#[derive(Debug, Clone)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
|
||||
|
||||
impl<T, V> Spline<T, V> {
|
||||
/// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended
|
||||
/// to provide ascending sorted ones (for performance purposes).
|
||||
pub fn from_vec(mut keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
|
||||
keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||||
|
||||
Spline(keys)
|
||||
}
|
||||
|
||||
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys don’t have to be
|
||||
/// sorted.
|
||||
///
|
||||
/// # Note on iterators
|
||||
///
|
||||
/// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
|
||||
/// use `Spline::from_vec` if you are passing a `Vec<_>`. This will remove dynamic allocations.
|
||||
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
|
||||
Self::from_vec(iter.collect())
|
||||
}
|
||||
|
||||
/// Retrieve the keys of a spline.
|
||||
pub fn keys(&self) -> &[Key<T, V>] {
|
||||
&self.0
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time.
|
||||
///
|
||||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||||
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
||||
/// performance by using a slightly different spline type. If you are interested by this feature,
|
||||
/// an implementation for a dedicated type is foreseen yet not started yet.
|
||||
///
|
||||
/// # Return
|
||||
///
|
||||
/// `None` if you try to sample a value at a time that has no key associated with. That can also
|
||||
/// happen if you try to sample between two keys with a specific interpolation mode that makes the
|
||||
/// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If you’re
|
||||
/// near the beginning of the spline or its end, ensure you have enough keys around to make the
|
||||
/// sampling.
|
||||
pub fn sample(&self, t: T) -> Option<V> where T: Float + FloatConst, V: Interpolate<T> {
|
||||
let keys = &self.0;
|
||||
let i = search_lower_cp(keys, t)?;
|
||||
let cp0 = &keys[i];
|
||||
|
||||
match cp0.interpolation {
|
||||
Interpolation::Step(threshold) => {
|
||||
let cp1 = &keys[i+1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
Some(if nt < threshold { cp0.value } else { cp1.value })
|
||||
}
|
||||
|
||||
Interpolation::Linear => {
|
||||
let cp1 = &keys[i+1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
||||
}
|
||||
|
||||
Interpolation::Cosine => {
|
||||
let two_t = T::one() + T::one();
|
||||
let cp1 = &keys[i+1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let cos_nt = (T::one() - (nt * T::PI()).cos()) / two_t;
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
||||
}
|
||||
|
||||
Interpolation::CatmullRom => {
|
||||
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
|
||||
// None.
|
||||
if i == 0 || i >= keys.len() - 2 {
|
||||
None
|
||||
} else {
|
||||
let cp1 = &keys[i+1];
|
||||
let cpm0 = &keys[i-1];
|
||||
let cpm1 = &keys[i+2];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
|
||||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping.
|
||||
///
|
||||
/// # Return
|
||||
///
|
||||
/// If you sample before the first key or after the last one, return the first key or the last
|
||||
/// one, respectively. Otherwise, behave the same way as `Spline::sample`.
|
||||
///
|
||||
/// # Error
|
||||
///
|
||||
/// This function returns `None` if you have no key.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V> where T: Float + FloatConst, V: Interpolate<T> {
|
||||
if self.0.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
self.sample(t).or_else(move || {
|
||||
let first = self.0.first().unwrap();
|
||||
if t <= first.t {
|
||||
Some(first.value)
|
||||
} else {
|
||||
let last = self.0.last().unwrap();
|
||||
|
||||
if t >= last.t {
|
||||
Some(last.value)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// Normalize a time ([0;1]) given two control points.
|
||||
#[inline(always)]
|
||||
pub(crate) fn normalize_time<T, V>(
|
||||
t: T,
|
||||
cp: &Key<T, V>,
|
||||
cp1: &Key<T, V>
|
||||
) -> T where T: Float {
|
||||
assert!(cp1.t != cp.t, "overlapping keys");
|
||||
(t - cp.t) / (cp1.t - cp.t)
|
||||
}
|
||||
|
||||
// Find the lower control point corresponding to a given time.
|
||||
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize> where T: PartialOrd {
|
||||
let mut i = 0;
|
||||
let len = cps.len();
|
||||
|
||||
if len < 2 {
|
||||
return None;
|
||||
}
|
||||
|
||||
loop {
|
||||
let cp = &cps[i];
|
||||
let cp1 = &cps[i+1];
|
||||
|
||||
if t >= cp1.t {
|
||||
if i >= len - 2 {
|
||||
return None;
|
||||
}
|
||||
|
||||
i += 1;
|
||||
} else if t < cp.t {
|
||||
if i == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
i -= 1;
|
||||
} else {
|
||||
break; // found
|
||||
}
|
||||
}
|
||||
|
||||
Some(i)
|
||||
}
|
Loading…
Reference in New Issue
Block a user