Compare commits
12 Commits
Author | SHA1 | Date | |
---|---|---|---|
1bfd9a0e7c | |||
7846177471 | |||
6f65be125b | |||
5d0ebc0777 | |||
4fdbfa6189 | |||
7dbc85a312 | |||
03031a1e92 | |||
54eb89ae96 | |||
51ab8022f9 | |||
b78be8cba3 | |||
fd05dd0419 | |||
b05582d653 |
19
.github/workflows/ci.yaml
vendored
19
.github/workflows/ci.yaml
vendored
@ -7,27 +7,34 @@ jobs:
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Build
|
||||
run: cargo build --verbose
|
||||
run: |
|
||||
cargo build --verbose --all-features
|
||||
- name: Test
|
||||
run: cargo test --verbose
|
||||
run: |
|
||||
cargo test --verbose --all-features
|
||||
|
||||
|
||||
build-windows:
|
||||
runs-on: windows-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Build
|
||||
run: cargo build --verbose
|
||||
run: |
|
||||
cargo build --verbose --all-features
|
||||
- name: Test
|
||||
run: cargo test --verbose
|
||||
run: |
|
||||
cargo test --verbose --all-features
|
||||
|
||||
build-macosx:
|
||||
runs-on: macosx-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Build
|
||||
run: cargo build --verbose
|
||||
run: |
|
||||
cargo build --verbose --all-features
|
||||
- name: Test
|
||||
run: cargo test --verbose
|
||||
run: |
|
||||
cargo test --verbose --all-features
|
||||
|
||||
check-readme:
|
||||
runs-on: ubuntu-latest
|
||||
|
16
CHANGELOG.md
16
CHANGELOG.md
@ -1,6 +1,20 @@
|
||||
# 2.0.0
|
||||
|
||||
> Mon Sep 24th 2019
|
||||
|
||||
## Major changes
|
||||
|
||||
- Add support for [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
|
||||
- Because of Bézier curves, the `Interpolation` type now has one more type variable to know how we
|
||||
should interpolate with Bézier.
|
||||
|
||||
## Minor changes
|
||||
|
||||
- Add `Spline::get`, `Spline::get_mut` and `Spline::replace`.
|
||||
|
||||
# 1.0
|
||||
|
||||
> Sun Sep 22th 2019
|
||||
> Sun Sep 22nd 2019
|
||||
|
||||
## Major changes
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "splines"
|
||||
version = "1.0.0"
|
||||
version = "2.0.0"
|
||||
license = "BSD-3-Clause"
|
||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||
description = "Spline interpolation made easy"
|
||||
|
22
README.md
22
README.md
@ -84,19 +84,21 @@ not. It’s especially important to see how it copes with the documentation.
|
||||
So here’s a list of currently supported features and how to enable them:
|
||||
|
||||
- **Serialization / deserialization.**
|
||||
+ This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||
- This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||
types exported by this crate.
|
||||
+ Enable with the `"serialization"` feature.
|
||||
- Enable with the `"serialization"` feature.
|
||||
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
||||
+ Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||
+ Enable with the `"impl-cgmath"` feature.
|
||||
- Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||
- Enable with the `"impl-cgmath"` feature.
|
||||
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
||||
+ Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||
+ Enable with the `"impl-nalgebra"` feature.
|
||||
- Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||
- Enable with the `"impl-nalgebra"` feature.
|
||||
- **Standard library / no standard library.**
|
||||
+ It’s possible to compile against the standard library or go on your own without it.
|
||||
+ Compiling with the standard library is enabled by default.
|
||||
+ Use `default-features = []` in your `Cargo.toml` to disable.
|
||||
+ Enable explicitly with the `"std"` feature.
|
||||
- It’s possible to compile against the standard library or go on your own without it.
|
||||
- Compiling with the standard library is enabled by default.
|
||||
- Use `default-features = []` in your `Cargo.toml` to disable.
|
||||
- Enable explicitly with the `"std"` feature.
|
||||
|
||||
[`Interpolation`]: crate::interpolation::Interpolation
|
||||
|
||||
<!-- cargo-sync-readme end -->
|
||||
|
@ -2,7 +2,9 @@ use cgmath::{
|
||||
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
|
||||
};
|
||||
|
||||
use crate::interpolate::{Additive, Interpolate, Linear, One, cubic_hermite_def};
|
||||
use crate::interpolate::{
|
||||
Additive, Interpolate, Linear, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
|
||||
};
|
||||
|
||||
macro_rules! impl_interpolate_vec {
|
||||
($($t:tt)*) => {
|
||||
@ -29,6 +31,16 @@ macro_rules! impl_interpolate_vec {
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -61,4 +73,14 @@ where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
|
@ -57,6 +57,12 @@ pub trait Interpolate<T>: Sized + Copy {
|
||||
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
|
||||
Self::lerp(a.0, b.0, t)
|
||||
}
|
||||
|
||||
/// Quadratic Bézier interpolation.
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
|
||||
|
||||
/// Cubic Bézier interpolation.
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
|
||||
}
|
||||
|
||||
/// Set of types that support additions and subtraction.
|
||||
@ -212,6 +218,31 @@ where V: Linear<T>,
|
||||
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
|
||||
}
|
||||
|
||||
/// Default implementation of [`Interpolate::quadratic_bezier`].
|
||||
///
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
|
||||
where V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One {
|
||||
let one_t = T::one() - t;
|
||||
let one_t_2 = one_t * one_t;
|
||||
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
|
||||
}
|
||||
|
||||
/// Default implementation of [`Interpolate::cubic_bezier`].
|
||||
///
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
|
||||
where V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One {
|
||||
let one_t = T::one() - t;
|
||||
let one_t_2 = one_t * one_t;
|
||||
let one_t_3 = one_t_2 * one_t;
|
||||
let three = T::one() + T::one() + T::one();
|
||||
|
||||
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
|
||||
}
|
||||
|
||||
macro_rules! impl_interpolate_simple {
|
||||
($t:ty) => {
|
||||
impl Interpolate<$t> for $t {
|
||||
@ -222,6 +253,14 @@ macro_rules! impl_interpolate_simple {
|
||||
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -239,6 +278,14 @@ macro_rules! impl_interpolate_via {
|
||||
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
||||
}
|
||||
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t as $v)
|
||||
}
|
||||
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t as $v)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -8,8 +8,8 @@
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub enum Interpolation<T> {
|
||||
/// Hold a [`Key<T, _>`] until the sampling value passes the normalized step threshold, in which
|
||||
pub enum Interpolation<T, V> {
|
||||
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
|
||||
/// case the next key is used.
|
||||
///
|
||||
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
|
||||
@ -17,20 +17,36 @@ pub enum Interpolation<T> {
|
||||
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
|
||||
/// > used.
|
||||
///
|
||||
/// [`Key<T, _>`]: crate::key::Key
|
||||
/// [`Key`]: crate::key::Key
|
||||
Step(T),
|
||||
/// Linear interpolation between a key and the next one.
|
||||
Linear,
|
||||
/// Cosine interpolation between a key and the next one.
|
||||
Cosine,
|
||||
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
|
||||
CatmullRom
|
||||
CatmullRom,
|
||||
/// Bézier interpolation.
|
||||
///
|
||||
/// A control point that uses such an interpolation is associated with an extra point. The segmant
|
||||
/// connecting both is called the _tangent_ of this point. The part of the spline defined between
|
||||
/// this control point and the next one will be interpolated across with Bézier interpolation. Two
|
||||
/// cases are possible:
|
||||
///
|
||||
/// - The next control point also has a Bézier interpolation mode. In this case, its tangent is
|
||||
/// used for the interpolation process. This is called _cubic Bézier interpolation_ and it
|
||||
/// kicks ass.
|
||||
/// - The next control point doesn’t have a Bézier interpolation mode set. In this case, the
|
||||
/// tangent used for the next control point is defined as the segment connecting that control
|
||||
/// point and the current control point’s associated point. This is called _quadratic Bézer
|
||||
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
||||
Bezier(V),
|
||||
#[doc(hidden)]
|
||||
__NonExhaustive
|
||||
}
|
||||
|
||||
impl<T> Default for Interpolation<T> {
|
||||
impl<T, V> Default for Interpolation<T, V> {
|
||||
/// [`Interpolation::Linear`] is the default.
|
||||
fn default() -> Self {
|
||||
Interpolation::Linear
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -26,12 +26,12 @@ pub struct Key<T, V> {
|
||||
/// Carried value.
|
||||
pub value: V,
|
||||
/// Interpolation mode.
|
||||
pub interpolation: Interpolation<T>
|
||||
pub interpolation: Interpolation<T, V>
|
||||
}
|
||||
|
||||
impl<T, V> Key<T, V> {
|
||||
/// Create a new key.
|
||||
pub fn new(t: T, value: V, interpolation: Interpolation<T>) -> Self {
|
||||
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
|
||||
Key { t, value, interpolation }
|
||||
}
|
||||
}
|
||||
|
22
src/lib.rs
22
src/lib.rs
@ -85,20 +85,22 @@
|
||||
//! So here’s a list of currently supported features and how to enable them:
|
||||
//!
|
||||
//! - **Serialization / deserialization.**
|
||||
//! + This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||
//! - This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||
//! types exported by this crate.
|
||||
//! + Enable with the `"serialization"` feature.
|
||||
//! - Enable with the `"serialization"` feature.
|
||||
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
||||
//! + Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||
//! + Enable with the `"impl-cgmath"` feature.
|
||||
//! - Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||
//! - Enable with the `"impl-cgmath"` feature.
|
||||
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
||||
//! + Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||
//! + Enable with the `"impl-nalgebra"` feature.
|
||||
//! - Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||
//! - Enable with the `"impl-nalgebra"` feature.
|
||||
//! - **Standard library / no standard library.**
|
||||
//! + It’s possible to compile against the standard library or go on your own without it.
|
||||
//! + Compiling with the standard library is enabled by default.
|
||||
//! + Use `default-features = []` in your `Cargo.toml` to disable.
|
||||
//! + Enable explicitly with the `"std"` feature.
|
||||
//! - It’s possible to compile against the standard library or go on your own without it.
|
||||
//! - Compiling with the standard library is enabled by default.
|
||||
//! - Use `default-features = []` in your `Cargo.toml` to disable.
|
||||
//! - Enable explicitly with the `"std"` feature.
|
||||
//!
|
||||
//! [`Interpolation`]: crate::interpolation::Interpolation
|
||||
|
||||
#![cfg_attr(not(feature = "std"), no_std)]
|
||||
#![cfg_attr(not(feature = "std"), feature(alloc))]
|
||||
|
@ -3,7 +3,9 @@ use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vect
|
||||
use num_traits as nt;
|
||||
use std::ops::Mul;
|
||||
|
||||
use crate::interpolate::{Interpolate, Linear, Additive, One, cubic_hermite_def};
|
||||
use crate::interpolate::{
|
||||
Interpolate, Linear, Additive, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
|
||||
};
|
||||
|
||||
macro_rules! impl_interpolate_vector {
|
||||
($($t:tt)*) => {
|
||||
@ -40,6 +42,16 @@ macro_rules! impl_interpolate_vector {
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -93,13 +93,13 @@ impl<T, V> Spline<T, V> {
|
||||
|
||||
match cp0.interpolation {
|
||||
Interpolation::Step(threshold) => {
|
||||
let cp1 = &keys[i+1];
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
Some(if nt < threshold { cp0.value } else { cp1.value })
|
||||
}
|
||||
|
||||
Interpolation::Linear => {
|
||||
let cp1 = &keys[i+1];
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
||||
@ -107,7 +107,7 @@ impl<T, V> Spline<T, V> {
|
||||
|
||||
Interpolation::Cosine => {
|
||||
let two_t = T::one() + T::one();
|
||||
let cp1 = &keys[i+1];
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
||||
|
||||
@ -120,14 +120,33 @@ impl<T, V> Spline<T, V> {
|
||||
if i == 0 || i >= keys.len() - 2 {
|
||||
None
|
||||
} else {
|
||||
let cp1 = &keys[i+1];
|
||||
let cpm0 = &keys[i-1];
|
||||
let cpm1 = &keys[i+2];
|
||||
let cp1 = &keys[i + 1];
|
||||
let cpm0 = &keys[i - 1];
|
||||
let cpm1 = &keys[i + 2];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
|
||||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
||||
}
|
||||
}
|
||||
|
||||
Interpolation::Bezier(u) => {
|
||||
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
|
||||
if let Interpolation::Bezier(v) = cp1.interpolation {
|
||||
Some(Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt))
|
||||
//let one_nt = T::one() - nt;
|
||||
//let one_nt_2 = one_nt * one_nt;
|
||||
//let one_nt_3 = one_nt_2 * one_nt;
|
||||
//let three_one_nt_2 = one_nt_2 + one_nt_2 + one_nt_2; // one_nt_2 * 3
|
||||
//let r = cp0.value * one_nt_3;
|
||||
} else {
|
||||
Some(Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt))
|
||||
}
|
||||
}
|
||||
|
||||
Interpolation::__NonExhaustive => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
@ -178,6 +197,54 @@ impl<T, V> Spline<T, V> {
|
||||
Some(self.0.remove(index))
|
||||
}
|
||||
}
|
||||
|
||||
/// Update a key and return the key already present.
|
||||
///
|
||||
/// The key is updated — if present — with the provided function.
|
||||
///
|
||||
/// # Notes
|
||||
///
|
||||
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
|
||||
/// your key. If you just want to change the interpolation mode or the carried value, consider
|
||||
/// using the [`Spline::get_mut`] method instead as it will be way faster.
|
||||
pub fn replace<F>(
|
||||
&mut self,
|
||||
index: usize,
|
||||
f: F
|
||||
) -> Option<Key<T, V>>
|
||||
where
|
||||
F: FnOnce(&Key<T, V>) -> Key<T, V>,
|
||||
T: PartialOrd
|
||||
{
|
||||
let key = self.remove(index)?;
|
||||
self.add(f(&key));
|
||||
Some(key)
|
||||
}
|
||||
|
||||
/// Get a key at a given index.
|
||||
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
|
||||
self.0.get(index)
|
||||
}
|
||||
|
||||
/// Mutably get a key at a given index.
|
||||
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
|
||||
self.0.get_mut(index).map(|key| KeyMut {
|
||||
value: &mut key.value,
|
||||
interpolation: &mut key.interpolation
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// A mutable [`Key`].
|
||||
///
|
||||
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
|
||||
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
|
||||
/// want to achieve this, you’re advised to use [`Spline::replace`].
|
||||
pub struct KeyMut<'a, T, V> {
|
||||
/// Carried value.
|
||||
pub value: &'a mut V,
|
||||
/// Interpolation mode to use for that key.
|
||||
pub interpolation: &'a mut Interpolation<T, V>,
|
||||
}
|
||||
|
||||
// Normalize a time ([0;1]) given two control points.
|
||||
|
Reference in New Issue
Block a user