1024: stm32/adc: Remove voltage and temperature conversions r=Dirbaio a=GrantM11235
The current conversion utilities are confusing and a bit of a footgun. (Two out of the three examples got it wrong! They didn't measure vref at all, so all the conversions are completely wrong if vcca isn't 3.3v)
I think we should eventually have some sort of conversion utilities in the HAL, but for now I think it is best to just remove it and let the users do their own math.
cc `@chemicstry`
Co-authored-by: Grant Miller <GrantM11235@gmail.com>
1025: Implement I2C timeouts, second attempt r=Dirbaio a=chemicstry
This is an alterrnative to #1022 as discussed there.
Timeouts are implemented using suggested `check_timeout: impl Fn() -> Result<(), Error>` function, which does not depend on `embassy-time` by default and is a noop for regular I2C.
This also adds `time` feature like in `embassy-nrf` to enable `embassy-time` dependencies. While at it, I also gated some other peripherals that depend on `embassy-time`, notably `usb` and (partially) `subghz`.
`TimeoutI2c` is currently only implemented for i2cv1, because i2cv2 has additional complications:
- Async methods still use a lot of busy waiting code in between DMA transfers, so simple `with_timeout()` will not work and it will have to use both types of timeouts. It could probably be rewritten to replace busy waits with IRQs, but that's outside the scope of this PR.
- I2C definition `I2c<'d, T, TXDMA, RXDMA>` is different from i2cv1 `I2c<'d, T>` making it hard to share single `TimeoutI2c` wrapper. A couple of options here:
- Duplicate `TimeoutI2c` code
- Add dummy `TXDMA`, `RXDMA` types to i2cv1 considering that in the future it should also support DMA
Co-authored-by: chemicstry <chemicstry@gmail.com>
855: PDM microphone support for nrf r=Dirbaio a=pbert519
PDM microphones have a long startup phase, therefore the driver samples continuously and only switches the target buffer if the user requests sampling.
Co-authored-by: pbert <pbert@posteo.net>
984: rp pico async i2c implementation r=Dirbaio a=jsgf
This implements an interrupt-driven async i2c master. It is based on https://github.com/embassy-rs/embassy/pull/914, a bit of https://github.com/embassy-rs/embassy/pull/978 and `@ithinuel's` https://github.com/ithinuel/rp2040-async-i2c.git
This is still work-in-progress, and is currently untested.
1006: Removes some of the code duplication for UarteWithIdle r=Dirbaio a=huntc
This PR removes some of the code duplications for `UarteWithIdle` at the slight expense of requiring a split when using idle processing. As the nRF example illustrates though given the LoC removed, this expense seems worth the benefit in terms of maintenance, and the avoidance of copying over methods. My main motivation for this PR was actually due to the `event_endtx` method not having been copied across to the idle-related code.
Tested the uart_idle example on my nRF52840-dk, and from within my app. Both appear to work fine.
Co-authored-by: Jeremy Fitzhardinge <jeremy@goop.org>
Co-authored-by: huntc <huntchr@gmail.com>
1004: Fix internal channels for adc v2 r=lulf a=chemicstry
Internal channel reading was broken on adc_v2, because `Adc::read()` requires gpio pin trait, which was not implemented by `VrefInt`, `Temperature`, `Vbat`. The required configuration bits `tsvrefe`, `vbate` were not enabled either. This PR makes it a bit closer to how adc_v4 works.
While at it, I also changed adc_v2 to use `RccPeripheral` instead of permanently enabling all ADCs.
Co-authored-by: chemicstry <chemicstry@gmail.com>
This commit removes some of the code duplication for UarteWithIdle at the expense of requiring a split. As the example illustrates though, this expense seems worth the benefit in terms of maintenance, and the avoidance of copying over methods. My main motivation for this commit was actually due to the `event_endtx` method not having been copied across.
Simple example exercising an mcp23017 GPIO expander, configured on
RP2040 GPIOs 14+15 (i2c1) with 8 inputs and 8 outputs. Input bit 0
controls whether to display a mcp23017 register dump.
This is an interrupt-driven async i2c master implementation. It makes as
best use of the RP2040's i2c block's fifos as possible to minimize
interrupts.
It implements embedded_hal_async::i2c for easy interop.
WIP async impl
Compiler will infer a different lifetime for BootFlash than for the
borrowed flash, which makes it require more type annotations than if it
was just owning the type. Since it doesn't really matter if it owns or
borrows in practical use, change it to own so that it simplifies usage.