27 Commits

Author SHA1 Message Date
1bfd9a0e7c Merge pull request #29 from phaazon/release/2.0.0
2.0.0.
2019-09-24 10:59:00 +02:00
7846177471 Fix CI. 2019-09-24 10:44:45 +02:00
6f65be125b 2.0.0. 2019-09-24 10:42:03 +02:00
5d0ebc0777 Merge pull request #28 from phaazon/feature/mutation
Feature/mutation
2019-09-23 21:12:06 +02:00
4fdbfa6189 Fix 1.1. 2019-09-23 20:56:56 +02:00
7dbc85a312 Add key getters (immutable & mutable). 2019-09-23 20:34:39 +02:00
03031a1e92 Yank notation. 2019-09-23 19:53:52 +02:00
54eb89ae96 Merge pull request #27 from phaazon/feature/extra-splines
Feature/extra splines
2019-09-23 17:13:22 +02:00
51ab8022f9 Fix CI. 2019-09-23 17:10:40 +02:00
b78be8cba3 Prepare 1.1. 2019-09-23 17:09:09 +02:00
fd05dd0419 Update readme. 2019-09-23 17:08:32 +02:00
b05582d653 Add Bézier curves. 2019-09-23 17:06:32 +02:00
e76f18ac5b 1.0.0. 2019-09-22 19:15:57 +02:00
8e6af2cee9 Merge pull request #26 from phaazon/feature/add-key
Implement Spline::add.
2019-09-22 19:05:15 +02:00
a6e77a3d09 Remove Travis CI. 2019-09-22 18:22:12 +02:00
510881b5c6 Implement Spline::add.
Fixes #23.
2019-09-22 18:21:20 +02:00
1eed163277 Doc typo. 2019-09-22 18:13:52 +02:00
311efa5b26 Synchronize README. 2019-09-21 14:42:08 +02:00
c98b493993 Add support for removing a key. #24 2019-09-21 14:42:08 +02:00
c818b4c810 Add GitHub CI. 2019-09-21 14:19:21 +02:00
7644177398 1.0.0-rc.3. 2019-04-25 11:37:49 +02:00
3d0a0c570e Fix nalgebra implementor.
Point must be removed because it is not additive.
2019-04-25 11:37:49 +02:00
bdb9a68c3b 1.0.0-rc.2. 2019-04-23 18:43:30 +02:00
e7ecc9819a Documentation, step 4. 2019-04-23 18:43:30 +02:00
e88da58a87 Step 3 of doc cleanup. 2019-04-23 18:43:30 +02:00
6ae3918eb1 Second pass of doc cleanup. 2019-04-23 18:43:30 +02:00
dcd82f7301 First doc cleanup. 2019-04-23 18:43:30 +02:00
16 changed files with 525 additions and 158 deletions

46
.github/workflows/ci.yaml vendored Normal file
View File

@ -0,0 +1,46 @@
name: CI
on: [push]
jobs:
build-linux:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: |
cargo build --verbose --all-features
- name: Test
run: |
cargo test --verbose --all-features
build-windows:
runs-on: windows-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: |
cargo build --verbose --all-features
- name: Test
run: |
cargo test --verbose --all-features
build-macosx:
runs-on: macosx-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: |
cargo build --verbose --all-features
- name: Test
run: |
cargo test --verbose --all-features
check-readme:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v1
- name: Install cargo-sync-readme
run: cargo install --force cargo-sync-readme
- name: Check
run: cargo sync-readme -c

View File

@ -1,23 +0,0 @@
language: rust
rust:
- stable
- beta
- nightly
os:
- linux
- osx
script:
- rustc --version
- cargo --version
- echo "Testing default crate configuration"
- cargo build --verbose
- cargo test --verbose
- cd examples && cargo check --verbose
- echo "Testing feature serialization"
- cargo build --verbose --features serialization
- cargo test --verbose --features serialization
- echo "Building without std"
- cargo build --verbose --no-default-features

View File

@ -1,43 +1,79 @@
## 0.2.3
# 2.0.0
> Mon Sep 24th 2019
## Major changes
- Add support for [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
- Because of Bézier curves, the `Interpolation` type now has one more type variable to know how we
should interpolate with Bézier.
## Minor changes
- Add `Spline::get`, `Spline::get_mut` and `Spline::replace`.
# 1.0
> Sun Sep 22nd 2019
## Major changes
- Make `Spline::clamped_sample` failible via `Option` instead of panicking.
- Add support for polymorphic sampling type.
## Minor changes
- Add the `std` feature (and hence support for `no_std`).
- Add `impl-nalgebra` feature.
- Add `impl-cgmath` feature.
- Add support for adding keys to splines.
- Add support for removing keys from splines.
## Patch changes
- Migrate to Rust 2018.
- Documentation typo fixes.
# 0.2.3
> Sat 13th October 2018
- Add the `"impl-nalgebra"` feature gate. It gives access to some implementors for the `nalgebra`
crate.
- Enhance the documentation.
- Add the `"impl-nalgebra"` feature gate. It gives access to some implementors for the `nalgebra`
crate.
- Enhance the documentation.
## 0.2.2
# 0.2.2
> Sun 30th September 2018
- Bump version numbers (`splines-0.2`) in examples.
- Fix several typos in the documentation.
- Bump version numbers (`splines-0.2`) in examples.
- Fix several typos in the documentation.
## 0.2.1
# 0.2.1
> Thu 20th September 2018
- Enhance the features documentation.
- Enhance the features documentation.
# 0.2
> Thu 6th September 2018
- Add the `"std"` feature gate, that can be used to compile with the standard library.
- Add the `"impl-cgmath"` feature gate in order to make optional, if wanted, the `cgmath`
dependency.
- Enhance the documentation.
- Add the `"std"` feature gate, that can be used to compile with the standard library.
- Add the `"impl-cgmath"` feature gate in order to make optional, if wanted, the `cgmath`
dependency.
- Enhance the documentation.
## 0.1.1
# 0.1.1
> Wed 8th August 2018
- Add a feature gate, `"serialization"`, that can be used to automatically derive `Serialize` and
`Deserialize` from the [serde](https://crates.io/crates/serde) crate.
- Enhance the documentation.
- Add a feature gate, `"serialization"`, that can be used to automatically derive `Serialize` and
`Deserialize` from the [serde](https://crates.io/crates/serde) crate.
- Enhance the documentation.
# 0.1
> Sunday 5th August 2018
- Initial revision.
- Initial revision.

View File

@ -1,6 +1,6 @@
[package]
name = "splines"
version = "1.0.0-rc.1"
version = "2.0.0"
license = "BSD-3-Clause"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
description = "Spline interpolation made easy"
@ -33,3 +33,6 @@ nalgebra = { version = ">=0.14, <0.19", optional = true }
num-traits = { version = "0.2", optional = true }
serde = { version = "1", optional = true }
serde_derive = { version = "1", optional = true }
[package.metadata.docs.rs]
all-features = true

View File

@ -13,9 +13,9 @@ switch to a cubic Hermite interpolator for the next section.
Most of the crate consists of three types:
- [`Key`], which represents the control points by which the spline must pass.
- [`Interpolation`], the type of possible interpolation for each segment.
- [`Spline`], a spline from which you can *sample* points by interpolation.
- [`Key`], which represents the control points by which the spline must pass.
- [`Interpolation`], the type of possible interpolation for each segment.
- [`Spline`], a spline from which you can *sample* points by interpolation.
When adding control points, you add new sections. Two control points define a section i.e.
its not possible to define a spline without at least two control points. Every time you add a
@ -40,17 +40,13 @@ key. We use the default one because we dont care.
# Interpolate values
The whole purpose of splines is to interpolate discrete values to yield continuous ones. This is
usually done with the `Spline::sample` method. This method expects the interpolation parameter
usually done with the [`Spline::sample`] method. This method expects the sampling parameter
(often, this will be the time of your simulation) as argument and will yield an interpolated
value.
If you try to sample in out-of-bounds interpolation parameter, youll get no value.
If you try to sample in out-of-bounds sampling parameter, youll get no value.
```
# use splines::{Interpolation, Key, Spline};
# let start = Key::new(0., 0., Interpolation::Linear);
# let end = Key::new(1., 10., Interpolation::Linear);
# let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(0.));
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(spline.sample(1.1), None);
@ -61,14 +57,17 @@ important for simulations / animations. Feel free to use the `Spline::clamped_in
that purpose.
```
# use splines::{Interpolation, Key, Spline};
# let start = Key::new(0., 0., Interpolation::Linear);
# let end = Key::new(1., 10., Interpolation::Linear);
# let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.clamped_sample(-0.9), Some(0.)); // clamped to the first key
assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
```
# Polymorphic sampling types
[`Spline`] curves are parametered both by the carried value (being interpolated) but also the
sampling type. Its very typical to use `f32` or `f64` but really, you can in theory use any
kind of type; that type must, however, implement a contract defined by a set of traits to
implement. See [the documentation of this module](crate::interpolate) for further details.
# Features and customization
This crate was written with features baked in and hidden behind feature-gates. The idea is that
@ -84,20 +83,22 @@ not. Its especially important to see how it copes with the documentation.
So heres a list of currently supported features and how to enable them:
- **Serialization / deserialization.**
+ This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
types exported by this crate.
+ Enable with the `"serialization"` feature.
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
+ Adds some useful implementations of `Interpolate` for some cgmath types.
+ Enable with the `"impl-cgmath"` feature.
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
+ Adds some useful implementations of `Interpolate` for some nalgebra types.
+ Enable with the `"impl-nalgebra"` feature.
- **Standard library / no standard library.**
+ Its possible to compile against the standard library or go on your own without it.
+ Compiling with the standard library is enabled by default.
+ Use `default-features = []` in your `Cargo.toml` to disable.
+ Enable explicitly with the `"std"` feature.
- **Serialization / deserialization.**
- This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
types exported by this crate.
- Enable with the `"serialization"` feature.
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
- Adds some useful implementations of `Interpolate` for some cgmath types.
- Enable with the `"impl-cgmath"` feature.
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
- Adds some useful implementations of `Interpolate` for some nalgebra types.
- Enable with the `"impl-nalgebra"` feature.
- **Standard library / no standard library.**
- Its possible to compile against the standard library or go on your own without it.
- Compiling with the standard library is enabled by default.
- Use `default-features = []` in your `Cargo.toml` to disable.
- Enable explicitly with the `"std"` feature.
[`Interpolation`]: crate::interpolation::Interpolation
<!-- cargo-sync-readme end -->

View File

@ -4,4 +4,4 @@ version = "0.2.0"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
[dependencies]
splines = "0.2"
splines = "1.0.0-rc.2"

View File

@ -5,7 +5,4 @@ authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
[dependencies]
serde_json = "1"
[dependencies.splines]
version = "0.2"
features = ["serialization"]
splines = { version = "1.0.0-rc.2", features = ["serialization"] }

View File

@ -2,7 +2,9 @@ use cgmath::{
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
};
use crate::interpolate::{Additive, Interpolate, Linear, One, cubic_hermite_def};
use crate::interpolate::{
Additive, Interpolate, Linear, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
};
macro_rules! impl_interpolate_vec {
($($t:tt)*) => {
@ -29,6 +31,16 @@ macro_rules! impl_interpolate_vec {
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
}
}
@ -61,4 +73,14 @@ where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}

View File

@ -1,3 +1,33 @@
//! The [`Interpolate`] trait and associated symbols.
//!
//! The [`Interpolate`] trait is the central concept of the crate. It enables a spline to be
//! sampled at by interpolating in between control points.
//!
//! In order for a type to be used in [`Spline<K, V>`], some properties must be met about the `K`
//! type must implementing several traits:
//!
//! - [`One`], giving a neutral element for the multiplication monoid.
//! - [`Additive`], making the type additive (i.e. one can add or subtract with it).
//! - [`Linear`], unlocking linear combinations, required for interpolating.
//! - [`Trigo`], a trait giving *π* and *cosine*, required for e.g. cosine interpolation.
//!
//! Feel free to have a look at current implementors for further help.
//!
//! > *Why doesnt this crate use [num-traits] instead of
//! > defining its own traits?*
//!
//! The reason for this is quite simple: this crate provides a `no_std` support, which is not
//! currently available easily with [num-traits]. Also, if something changes in [num-traits] with
//! those traits, it would make this whole crate unstable.
//!
//! [`Interpolate`]: crate::interpolate::Interpolate
//! [`Spline<K, V>`]: crate::spline::Spline
//! [`One`]: crate::interpolate::One
//! [`Additive`]: crate::interpolate::Additive
//! [`Linear`]: crate::interpolate::Linear
//! [`Trigo`]: crate::interpolate::Trigo
//! [num-traits]: https://crates.io/crates/num-traits
#[cfg(feature = "std")] use std::f32;
#[cfg(not(feature = "std"))] use core::f32;
#[cfg(not(feature = "std"))] use core::intrinsics::cosf32;
@ -10,21 +40,34 @@
/// Keys that can be interpolated in between. Implementing this trait is required to perform
/// sampling on splines.
///
/// `T` is the variable used to sample with. Typical implementations use `f32` or `f64`, but youre
/// free to use the ones you like.
/// `T` is the variable used to sample with. Typical implementations use [`f32`] or [`f64`], but
/// youre free to use the ones you like. Feel free to have a look at [`Spline::sample`] for
/// instance to know which trait your type must implement to be usable.
///
/// [`Spline::sample`]: crate::spline::Spline::sample
pub trait Interpolate<T>: Sized + Copy {
/// Linear interpolation.
fn lerp(a: Self, b: Self, t: T) -> Self;
/// Cubic hermite interpolation.
///
/// Default to `Self::lerp`.
/// Default to [`lerp`].
///
/// [`lerp`]: Interpolate::lerp
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
Self::lerp(a.0, b.0, t)
}
/// Quadratic Bézier interpolation.
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
/// Cubic Bézier interpolation.
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
}
/// A trait for anything that supports additions, subtraction, multiplication and division.
/// Set of types that support additions and subtraction.
///
/// The [`Copy`] trait is also a supertrait as its likely to be used everywhere.
pub trait Additive:
Copy +
Add<Self, Output = Self> +
@ -37,8 +80,8 @@ where T: Copy +
Sub<Self, Output = Self> {
}
/// Linear combination.
pub trait Linear<T> {
/// Set of additive types that support outer multiplication and division, making them linear.
pub trait Linear<T>: Additive {
/// Apply an outer multiplication law.
fn outer_mul(self, t: T) -> Self;
@ -84,7 +127,7 @@ impl_linear_cast!(f64, f32);
/// Types with a neutral element for multiplication.
pub trait One {
/// Return the neutral element for the multiplicative monoid.
/// The neutral element for the multiplicative monoid — typically called `1`.
fn one() -> Self;
}
@ -151,11 +194,11 @@ impl Trigo for f64 {
}
}
// Default implementation of Interpolate::cubic_hermite.
//
// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub(crate) fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
where V: Additive + Linear<T>,
/// Default implementation of [`Interpolate::cubic_hermite`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
where V: Linear<T>,
T: Additive + Mul<T, Output = T> + One {
// some stupid generic constants, because Rust doesnt have polymorphic literals…
let one_t = T::one();
@ -175,6 +218,31 @@ where V: Additive + Linear<T>,
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
}
/// Default implementation of [`Interpolate::quadratic_bezier`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
where V: Linear<T>,
T: Additive + Mul<T, Output = T> + One {
let one_t = T::one() - t;
let one_t_2 = one_t * one_t;
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
}
/// Default implementation of [`Interpolate::cubic_bezier`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
where V: Linear<T>,
T: Additive + Mul<T, Output = T> + One {
let one_t = T::one() - t;
let one_t_2 = one_t * one_t;
let one_t_3 = one_t_2 * one_t;
let three = T::one() + T::one() + T::one();
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
}
macro_rules! impl_interpolate_simple {
($t:ty) => {
impl Interpolate<$t> for $t {
@ -185,6 +253,14 @@ macro_rules! impl_interpolate_simple {
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
quadratic_bezier_def(a, u, b, t)
}
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
}
}
@ -202,6 +278,14 @@ macro_rules! impl_interpolate_via {
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
}
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
quadratic_bezier_def(a, u, b, t as $v)
}
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
cubic_bezier_def(a, u, v, b, t as $v)
}
}
}
}

View File

@ -1,30 +1,52 @@
//! Available interpolation modes.
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
/// Interpolation mode.
#[derive(Copy, Clone, Debug)]
/// Available kind of interpolations.
///
/// Feel free to visit each variant for more documentation.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub enum Interpolation<T> {
/// Hold a [`Key`] until the interpolator value passes the normalized step threshold, in which
pub enum Interpolation<T, V> {
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
/// case the next key is used.
///
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
/// > between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
/// > used.
///
/// [`Key`]: crate::key::Key
Step(T),
/// Linear interpolation between a key and the next one.
Linear,
/// Cosine interpolation between a key and the next one.
Cosine,
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
CatmullRom
CatmullRom,
/// Bézier interpolation.
///
/// A control point that uses such an interpolation is associated with an extra point. The segmant
/// connecting both is called the _tangent_ of this point. The part of the spline defined between
/// this control point and the next one will be interpolated across with Bézier interpolation. Two
/// cases are possible:
///
/// - The next control point also has a Bézier interpolation mode. In this case, its tangent is
/// used for the interpolation process. This is called _cubic Bézier interpolation_ and it
/// kicks ass.
/// - The next control point doesnt have a Bézier interpolation mode set. In this case, the
/// tangent used for the next control point is defined as the segment connecting that control
/// point and the current control points associated point. This is called _quadratic Bézer
/// interpolation_ and it kicks ass too, but a bit less than cubic.
Bezier(V),
#[doc(hidden)]
__NonExhaustive
}
impl<T> Default for Interpolation<T> {
/// `Interpolation::Linear` is the default.
impl<T, V> Default for Interpolation<T, V> {
/// [`Interpolation::Linear`] is the default.
fn default() -> Self {
Interpolation::Linear
}
}

View File

@ -1,10 +1,18 @@
//! Spline [`Iterator`], in a nutshell.
//!
//! You can iterate over a [`Spline<K, V>`]s keys with the [`IntoIterator`] trait on
//! `&Spline<K, V>`. This gives you iterated [`Key<K, V>`] keys.
//!
//! [`Spline<K, V>`]: crate::spline::Spline
//! [`Key<K, V>`]: crate::key::Key
use crate::{Key, Spline};
/// Iterator over spline keys.
///
/// This iterator type assures you to iterate over sorted keys.
/// This iterator type is guaranteed to iterate over sorted keys.
pub struct Iter<'a, T, V> where T: 'a, V: 'a {
anim_param: &'a Spline<T, V>,
spline: &'a Spline<T, V>,
i: usize
}
@ -12,7 +20,7 @@ impl<'a, T, V> Iterator for Iter<'a, T, V> {
type Item = &'a Key<T, V>;
fn next(&mut self) -> Option<Self::Item> {
let r = self.anim_param.0.get(self.i);
let r = self.spline.0.get(self.i);
if let Some(_) = r {
self.i += 1;
@ -28,7 +36,7 @@ impl<'a, T, V> IntoIterator for &'a Spline<T, V> {
fn into_iter(self) -> Self::IntoIter {
Iter {
anim_param: self,
spline: self,
i: 0
}
}

View File

@ -1,3 +1,11 @@
//! Spline control points.
//!
//! A control point associates to a “sampling value” (a.k.a. time) a carriede value that can be
//! interpolated along the curve made by the control points.
//!
//! Splines constructed with this crate have the property that its possible to change the
//! interpolation mode on a key-based way, allowing you to implement and encode complex curves.
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
use crate::interpolation::Interpolation;
@ -5,24 +13,25 @@ use crate::interpolation::Interpolation;
/// A spline control point.
///
/// This type associates a value at a given interpolation parameter value. It also contains an
/// interpolation hint used to determine how to interpolate values on the segment defined by this
/// key and the next one if existing.
#[derive(Copy, Clone, Debug)]
/// interpolation mode used to determine how to interpolate values on the segment defined by this
/// key and the next one if existing. Have a look at [`Interpolation`] for further details.
///
/// [`Interpolation`]: crate::interpolation::Interpolation
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub struct Key<T, V> {
/// Interpolation parameter at which the [`Key`] should be reached.
pub t: T,
/// Held value.
/// Carried value.
pub value: V,
/// Interpolation mode.
pub interpolation: Interpolation<T>
pub interpolation: Interpolation<T, V>
}
impl<T, V> Key<T, V> {
/// Create a new key.
pub fn new(t: T, value: V, interpolation: Interpolation<T>) -> Self {
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
Key { t, value, interpolation }
}
}

View File

@ -33,11 +33,11 @@
//! # Interpolate values
//!
//! The whole purpose of splines is to interpolate discrete values to yield continuous ones. This is
//! usually done with the `Spline::sample` method. This method expects the interpolation parameter
//! usually done with the [`Spline::sample`] method. This method expects the sampling parameter
//! (often, this will be the time of your simulation) as argument and will yield an interpolated
//! value.
//!
//! If you try to sample in out-of-bounds interpolation parameter, youll get no value.
//! If you try to sample in out-of-bounds sampling parameter, youll get no value.
//!
//! ```
//! # use splines::{Interpolation, Key, Spline};
@ -62,6 +62,13 @@
//! assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
//! ```
//!
//! # Polymorphic sampling types
//!
//! [`Spline`] curves are parametered both by the carried value (being interpolated) but also the
//! sampling type. Its very typical to use `f32` or `f64` but really, you can in theory use any
//! kind of type; that type must, however, implement a contract defined by a set of traits to
//! implement. See [the documentation of this module](crate::interpolate) for further details.
//!
//! # Features and customization
//!
//! This crate was written with features baked in and hidden behind feature-gates. The idea is that
@ -78,20 +85,22 @@
//! So heres a list of currently supported features and how to enable them:
//!
//! - **Serialization / deserialization.**
//! + This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
//! - This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
//! types exported by this crate.
//! + Enable with the `"serialization"` feature.
//! - Enable with the `"serialization"` feature.
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
//! + Adds some useful implementations of `Interpolate` for some cgmath types.
//! + Enable with the `"impl-cgmath"` feature.
//! - Adds some useful implementations of `Interpolate` for some cgmath types.
//! - Enable with the `"impl-cgmath"` feature.
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
//! + Adds some useful implementations of `Interpolate` for some nalgebra types.
//! + Enable with the `"impl-nalgebra"` feature.
//! - Adds some useful implementations of `Interpolate` for some nalgebra types.
//! - Enable with the `"impl-nalgebra"` feature.
//! - **Standard library / no standard library.**
//! + Its possible to compile against the standard library or go on your own without it.
//! + Compiling with the standard library is enabled by default.
//! + Use `default-features = []` in your `Cargo.toml` to disable.
//! + Enable explicitly with the `"std"` feature.
//! - Its possible to compile against the standard library or go on your own without it.
//! - Compiling with the standard library is enabled by default.
//! - Use `default-features = []` in your `Cargo.toml` to disable.
//! - Enable explicitly with the `"std"` feature.
//!
//! [`Interpolation`]: crate::interpolation::Interpolation
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(not(feature = "std"), feature(alloc))]

View File

@ -1,18 +1,16 @@
use alga::general::{ClosedAdd, ClosedDiv, ClosedMul, ClosedSub};
use nalgebra::{
DefaultAllocator, DimName, Point, Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5,
Vector6
};
use nalgebra::allocator::Allocator;
use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6};
use num_traits as nt;
use std::ops::Mul;
use crate::interpolate::{Interpolate, Linear, Additive, One, cubic_hermite_def};
use crate::interpolate::{
Interpolate, Linear, Additive, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
};
macro_rules! impl_interpolate_vector {
($($t:tt)*) => {
// implement Linear
impl<T> Linear<T> for $($t)*<T> where T: Scalar + ClosedMul + ClosedDiv {
impl<T> Linear<T> for $($t)*<T> where T: Scalar + ClosedAdd + ClosedSub + ClosedMul + ClosedDiv {
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
@ -44,6 +42,16 @@ macro_rules! impl_interpolate_vector {
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
}
}
@ -54,19 +62,3 @@ impl_interpolate_vector!(Vector3);
impl_interpolate_vector!(Vector4);
impl_interpolate_vector!(Vector5);
impl_interpolate_vector!(Vector6);
impl<T, D> Linear<T> for Point<T, D>
where D: DimName,
DefaultAllocator: Allocator<T, D>,
<DefaultAllocator as Allocator<T, D>>::Buffer: Copy,
T: Scalar + ClosedDiv + ClosedMul {
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}

View File

@ -1,3 +1,5 @@
//! Spline curves and operations.
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
#[cfg(feature = "std")] use std::cmp::Ordering;
@ -10,17 +12,33 @@ use crate::interpolation::Interpolation;
use crate::key::Key;
/// Spline curve used to provide interpolation between control points (keys).
///
/// Splines are made out of control points ([`Key`]). When creating a [`Spline`] with
/// [`Spline::from_vec`] or [`Spline::from_iter`], the keys dont have to be sorted (they are sorted
/// automatically by the sampling value).
///
/// You can sample from a spline with several functions:
///
/// - [`Spline::sample`]: allows you to sample from a spline. If not enough keys are available
/// for the required interpolation mode, you get `None`.
/// - [`Spline::clamped_sample`]: behaves like [`Spline::sample`] but will return either the first
/// or last key if out of bound; it will return `None` if not enough key.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
impl<T, V> Spline<T, V> {
/// Internal sort to ensure invariant of sorting keys is valid.
fn internal_sort(&mut self) where T: PartialOrd {
self.0.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
}
/// Create a new spline out of keys. The keys dont have to be sorted even though its recommended
/// to provide ascending sorted ones (for performance purposes).
pub fn from_vec(mut keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
Spline(keys)
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
let mut spline = Spline(keys);
spline.internal_sort();
spline
}
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys dont have to be
@ -29,7 +47,7 @@ impl<T, V> Spline<T, V> {
/// # Note on iterators
///
/// Its valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
/// use `Spline::from_vec` if you are passing a `Vec<_>`. This will remove dynamic allocations.
/// use [`Spline::from_vec`] if you are passing a [`Vec`].
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
Self::from_vec(iter.collect())
}
@ -39,6 +57,18 @@ impl<T, V> Spline<T, V> {
&self.0
}
/// Number of keys.
#[inline(always)]
pub fn len(&self) -> usize {
self.0.len()
}
/// Check whether the spline has no key.
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Sample a spline at a given time.
///
/// The current implementation, based on immutability, cannot perform in constant time. This means
@ -50,9 +80,10 @@ impl<T, V> Spline<T, V> {
///
/// `None` if you try to sample a value at a time that has no key associated with. That can also
/// happen if you try to sample between two keys with a specific interpolation mode that makes the
/// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If youre
/// near the beginning of the spline or its end, ensure you have enough keys around to make the
/// sampling.
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
/// youre near the beginning of the spline or its end, ensure you have enough keys around to make
/// the sampling.
///
pub fn sample(&self, t: T) -> Option<V>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
@ -62,13 +93,13 @@ impl<T, V> Spline<T, V> {
match cp0.interpolation {
Interpolation::Step(threshold) => {
let cp1 = &keys[i+1];
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
Some(if nt < threshold { cp0.value } else { cp1.value })
}
Interpolation::Linear => {
let cp1 = &keys[i+1];
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
@ -76,7 +107,7 @@ impl<T, V> Spline<T, V> {
Interpolation::Cosine => {
let two_t = T::one() + T::one();
let cp1 = &keys[i+1];
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
@ -89,14 +120,33 @@ impl<T, V> Spline<T, V> {
if i == 0 || i >= keys.len() - 2 {
None
} else {
let cp1 = &keys[i+1];
let cpm0 = &keys[i-1];
let cpm1 = &keys[i+2];
let cp1 = &keys[i + 1];
let cpm0 = &keys[i - 1];
let cpm1 = &keys[i + 2];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
}
}
Interpolation::Bezier(u) => {
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
if let Interpolation::Bezier(v) = cp1.interpolation {
Some(Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt))
//let one_nt = T::one() - nt;
//let one_nt_2 = one_nt * one_nt;
//let one_nt_3 = one_nt_2 * one_nt;
//let three_one_nt_2 = one_nt_2 + one_nt_2 + one_nt_2; // one_nt_2 * 3
//let r = cp0.value * one_nt_3;
} else {
Some(Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt))
}
}
Interpolation::__NonExhaustive => unreachable!(),
}
}
@ -105,11 +155,11 @@ impl<T, V> Spline<T, V> {
/// # Return
///
/// If you sample before the first key or after the last one, return the first key or the last
/// one, respectively. Otherwise, behave the same way as `Spline::sample`.
/// one, respectively. Otherwise, behave the same way as [`Spline::sample`].
///
/// # Error
///
/// This function returns `None` if you have no key.
/// This function returns [`None`] if you have no key.
pub fn clamped_sample(&self, t: T) -> Option<V>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
@ -132,6 +182,69 @@ impl<T, V> Spline<T, V> {
}
})
}
/// Add a key into the spline.
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
self.0.push(key);
self.internal_sort();
}
/// Remove a key from the spline.
pub fn remove(&mut self, index: usize) -> Option<Key<T, V>> {
if index >= self.0.len() {
None
} else {
Some(self.0.remove(index))
}
}
/// Update a key and return the key already present.
///
/// The key is updated — if present — with the provided function.
///
/// # Notes
///
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
/// your key. If you just want to change the interpolation mode or the carried value, consider
/// using the [`Spline::get_mut`] method instead as it will be way faster.
pub fn replace<F>(
&mut self,
index: usize,
f: F
) -> Option<Key<T, V>>
where
F: FnOnce(&Key<T, V>) -> Key<T, V>,
T: PartialOrd
{
let key = self.remove(index)?;
self.add(f(&key));
Some(key)
}
/// Get a key at a given index.
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
self.0.get(index)
}
/// Mutably get a key at a given index.
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
self.0.get_mut(index).map(|key| KeyMut {
value: &mut key.value,
interpolation: &mut key.interpolation
})
}
}
/// A mutable [`Key`].
///
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
/// want to achieve this, youre advised to use [`Spline::replace`].
pub struct KeyMut<'a, T, V> {
/// Carried value.
pub value: &'a mut V,
/// Interpolation mode to use for that key.
pub interpolation: &'a mut Interpolation<T, V>,
}
// Normalize a time ([0;1]) given two control points.

View File

@ -172,3 +172,51 @@ fn nalgebra_vector_interpolation() {
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
}
#[test]
fn add_key_empty() {
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
spline.add(Key::new(0., 0., Interpolation::Linear));
assert_eq!(spline.keys(), &[Key::new(0., 0., Interpolation::Linear)]);
}
#[test]
fn add_key() {
let start = Key::new(0., 0., Interpolation::Step(0.5));
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let new = Key::new(2.4, 40., Interpolation::Linear);
let mut spline = Spline::from_vec(vec![start, k1, k2.clone(), k3, k4, end]);
assert_eq!(spline.keys(), &[start, k1, k2, k3, k4, end]);
spline.add(new);
assert_eq!(spline.keys(), &[start, k1, k2, new, k3, k4, end]);
}
#[test]
fn remove_element_empty() {
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
let removed = spline.remove(0);
assert_eq!(removed, None);
assert!(spline.is_empty());
}
#[test]
fn remove_element() {
let start = Key::new(0., 0., Interpolation::Step(0.5));
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let mut spline = Spline::from_vec(vec![start, k1, k2.clone(), k3, k4, end]);
let removed = spline.remove(2);
assert_eq!(removed, Some(k2));
assert_eq!(spline.len(), 5);
}