9 Commits
1.0.0 ... 1.1.1

Author SHA1 Message Date
5d0ebc0777 Merge pull request #28 from phaazon/feature/mutation
Feature/mutation
2019-09-23 21:12:06 +02:00
4fdbfa6189 Fix 1.1. 2019-09-23 20:56:56 +02:00
7dbc85a312 Add key getters (immutable & mutable). 2019-09-23 20:34:39 +02:00
03031a1e92 Yank notation. 2019-09-23 19:53:52 +02:00
54eb89ae96 Merge pull request #27 from phaazon/feature/extra-splines
Feature/extra splines
2019-09-23 17:13:22 +02:00
51ab8022f9 Fix CI. 2019-09-23 17:10:40 +02:00
b78be8cba3 Prepare 1.1. 2019-09-23 17:09:09 +02:00
fd05dd0419 Update readme. 2019-09-23 17:08:32 +02:00
b05582d653 Add Bézier curves. 2019-09-23 17:06:32 +02:00
11 changed files with 322 additions and 41 deletions

View File

@ -7,27 +7,39 @@ jobs:
steps:
- uses: actions/checkout@v1
- name: Build
run: cargo build --verbose
run: |
cargo build --verbose
cargo build --verbose --features bezier
- name: Test
run: cargo test --verbose
run: |
cargo test --verbose
cargo test --verbose --features bezier
build-windows:
runs-on: windows-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: cargo build --verbose
run: |
cargo build --verbose
cargo build --verbose --features bezier
- name: Test
run: cargo test --verbose
run: |
cargo test --verbose
cargo test --verbose --features bezier
build-macosx:
runs-on: macosx-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: cargo build --verbose
run: |
cargo build --verbose
cargo build --verbose --features bezier
- name: Test
run: cargo test --verbose
run: |
cargo test --verbose
cargo test --verbose --features bezier
check-readme:
runs-on: ubuntu-latest

View File

@ -1,6 +1,15 @@
# 1.1.1
> Mon Sep 22rd 2019
- Add support for [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve). This is
normally a breaking change so its currently disabled by default and available via the
`"bezier"` feature-gate.
- Add `Spline::get`, `Spline::get_mut` and `Spline::replace`.
# 1.0
> Sun Sep 22th 2019
> Sun Sep 22nd 2019
## Major changes

View File

@ -1,6 +1,6 @@
[package]
name = "splines"
version = "1.0.0"
version = "1.1.1"
license = "BSD-3-Clause"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
description = "Spline interpolation made easy"
@ -21,6 +21,7 @@ maintenance = { status = "actively-developed" }
[features]
default = ["std"]
bezier = []
impl-cgmath = ["cgmath"]
impl-nalgebra = ["alga", "nalgebra", "num-traits"]
serialization = ["serde", "serde_derive"]

View File

@ -84,19 +84,27 @@ not. Its especially important to see how it copes with the documentation.
So heres a list of currently supported features and how to enable them:
- **Serialization / deserialization.**
+ This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
- This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
types exported by this crate.
+ Enable with the `"serialization"` feature.
- Enable with the `"serialization"` feature.
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
+ Adds some useful implementations of `Interpolate` for some cgmath types.
+ Enable with the `"impl-cgmath"` feature.
- Adds some useful implementations of `Interpolate` for some cgmath types.
- Enable with the `"impl-cgmath"` feature.
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
+ Adds some useful implementations of `Interpolate` for some nalgebra types.
+ Enable with the `"impl-nalgebra"` feature.
- Adds some useful implementations of `Interpolate` for some nalgebra types.
- Enable with the `"impl-nalgebra"` feature.
- **Standard library / no standard library.**
+ Its possible to compile against the standard library or go on your own without it.
+ Compiling with the standard library is enabled by default.
+ Use `default-features = []` in your `Cargo.toml` to disable.
+ Enable explicitly with the `"std"` feature.
- Its possible to compile against the standard library or go on your own without it.
- Compiling with the standard library is enabled by default.
- Use `default-features = []` in your `Cargo.toml` to disable.
- Enable explicitly with the `"std"` feature.
- **Extra interpolation modes.**
- In order not to introduce breaking changes, some feature-gates are added to augment the
[`Interpolation`] enum.
- Those feature-gates will disappear on the next major release of the crate.
- The following lists all currently available:
- `"bezier"`: [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
[`Interpolation`]: crate::interpolation::Interpolation
<!-- cargo-sync-readme end -->

View File

@ -2,7 +2,9 @@ use cgmath::{
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
};
use crate::interpolate::{Additive, Interpolate, Linear, One, cubic_hermite_def};
use crate::interpolate::{
Additive, Interpolate, Linear, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
};
macro_rules! impl_interpolate_vec {
($($t:tt)*) => {
@ -29,6 +31,18 @@ macro_rules! impl_interpolate_vec {
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[cfg(feature = "bezier")]
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[cfg(feature = "bezier")]
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
}
}
@ -61,4 +75,16 @@ where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[cfg(feature = "bezier")]
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[cfg(feature = "bezier")]
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}

View File

@ -57,6 +57,14 @@ pub trait Interpolate<T>: Sized + Copy {
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
Self::lerp(a.0, b.0, t)
}
/// Quadratic Bézier interpolation.
#[cfg(feature = "bezier")]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
/// Cubic Bézier interpolation.
#[cfg(feature = "bezier")]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
}
/// Set of types that support additions and subtraction.
@ -212,6 +220,33 @@ where V: Linear<T>,
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
}
/// Default implementation of [`Interpolate::quadratic_bezier`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
#[cfg(feature = "bezier")]
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
where V: Linear<T>,
T: Additive + Mul<T, Output = T> + One {
let one_t = T::one() - t;
let one_t_2 = one_t * one_t;
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
}
/// Default implementation of [`Interpolate::cubic_bezier`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
#[cfg(feature = "bezier")]
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
where V: Linear<T>,
T: Additive + Mul<T, Output = T> + One {
let one_t = T::one() - t;
let one_t_2 = one_t * one_t;
let one_t_3 = one_t_2 * one_t;
let three = T::one() + T::one() + T::one();
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
}
macro_rules! impl_interpolate_simple {
($t:ty) => {
impl Interpolate<$t> for $t {
@ -222,6 +257,16 @@ macro_rules! impl_interpolate_simple {
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[cfg(feature = "bezier")]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[cfg(feature = "bezier")]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
}
}
@ -239,6 +284,16 @@ macro_rules! impl_interpolate_via {
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
}
#[cfg(feature = "bezier")]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
quadratic_bezier_def(a, u, b, t as $v)
}
#[cfg(feature = "bezier")]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
cubic_bezier_def(a, u, v, b, t as $v)
}
}
}
}

View File

@ -5,11 +5,12 @@
/// Available kind of interpolations.
///
/// Feel free to visit each variant for more documentation.
#[cfg(feature = "bezier")]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub enum Interpolation<T> {
/// Hold a [`Key<T, _>`] until the sampling value passes the normalized step threshold, in which
pub enum Interpolation<T, V> {
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
/// case the next key is used.
///
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
@ -17,20 +18,70 @@ pub enum Interpolation<T> {
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
/// > used.
///
/// [`Key<T, _>`]: crate::key::Key
/// [`Key`]: crate::key::Key
Step(T),
/// Linear interpolation between a key and the next one.
Linear,
/// Cosine interpolation between a key and the next one.
Cosine,
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
CatmullRom
CatmullRom,
/// Bézier interpolation.
///
/// A control point that uses such an interpolation is associated with an extra point. The segmant
/// connecting both is called the _tangent_ of this point. The part of the spline defined between
/// this control point and the next one will be interpolated across with Bézier interpolation. Two
/// cases are possible:
///
/// - The next control point also has a Bézier interpolation mode. In this case, its tangent is
/// used for the interpolation process. This is called _cubic Bézier interpolation_ and it
/// kicks ass.
/// - The next control point doesnt have a Bézier interpolation mode set. In this case, the
/// tangent used for the next control point is defined as the segment connecting that control
/// point and the current control points associated point. This is called _quadratic Bézer
/// interpolation_ and it kicks ass too, but a bit less than cubic.
#[cfg(feature = "bezier")]
Bezier(V),
}
impl<T> Default for Interpolation<T> {
/// Available kind of interpolations.
///
/// Feel free to visit each variant for more documentation.
#[cfg(not(feature = "bezier"))]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub enum Interpolation<T> {
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
/// case the next key is used.
///
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
/// > between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
/// > used.
///
/// [`Key`]: crate::key::Key
Step(T),
/// Linear interpolation between a key and the next one.
Linear,
/// Cosine interpolation between a key and the next one.
Cosine,
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
CatmullRom,
}
#[cfg(feature = "bezier")]
impl<T, V> Default for Interpolation<T, V> {
/// [`Interpolation::Linear`] is the default.
fn default() -> Self {
Interpolation::Linear
}
}
#[cfg(not(feature = "bezier"))]
impl<T> Default for Interpolation<T> {
/// [`Interpolation::Linear`] is the default.
fn default() -> Self {
Interpolation::Linear
}
}

View File

@ -17,6 +17,27 @@ use crate::interpolation::Interpolation;
/// key and the next one if existing. Have a look at [`Interpolation`] for further details.
///
/// [`Interpolation`]: crate::interpolation::Interpolation
#[cfg(feature = "bezier")]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub struct Key<T, V> {
/// Interpolation parameter at which the [`Key`] should be reached.
pub t: T,
/// Carried value.
pub value: V,
/// Interpolation mode.
pub interpolation: Interpolation<T, V>
}
/// A spline control point.
///
/// This type associates a value at a given interpolation parameter value. It also contains an
/// interpolation mode used to determine how to interpolate values on the segment defined by this
/// key and the next one if existing. Have a look at [`Interpolation`] for further details.
///
/// [`Interpolation`]: crate::interpolation::Interpolation
#[cfg(not(feature = "bezier"))]
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
@ -31,6 +52,13 @@ pub struct Key<T, V> {
impl<T, V> Key<T, V> {
/// Create a new key.
#[cfg(feature = "bezier")]
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
Key { t, value, interpolation }
}
/// Create a new key.
#[cfg(not(feature = "bezier"))]
pub fn new(t: T, value: V, interpolation: Interpolation<T>) -> Self {
Key { t, value, interpolation }
}

View File

@ -85,20 +85,28 @@
//! So heres a list of currently supported features and how to enable them:
//!
//! - **Serialization / deserialization.**
//! + This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
//! - This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
//! types exported by this crate.
//! + Enable with the `"serialization"` feature.
//! - Enable with the `"serialization"` feature.
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
//! + Adds some useful implementations of `Interpolate` for some cgmath types.
//! + Enable with the `"impl-cgmath"` feature.
//! - Adds some useful implementations of `Interpolate` for some cgmath types.
//! - Enable with the `"impl-cgmath"` feature.
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
//! + Adds some useful implementations of `Interpolate` for some nalgebra types.
//! + Enable with the `"impl-nalgebra"` feature.
//! - Adds some useful implementations of `Interpolate` for some nalgebra types.
//! - Enable with the `"impl-nalgebra"` feature.
//! - **Standard library / no standard library.**
//! + Its possible to compile against the standard library or go on your own without it.
//! + Compiling with the standard library is enabled by default.
//! + Use `default-features = []` in your `Cargo.toml` to disable.
//! + Enable explicitly with the `"std"` feature.
//! - Its possible to compile against the standard library or go on your own without it.
//! - Compiling with the standard library is enabled by default.
//! - Use `default-features = []` in your `Cargo.toml` to disable.
//! - Enable explicitly with the `"std"` feature.
//! - **Extra interpolation modes.**
//! - In order not to introduce breaking changes, some feature-gates are added to augment the
//! [`Interpolation`] enum.
//! - Those feature-gates will disappear on the next major release of the crate.
//! - The following lists all currently available:
//! - `"bezier"`: [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
//!
//! [`Interpolation`]: crate::interpolation::Interpolation
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(not(feature = "std"), feature(alloc))]

View File

@ -3,7 +3,9 @@ use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vect
use num_traits as nt;
use std::ops::Mul;
use crate::interpolate::{Interpolate, Linear, Additive, One, cubic_hermite_def};
use crate::interpolate::{
Interpolate, Linear, Additive, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
};
macro_rules! impl_interpolate_vector {
($($t:tt)*) => {
@ -40,6 +42,18 @@ macro_rules! impl_interpolate_vector {
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[cfg(feature = "bezier")]
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[cfg(feature = "bezier")]
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
}
}

View File

@ -93,13 +93,13 @@ impl<T, V> Spline<T, V> {
match cp0.interpolation {
Interpolation::Step(threshold) => {
let cp1 = &keys[i+1];
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
Some(if nt < threshold { cp0.value } else { cp1.value })
}
Interpolation::Linear => {
let cp1 = &keys[i+1];
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
@ -107,7 +107,7 @@ impl<T, V> Spline<T, V> {
Interpolation::Cosine => {
let two_t = T::one() + T::one();
let cp1 = &keys[i+1];
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
@ -120,14 +120,32 @@ impl<T, V> Spline<T, V> {
if i == 0 || i >= keys.len() - 2 {
None
} else {
let cp1 = &keys[i+1];
let cpm0 = &keys[i-1];
let cpm1 = &keys[i+2];
let cp1 = &keys[i + 1];
let cpm0 = &keys[i - 1];
let cpm1 = &keys[i + 2];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
}
}
#[cfg(feature = "bezier")]
Interpolation::Bezier(u) => {
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
if let Interpolation::Bezier(v) = cp1.interpolation {
Some(Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt))
//let one_nt = T::one() - nt;
//let one_nt_2 = one_nt * one_nt;
//let one_nt_3 = one_nt_2 * one_nt;
//let three_one_nt_2 = one_nt_2 + one_nt_2 + one_nt_2; // one_nt_2 * 3
//let r = cp0.value * one_nt_3;
} else {
Some(Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt))
}
}
}
}
@ -178,6 +196,57 @@ impl<T, V> Spline<T, V> {
Some(self.0.remove(index))
}
}
/// Update a key and return the key already present.
///
/// The key is updated — if present — with the provided function.
///
/// # Notes
///
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
/// your key. If you just want to change the interpolation mode or the carried value, consider
/// using the [`Spline::get_mut`] method instead as it will be way faster.
pub fn replace<F>(
&mut self,
index: usize,
f: F
) -> Option<Key<T, V>>
where
F: FnOnce(&Key<T, V>) -> Key<T, V>,
T: PartialOrd
{
let key = self.remove(index)?;
self.add(f(&key));
Some(key)
}
/// Get a key at a given index.
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
self.0.get(index)
}
/// Mutably get a key at a given index.
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
self.0.get_mut(index).map(|key| KeyMut {
value: &mut key.value,
interpolation: &mut key.interpolation
})
}
}
/// A mutable [`Key`].
///
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
/// want to achieve this, youre advised to use [`Spline::replace`].
pub struct KeyMut<'a, T, V> {
/// Carried value.
pub value: &'a mut V,
/// Interpolation mode to use for that key.
#[cfg(feature = "bezier")]
pub interpolation: &'a mut Interpolation<T, V>,
#[cfg(not(feature = "bezier"))]
pub interpolation: &'a mut Interpolation<T>,
}
// Normalize a time ([0;1]) given two control points.