Compare commits
5 Commits
1.0.0-rc.1
...
1.0.0-rc.2
Author | SHA1 | Date | |
---|---|---|---|
bdb9a68c3b | |||
e7ecc9819a | |||
e88da58a87 | |||
6ae3918eb1 | |||
dcd82f7301 |
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "splines"
|
||||
version = "1.0.0-rc.1"
|
||||
version = "1.0.0-rc.2"
|
||||
license = "BSD-3-Clause"
|
||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||
description = "Spline interpolation made easy"
|
||||
|
@ -4,4 +4,4 @@ version = "0.2.0"
|
||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||
|
||||
[dependencies]
|
||||
splines = "0.2"
|
||||
splines = "1.0.0-rc.2"
|
||||
|
@ -5,7 +5,4 @@ authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||
|
||||
[dependencies]
|
||||
serde_json = "1"
|
||||
|
||||
[dependencies.splines]
|
||||
version = "0.2"
|
||||
features = ["serialization"]
|
||||
splines = { version = "1.0.0-rc.2", features = ["serialization"] }
|
||||
|
@ -1,3 +1,33 @@
|
||||
//! The [`Interpolate`] trait and associated symbols.
|
||||
//!
|
||||
//! The [`Interpolate`] trait is the central concept of the crate. It enables a spline to be
|
||||
//! sampled at by interpolating in between control points.
|
||||
//!
|
||||
//! In order for a type to be used in [`Spline<K, V>`], some properties must be met about the `K`
|
||||
//! type must implementing several traits:
|
||||
//!
|
||||
//! - [`One`], giving a neutral element for the multiplication monoid.
|
||||
//! - [`Additive`], making the type additive (i.e. one can add or subtract with it).
|
||||
//! - [`Linear`], unlocking linear combinations, required for interpolating.
|
||||
//! - [`Trigo`], a trait giving *π* and *cosine*, required for e.g. cosine interpolation.
|
||||
//!
|
||||
//! Feel free to have a look at current implementors for further help.
|
||||
//!
|
||||
//! > *Why doesn’t this crate use [num-traits] instead of
|
||||
//! > defining its own traits?*
|
||||
//!
|
||||
//! The reason for this is quite simple: this crate provides a `no_std` support, which is not
|
||||
//! currently available easily with [num-traits]. Also, if something changes in [num-traits] with
|
||||
//! those traits, it would make this whole crate unstable.
|
||||
//!
|
||||
//! [`Interpolate`]: crate::interpolate::Interpolate
|
||||
//! [`Spline<K, V>`]: crate::spline::Spline
|
||||
//! [`One`]: crate::interpolate::One
|
||||
//! [`Additive`]: crate::interpolate::Additive
|
||||
//! [`Linear`]: crate::interpolate::Linear
|
||||
//! [`Trigo`]: crate::interpolate::Trigo
|
||||
//! [num-traits]: https://crates.io/crates/num-traits
|
||||
|
||||
#[cfg(feature = "std")] use std::f32;
|
||||
#[cfg(not(feature = "std"))] use core::f32;
|
||||
#[cfg(not(feature = "std"))] use core::intrinsics::cosf32;
|
||||
@ -10,21 +40,28 @@
|
||||
/// Keys that can be interpolated in between. Implementing this trait is required to perform
|
||||
/// sampling on splines.
|
||||
///
|
||||
/// `T` is the variable used to sample with. Typical implementations use `f32` or `f64`, but you’re
|
||||
/// free to use the ones you like.
|
||||
/// `T` is the variable used to sample with. Typical implementations use [`f32`] or [`f64`], but
|
||||
/// you’re free to use the ones you like. Feel free to have a look at [`Spline::sample`] for
|
||||
/// instance to know which trait your type must implement to be usable.
|
||||
///
|
||||
/// [`Spline::sample`]: crate::spline::Spline::sample
|
||||
pub trait Interpolate<T>: Sized + Copy {
|
||||
/// Linear interpolation.
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self;
|
||||
|
||||
/// Cubic hermite interpolation.
|
||||
///
|
||||
/// Default to `Self::lerp`.
|
||||
/// Default to [`lerp`].
|
||||
///
|
||||
/// [`lerp`]: Interpolate::lerp
|
||||
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
|
||||
Self::lerp(a.0, b.0, t)
|
||||
}
|
||||
}
|
||||
|
||||
/// A trait for anything that supports additions, subtraction, multiplication and division.
|
||||
/// Set of types that support additions and subtraction.
|
||||
///
|
||||
/// The [`Copy`] trait is also a supertrait as it’s likely to be used everywhere.
|
||||
pub trait Additive:
|
||||
Copy +
|
||||
Add<Self, Output = Self> +
|
||||
@ -37,8 +74,8 @@ where T: Copy +
|
||||
Sub<Self, Output = Self> {
|
||||
}
|
||||
|
||||
/// Linear combination.
|
||||
pub trait Linear<T> {
|
||||
/// Set of additive types that support outer multiplication and division, making them linear.
|
||||
pub trait Linear<T>: Additive {
|
||||
/// Apply an outer multiplication law.
|
||||
fn outer_mul(self, t: T) -> Self;
|
||||
|
||||
@ -84,7 +121,7 @@ impl_linear_cast!(f64, f32);
|
||||
|
||||
/// Types with a neutral element for multiplication.
|
||||
pub trait One {
|
||||
/// Return the neutral element for the multiplicative monoid.
|
||||
/// The neutral element for the multiplicative monoid — typically called `1`.
|
||||
fn one() -> Self;
|
||||
}
|
||||
|
||||
@ -151,11 +188,11 @@ impl Trigo for f64 {
|
||||
}
|
||||
}
|
||||
|
||||
// Default implementation of Interpolate::cubic_hermite.
|
||||
//
|
||||
// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub(crate) fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
|
||||
where V: Additive + Linear<T>,
|
||||
/// Default implementation of [`Interpolate::cubic_hermite`].
|
||||
///
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
|
||||
where V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One {
|
||||
// some stupid generic constants, because Rust doesn’t have polymorphic literals…
|
||||
let one_t = T::one();
|
||||
|
@ -1,17 +1,23 @@
|
||||
//! Available interpolation modes.
|
||||
|
||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
||||
|
||||
/// Interpolation mode.
|
||||
/// Available kind of interpolations.
|
||||
///
|
||||
/// Feel free to visit each variant for more documentation.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub enum Interpolation<T> {
|
||||
/// Hold a [`Key`] until the interpolator value passes the normalized step threshold, in which
|
||||
/// Hold a [`Key<T, _>`] until the sampling value passes the normalized step threshold, in which
|
||||
/// case the next key is used.
|
||||
///
|
||||
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
|
||||
/// > between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
|
||||
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
|
||||
/// > used.
|
||||
///
|
||||
/// [`Key<T, _>`]: crate::key::Key
|
||||
Step(T),
|
||||
/// Linear interpolation between a key and the next one.
|
||||
Linear,
|
||||
@ -22,7 +28,7 @@ pub enum Interpolation<T> {
|
||||
}
|
||||
|
||||
impl<T> Default for Interpolation<T> {
|
||||
/// `Interpolation::Linear` is the default.
|
||||
/// [`Interpolation::Linear`] is the default.
|
||||
fn default() -> Self {
|
||||
Interpolation::Linear
|
||||
}
|
||||
|
16
src/iter.rs
16
src/iter.rs
@ -1,10 +1,18 @@
|
||||
//! Spline [`Iterator`], in a nutshell.
|
||||
//!
|
||||
//! You can iterate over a [`Spline<K, V>`]’s keys with the [`IntoIterator`] trait on
|
||||
//! `&Spline<K, V>`. This gives you iterated [`Key<K, V>`] keys.
|
||||
//!
|
||||
//! [`Spline<K, V>`]: crate::spline::Spline
|
||||
//! [`Key<K, V>`]: crate::key::Key
|
||||
|
||||
use crate::{Key, Spline};
|
||||
|
||||
/// Iterator over spline keys.
|
||||
///
|
||||
/// This iterator type assures you to iterate over sorted keys.
|
||||
/// This iterator type is guaranteed to iterate over sorted keys.
|
||||
pub struct Iter<'a, T, V> where T: 'a, V: 'a {
|
||||
anim_param: &'a Spline<T, V>,
|
||||
spline: &'a Spline<T, V>,
|
||||
i: usize
|
||||
}
|
||||
|
||||
@ -12,7 +20,7 @@ impl<'a, T, V> Iterator for Iter<'a, T, V> {
|
||||
type Item = &'a Key<T, V>;
|
||||
|
||||
fn next(&mut self) -> Option<Self::Item> {
|
||||
let r = self.anim_param.0.get(self.i);
|
||||
let r = self.spline.0.get(self.i);
|
||||
|
||||
if let Some(_) = r {
|
||||
self.i += 1;
|
||||
@ -28,7 +36,7 @@ impl<'a, T, V> IntoIterator for &'a Spline<T, V> {
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
Iter {
|
||||
anim_param: self,
|
||||
spline: self,
|
||||
i: 0
|
||||
}
|
||||
}
|
||||
|
17
src/key.rs
17
src/key.rs
@ -1,3 +1,11 @@
|
||||
//! Spline control points.
|
||||
//!
|
||||
//! A control point associates to a “sampling value” (a.k.a. time) a carriede value that can be
|
||||
//! interpolated along the curve made by the control points.
|
||||
//!
|
||||
//! Splines constructed with this crate have the property that it’s possible to change the
|
||||
//! interpolation mode on a key-based way, allowing you to implement and encode complex curves.
|
||||
|
||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
||||
|
||||
use crate::interpolation::Interpolation;
|
||||
@ -5,15 +13,17 @@ use crate::interpolation::Interpolation;
|
||||
/// A spline control point.
|
||||
///
|
||||
/// This type associates a value at a given interpolation parameter value. It also contains an
|
||||
/// interpolation hint used to determine how to interpolate values on the segment defined by this
|
||||
/// key and the next one – if existing.
|
||||
/// interpolation mode used to determine how to interpolate values on the segment defined by this
|
||||
/// key and the next one – if existing. Have a look at [`Interpolation`] for further details.
|
||||
///
|
||||
/// [`Interpolation`]: crate::interpolation::Interpolation
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub struct Key<T, V> {
|
||||
/// Interpolation parameter at which the [`Key`] should be reached.
|
||||
pub t: T,
|
||||
/// Held value.
|
||||
/// Carried value.
|
||||
pub value: V,
|
||||
/// Interpolation mode.
|
||||
pub interpolation: Interpolation<T>
|
||||
@ -25,4 +35,3 @@ impl<T, V> Key<T, V> {
|
||||
Key { t, value, interpolation }
|
||||
}
|
||||
}
|
||||
|
||||
|
11
src/lib.rs
11
src/lib.rs
@ -33,11 +33,11 @@
|
||||
//! # Interpolate values
|
||||
//!
|
||||
//! The whole purpose of splines is to interpolate discrete values to yield continuous ones. This is
|
||||
//! usually done with the `Spline::sample` method. This method expects the interpolation parameter
|
||||
//! usually done with the [`Spline::sample`] method. This method expects the sampling parameter
|
||||
//! (often, this will be the time of your simulation) as argument and will yield an interpolated
|
||||
//! value.
|
||||
//!
|
||||
//! If you try to sample in out-of-bounds interpolation parameter, you’ll get no value.
|
||||
//! If you try to sample in out-of-bounds sampling parameter, you’ll get no value.
|
||||
//!
|
||||
//! ```
|
||||
//! # use splines::{Interpolation, Key, Spline};
|
||||
@ -62,6 +62,13 @@
|
||||
//! assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
|
||||
//! ```
|
||||
//!
|
||||
//! # Polymorphic sampling types
|
||||
//!
|
||||
//! [`Spline`] curves are parametered both by the carried value (being interpolated) but also the
|
||||
//! sampling type. It’s very typical to use `f32` or `f64` but really, you can in theory use any
|
||||
//! kind of type; that type must, however, implement a contract defined by a set of traits to
|
||||
//! implement. See [the documentation of this module](crate::interpolate) for further details.
|
||||
//!
|
||||
//! # Features and customization
|
||||
//!
|
||||
//! This crate was written with features baked in and hidden behind feature-gates. The idea is that
|
||||
|
@ -1,3 +1,5 @@
|
||||
//! Spline curves and operations.
|
||||
|
||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
||||
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
|
||||
#[cfg(feature = "std")] use std::cmp::Ordering;
|
||||
@ -10,6 +12,17 @@ use crate::interpolation::Interpolation;
|
||||
use crate::key::Key;
|
||||
|
||||
/// Spline curve used to provide interpolation between control points (keys).
|
||||
///
|
||||
/// Splines are made out of control points ([`Key`]). When creating a [`Spline`] with
|
||||
/// [`Spline::from_vec`] or [`Spline::from_iter`], the keys don’t have to be sorted (they are sorted
|
||||
/// automatically by the sampling value).
|
||||
///
|
||||
/// You can sample from a spline with several functions:
|
||||
///
|
||||
/// - [`Spline::sample`]: allows you to sample from a spline. If not enough keys are available
|
||||
/// for the required interpolation mode, you get `None`.
|
||||
/// - [`Spline::clamped_sample`]: behaves like [`Spline::sample`] but will return either the first
|
||||
/// or last key if out of bound; it will return `None` if not enough key.
|
||||
#[derive(Debug, Clone)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
|
||||
@ -29,7 +42,7 @@ impl<T, V> Spline<T, V> {
|
||||
/// # Note on iterators
|
||||
///
|
||||
/// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
|
||||
/// use `Spline::from_vec` if you are passing a `Vec<_>`. This will remove dynamic allocations.
|
||||
/// use [`Spline::from_vec`] if you are passing a [`Vec`]. This will remove dynamic allocations.
|
||||
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
|
||||
Self::from_vec(iter.collect())
|
||||
}
|
||||
@ -50,9 +63,10 @@ impl<T, V> Spline<T, V> {
|
||||
///
|
||||
/// `None` if you try to sample a value at a time that has no key associated with. That can also
|
||||
/// happen if you try to sample between two keys with a specific interpolation mode that makes the
|
||||
/// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If you’re
|
||||
/// near the beginning of the spline or its end, ensure you have enough keys around to make the
|
||||
/// sampling.
|
||||
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
|
||||
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
||||
/// the sampling.
|
||||
///
|
||||
pub fn sample(&self, t: T) -> Option<V>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
@ -105,11 +119,11 @@ impl<T, V> Spline<T, V> {
|
||||
/// # Return
|
||||
///
|
||||
/// If you sample before the first key or after the last one, return the first key or the last
|
||||
/// one, respectively. Otherwise, behave the same way as `Spline::sample`.
|
||||
/// one, respectively. Otherwise, behave the same way as [`Spline::sample`].
|
||||
///
|
||||
/// # Error
|
||||
///
|
||||
/// This function returns `None` if you have no key.
|
||||
/// This function returns [`None`] if you have no key.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
|
Reference in New Issue
Block a user