embassy/embassy-rp/src/uart/buffered.rs

480 lines
14 KiB
Rust
Raw Normal View History

use core::future::{poll_fn, Future};
use core::slice;
use core::task::Poll;
use embassy_cortex_m::interrupt::{Interrupt, InterruptExt};
use embassy_hal_common::atomic_ring_buffer::RingBuffer;
use embassy_sync::waitqueue::AtomicWaker;
use super::*;
use crate::RegExt;
pub struct State {
tx_waker: AtomicWaker,
tx_buf: RingBuffer,
rx_waker: AtomicWaker,
rx_buf: RingBuffer,
}
impl State {
pub const fn new() -> Self {
Self {
rx_buf: RingBuffer::new(),
tx_buf: RingBuffer::new(),
rx_waker: AtomicWaker::new(),
tx_waker: AtomicWaker::new(),
}
}
}
pub struct BufferedUart<'d, T: Instance> {
rx: BufferedUartRx<'d, T>,
tx: BufferedUartTx<'d, T>,
}
pub struct BufferedUartRx<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
}
pub struct BufferedUartTx<'d, T: Instance> {
phantom: PhantomData<&'d mut T>,
}
fn init<'d, T: Instance + 'd>(
irq: PeripheralRef<'d, T::Interrupt>,
tx: Option<PeripheralRef<'d, AnyPin>>,
rx: Option<PeripheralRef<'d, AnyPin>>,
rts: Option<PeripheralRef<'d, AnyPin>>,
cts: Option<PeripheralRef<'d, AnyPin>>,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
) {
super::Uart::<'d, T, Async>::init(tx, rx, rts, cts, config);
let state = T::state();
let len = tx_buffer.len();
unsafe { state.tx_buf.init(tx_buffer.as_mut_ptr(), len) };
let len = rx_buffer.len();
unsafe { state.rx_buf.init(rx_buffer.as_mut_ptr(), len) };
// From the datasheet:
// "The transmit interrupt is based on a transition through a level, rather
// than on the level itself. When the interrupt and the UART is enabled
// before any data is written to the transmit FIFO the interrupt is not set.
// The interrupt is only set, after written data leaves the single location
// of the transmit FIFO and it becomes empty."
//
// This means we can leave the interrupt enabled the whole time as long as
// we clear it after it happens. The downside is that the we manually have
// to pend the ISR when we want data transmission to start.
let regs = T::regs();
unsafe { regs.uartimsc().write_set(|w| w.set_txim(true)) };
irq.set_handler(on_interrupt::<T>);
irq.unpend();
irq.enable();
}
impl<'d, T: Instance> BufferedUart<'d, T> {
pub fn new(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(irq, tx, rx);
init::<T>(
irq,
Some(tx.map_into()),
Some(rx.map_into()),
None,
None,
tx_buffer,
rx_buffer,
config,
);
Self {
rx: BufferedUartRx { phantom: PhantomData },
tx: BufferedUartTx { phantom: PhantomData },
}
}
pub fn new_with_rtscts(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
tx_buffer: &'d mut [u8],
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(irq, tx, rx, cts, rts);
init::<T>(
irq,
Some(tx.map_into()),
Some(rx.map_into()),
Some(rts.map_into()),
Some(cts.map_into()),
tx_buffer,
rx_buffer,
config,
);
Self {
rx: BufferedUartRx { phantom: PhantomData },
tx: BufferedUartTx { phantom: PhantomData },
}
}
pub fn split(self) -> (BufferedUartRx<'d, T>, BufferedUartTx<'d, T>) {
(self.rx, self.tx)
}
}
impl<'d, T: Instance> BufferedUartRx<'d, T> {
pub fn new(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(irq, rx);
init::<T>(irq, None, Some(rx.map_into()), None, None, &mut [], rx_buffer, config);
Self { phantom: PhantomData }
}
pub fn new_with_rts(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
rx: impl Peripheral<P = impl RxPin<T>> + 'd,
rts: impl Peripheral<P = impl RtsPin<T>> + 'd,
rx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(irq, rx, rts);
init::<T>(
irq,
None,
Some(rx.map_into()),
Some(rts.map_into()),
None,
&mut [],
rx_buffer,
config,
);
Self { phantom: PhantomData }
}
fn read<'a>(buf: &'a mut [u8]) -> impl Future<Output = Result<usize, Error>> + 'a {
poll_fn(move |cx| {
let state = T::state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let n = rx_reader.pop(|data| {
let n = data.len().min(buf.len());
buf[..n].copy_from_slice(&data[..n]);
n
});
if n == 0 {
state.rx_waker.register(cx.waker());
return Poll::Pending;
}
// (Re-)Enable the interrupt to receive more data in case it was
// disabled because the buffer was full.
let regs = T::regs();
unsafe {
regs.uartimsc().write_set(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
}
Poll::Ready(Ok(n))
})
}
fn fill_buf<'a>() -> impl Future<Output = Result<&'a [u8], Error>> {
poll_fn(move |cx| {
let state = T::state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
let (p, n) = rx_reader.pop_buf();
if n == 0 {
state.rx_waker.register(cx.waker());
return Poll::Pending;
}
let buf = unsafe { slice::from_raw_parts(p, n) };
Poll::Ready(Ok(buf))
})
}
fn consume(amt: usize) {
let state = T::state();
let mut rx_reader = unsafe { state.rx_buf.reader() };
rx_reader.pop_done(amt);
// (Re-)Enable the interrupt to receive more data in case it was
// disabled because the buffer was full.
let regs = T::regs();
unsafe {
regs.uartimsc().write_set(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
}
}
}
impl<'d, T: Instance> BufferedUartTx<'d, T> {
pub fn new(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
tx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(irq, tx);
init::<T>(irq, Some(tx.map_into()), None, None, None, tx_buffer, &mut [], config);
Self { phantom: PhantomData }
}
pub fn new_with_cts(
_uart: impl Peripheral<P = T> + 'd,
irq: impl Peripheral<P = T::Interrupt> + 'd,
tx: impl Peripheral<P = impl TxPin<T>> + 'd,
cts: impl Peripheral<P = impl CtsPin<T>> + 'd,
tx_buffer: &'d mut [u8],
config: Config,
) -> Self {
into_ref!(irq, tx, cts);
init::<T>(
irq,
Some(tx.map_into()),
None,
None,
Some(cts.map_into()),
tx_buffer,
&mut [],
config,
);
Self { phantom: PhantomData }
}
fn write<'a>(buf: &'a [u8]) -> impl Future<Output = Result<usize, Error>> + 'a {
poll_fn(move |cx| {
let state = T::state();
let mut tx_writer = unsafe { state.tx_buf.writer() };
let n = tx_writer.push(|data| {
let n = data.len().min(buf.len());
data[..n].copy_from_slice(&buf[..n]);
n
});
if n == 0 {
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
// The TX interrupt only triggers when the there was data in the
// FIFO and the number of bytes drops below a threshold. When the
// FIFO was empty we have to manually pend the interrupt to shovel
// TX data from the buffer into the FIFO.
unsafe { T::Interrupt::steal() }.pend();
Poll::Ready(Ok(n))
})
}
fn flush() -> impl Future<Output = Result<(), Error>> {
poll_fn(move |cx| {
let state = T::state();
if !state.tx_buf.is_empty() {
state.tx_waker.register(cx.waker());
return Poll::Pending;
}
Poll::Ready(Ok(()))
})
}
}
impl<'d, T: Instance> Drop for BufferedUartRx<'d, T> {
fn drop(&mut self) {
let state = T::state();
unsafe {
state.rx_buf.deinit();
// TX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.tx_buf.len() == 0 {
T::Interrupt::steal().disable();
}
}
}
}
impl<'d, T: Instance> Drop for BufferedUartTx<'d, T> {
fn drop(&mut self) {
let state = T::state();
unsafe {
state.tx_buf.deinit();
// RX is inactive if the the buffer is not available.
// We can now unregister the interrupt handler
if state.rx_buf.len() == 0 {
T::Interrupt::steal().disable();
}
}
}
}
pub(crate) unsafe fn on_interrupt<T: Instance>(_: *mut ()) {
let r = T::regs();
let s = T::state();
unsafe {
// Clear TX and error interrupt flags
// RX interrupt flags are cleared by reading from the FIFO.
let ris = r.uartris().read();
r.uarticr().write(|w| {
w.set_txic(ris.txris());
w.set_feic(ris.feris());
w.set_peic(ris.peris());
w.set_beic(ris.beris());
w.set_oeic(ris.oeris());
});
2023-01-05 22:00:44 +01:00
trace!("on_interrupt ris={:#X}", ris.0);
// Errors
if ris.feris() {
warn!("Framing error");
}
if ris.peris() {
warn!("Parity error");
}
if ris.beris() {
warn!("Break error");
}
if ris.oeris() {
warn!("Overrun error");
}
// RX
let mut rx_writer = s.rx_buf.writer();
let rx_buf = rx_writer.push_slice();
let mut n_read = 0;
for rx_byte in rx_buf {
if r.uartfr().read().rxfe() {
break;
}
*rx_byte = r.uartdr().read().data();
n_read += 1;
}
if n_read > 0 {
rx_writer.push_done(n_read);
s.rx_waker.wake();
}
// Disable any further RX interrupts when the buffer becomes full.
if s.rx_buf.is_full() {
r.uartimsc().write_clear(|w| {
w.set_rxim(true);
w.set_rtim(true);
});
}
// TX
let mut tx_reader = s.tx_buf.reader();
let tx_buf = tx_reader.pop_slice();
let mut n_written = 0;
for tx_byte in tx_buf.iter_mut() {
if r.uartfr().read().txff() {
break;
}
r.uartdr().write(|w| w.set_data(*tx_byte));
n_written += 1;
}
if n_written > 0 {
tx_reader.pop_done(n_written);
s.tx_waker.wake();
}
// The TX interrupt only triggers once when the FIFO threshold is
// crossed. No need to disable it when the buffer becomes empty
// as it does re-trigger anymore once we have cleared it.
}
}
impl embedded_io::Error for Error {
fn kind(&self) -> embedded_io::ErrorKind {
embedded_io::ErrorKind::Other
}
}
impl<'d, T: Instance> embedded_io::Io for BufferedUart<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_io::Io for BufferedUartRx<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_io::Io for BufferedUartTx<'d, T> {
type Error = Error;
}
impl<'d, T: Instance + 'd> embedded_io::asynch::Read for BufferedUart<'d, T> {
2022-11-21 23:31:31 +01:00
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
BufferedUartRx::<'d, T>::read(buf).await
}
}
impl<'d, T: Instance + 'd> embedded_io::asynch::Read for BufferedUartRx<'d, T> {
2022-11-21 23:31:31 +01:00
async fn read(&mut self, buf: &mut [u8]) -> Result<usize, Self::Error> {
Self::read(buf).await
}
}
impl<'d, T: Instance + 'd> embedded_io::asynch::BufRead for BufferedUart<'d, T> {
2022-11-21 23:31:31 +01:00
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
BufferedUartRx::<'d, T>::fill_buf().await
}
fn consume(&mut self, amt: usize) {
BufferedUartRx::<'d, T>::consume(amt)
}
}
impl<'d, T: Instance + 'd> embedded_io::asynch::BufRead for BufferedUartRx<'d, T> {
2022-11-21 23:31:31 +01:00
async fn fill_buf(&mut self) -> Result<&[u8], Self::Error> {
Self::fill_buf().await
}
fn consume(&mut self, amt: usize) {
Self::consume(amt)
}
}
impl<'d, T: Instance + 'd> embedded_io::asynch::Write for BufferedUart<'d, T> {
2022-11-21 23:31:31 +01:00
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
BufferedUartTx::<'d, T>::write(buf).await
}
2022-11-21 23:31:31 +01:00
async fn flush(&mut self) -> Result<(), Self::Error> {
BufferedUartTx::<'d, T>::flush().await
}
}
impl<'d, T: Instance + 'd> embedded_io::asynch::Write for BufferedUartTx<'d, T> {
2022-11-21 23:31:31 +01:00
async fn write(&mut self, buf: &[u8]) -> Result<usize, Self::Error> {
Self::write(buf).await
}
2022-11-21 23:31:31 +01:00
async fn flush(&mut self) -> Result<(), Self::Error> {
Self::flush().await
}
}