176 lines
5.3 KiB
Rust
176 lines
5.3 KiB
Rust
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
||
#[cfg(feature = "std")] use std::cmp::Ordering;
|
||
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
|
||
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
|
||
|
||
use crate::interpolate::Interpolate;
|
||
use crate::interpolation::Interpolation;
|
||
use crate::key::Key;
|
||
|
||
use num_traits::{Float, FloatConst};
|
||
|
||
/// Spline curve used to provide interpolation between control points (keys).
|
||
#[derive(Debug, Clone)]
|
||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
|
||
|
||
impl<T, V> Spline<T, V> {
|
||
/// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended
|
||
/// to provide ascending sorted ones (for performance purposes).
|
||
pub fn from_vec(mut keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
|
||
keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||
|
||
Spline(keys)
|
||
}
|
||
|
||
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys don’t have to be
|
||
/// sorted.
|
||
///
|
||
/// # Note on iterators
|
||
///
|
||
/// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
|
||
/// use `Spline::from_vec` if you are passing a `Vec<_>`. This will remove dynamic allocations.
|
||
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
|
||
Self::from_vec(iter.collect())
|
||
}
|
||
|
||
/// Retrieve the keys of a spline.
|
||
pub fn keys(&self) -> &[Key<T, V>] {
|
||
&self.0
|
||
}
|
||
|
||
/// Sample a spline at a given time.
|
||
///
|
||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
||
/// performance by using a slightly different spline type. If you are interested by this feature,
|
||
/// an implementation for a dedicated type is foreseen yet not started yet.
|
||
///
|
||
/// # Return
|
||
///
|
||
/// `None` if you try to sample a value at a time that has no key associated with. That can also
|
||
/// happen if you try to sample between two keys with a specific interpolation mode that makes the
|
||
/// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If you’re
|
||
/// near the beginning of the spline or its end, ensure you have enough keys around to make the
|
||
/// sampling.
|
||
pub fn sample(&self, t: T) -> Option<V> where T: Float + FloatConst, V: Interpolate<T> {
|
||
let keys = &self.0;
|
||
let i = search_lower_cp(keys, t)?;
|
||
let cp0 = &keys[i];
|
||
|
||
match cp0.interpolation {
|
||
Interpolation::Step(threshold) => {
|
||
let cp1 = &keys[i+1];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
Some(if nt < threshold { cp0.value } else { cp1.value })
|
||
}
|
||
|
||
Interpolation::Linear => {
|
||
let cp1 = &keys[i+1];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
|
||
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
||
}
|
||
|
||
Interpolation::Cosine => {
|
||
let two_t = T::one() + T::one();
|
||
let cp1 = &keys[i+1];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
let cos_nt = (T::one() - (nt * T::PI()).cos()) / two_t;
|
||
|
||
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
||
}
|
||
|
||
Interpolation::CatmullRom => {
|
||
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
|
||
// None.
|
||
if i == 0 || i >= keys.len() - 2 {
|
||
None
|
||
} else {
|
||
let cp1 = &keys[i+1];
|
||
let cpm0 = &keys[i-1];
|
||
let cpm1 = &keys[i+2];
|
||
let nt = normalize_time(t, cp0, cp1);
|
||
|
||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
||
}
|
||
}
|
||
}
|
||
}
|
||
|
||
/// Sample a spline at a given time with clamping.
|
||
///
|
||
/// # Return
|
||
///
|
||
/// If you sample before the first key or after the last one, return the first key or the last
|
||
/// one, respectively. Otherwise, behave the same way as `Spline::sample`.
|
||
///
|
||
/// # Error
|
||
///
|
||
/// This function returns `None` if you have no key.
|
||
pub fn clamped_sample(&self, t: T) -> Option<V> where T: Float + FloatConst, V: Interpolate<T> {
|
||
if self.0.is_empty() {
|
||
return None;
|
||
}
|
||
|
||
self.sample(t).or_else(move || {
|
||
let first = self.0.first().unwrap();
|
||
if t <= first.t {
|
||
Some(first.value)
|
||
} else {
|
||
let last = self.0.last().unwrap();
|
||
|
||
if t >= last.t {
|
||
Some(last.value)
|
||
} else {
|
||
None
|
||
}
|
||
}
|
||
})
|
||
}
|
||
}
|
||
|
||
// Normalize a time ([0;1]) given two control points.
|
||
#[inline(always)]
|
||
pub(crate) fn normalize_time<T, V>(
|
||
t: T,
|
||
cp: &Key<T, V>,
|
||
cp1: &Key<T, V>
|
||
) -> T where T: Float {
|
||
assert!(cp1.t != cp.t, "overlapping keys");
|
||
(t - cp.t) / (cp1.t - cp.t)
|
||
}
|
||
|
||
// Find the lower control point corresponding to a given time.
|
||
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize> where T: PartialOrd {
|
||
let mut i = 0;
|
||
let len = cps.len();
|
||
|
||
if len < 2 {
|
||
return None;
|
||
}
|
||
|
||
loop {
|
||
let cp = &cps[i];
|
||
let cp1 = &cps[i+1];
|
||
|
||
if t >= cp1.t {
|
||
if i >= len - 2 {
|
||
return None;
|
||
}
|
||
|
||
i += 1;
|
||
} else if t < cp.t {
|
||
if i == 0 {
|
||
return None;
|
||
}
|
||
|
||
i -= 1;
|
||
} else {
|
||
break; // found
|
||
}
|
||
}
|
||
|
||
Some(i)
|
||
}
|