17 Commits
1.0.0 ... 2.1.0

Author SHA1 Message Date
ebc6e16aef Merge pull request #32 from phaazon/feature/sample-key
Add Spline::sample_with_key and Spline::clamped_sample_with_key.
2019-09-30 12:59:11 +02:00
cae599e0d7 Add Spline::sample_with_key and Spline::clamped_sample_with_key. 2019-09-30 12:49:36 +02:00
336c1c7e80 Merge pull request #31 from phaazon/fix/bezier-interpolation
Fix/bezier interpolation
2019-09-24 21:36:04 +02:00
ea29e08836 Fix cubic Bézier interpolation. 2019-09-24 21:31:18 +02:00
3ab98420c8 Remove unneeded comments. 2019-09-24 17:40:01 +02:00
1bfd9a0e7c Merge pull request #29 from phaazon/release/2.0.0
2.0.0.
2019-09-24 10:59:00 +02:00
7846177471 Fix CI. 2019-09-24 10:44:45 +02:00
6f65be125b 2.0.0. 2019-09-24 10:42:03 +02:00
5d0ebc0777 Merge pull request #28 from phaazon/feature/mutation
Feature/mutation
2019-09-23 21:12:06 +02:00
4fdbfa6189 Fix 1.1. 2019-09-23 20:56:56 +02:00
7dbc85a312 Add key getters (immutable & mutable). 2019-09-23 20:34:39 +02:00
03031a1e92 Yank notation. 2019-09-23 19:53:52 +02:00
54eb89ae96 Merge pull request #27 from phaazon/feature/extra-splines
Feature/extra splines
2019-09-23 17:13:22 +02:00
51ab8022f9 Fix CI. 2019-09-23 17:10:40 +02:00
b78be8cba3 Prepare 1.1. 2019-09-23 17:09:09 +02:00
fd05dd0419 Update readme. 2019-09-23 17:08:32 +02:00
b05582d653 Add Bézier curves. 2019-09-23 17:06:32 +02:00
12 changed files with 288 additions and 55 deletions

View File

@ -7,27 +7,34 @@ jobs:
steps:
- uses: actions/checkout@v1
- name: Build
run: cargo build --verbose
run: |
cargo build --verbose --all-features
- name: Test
run: cargo test --verbose
run: |
cargo test --verbose --all-features
build-windows:
runs-on: windows-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: cargo build --verbose
run: |
cargo build --verbose --all-features
- name: Test
run: cargo test --verbose
run: |
cargo test --verbose --all-features
build-macosx:
runs-on: macosx-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: cargo build --verbose
run: |
cargo build --verbose --all-features
- name: Test
run: cargo test --verbose
run: |
cargo test --verbose --all-features
check-readme:
runs-on: ubuntu-latest

View File

@ -1,6 +1,36 @@
# 2.1
> Mon Sep 30th 2019
- Add `Spline::sample_with_key` and `Spline::clamped_sample_with_key`. Those methods allow one to
perform the regular `Spline::sample` and `Spline::clamped_sample` but also retreive the base
key that was used to perform the interpolation. The key can be inspected to get the base time,
interpolation, etc. The next key is also returned, if present.
# 2.0.1
> Tue Sep 24th 2019
- Fix the cubic Bézier curve interpolation. The “output” tangent is now taken by mirroring the
next keys tangent around its control point.
# 2.0.0
> Mon Sep 23rd 2019
## Major changes
- Add support for [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
- Because of Bézier curves, the `Interpolation` type now has one more type variable to know how we
should interpolate with Bézier.
## Minor changes
- Add `Spline::get`, `Spline::get_mut` and `Spline::replace`.
# 1.0
> Sun Sep 22th 2019
> Sun Sep 22nd 2019
## Major changes

View File

@ -1,6 +1,6 @@
[package]
name = "splines"
version = "1.0.0"
version = "2.1.0"
license = "BSD-3-Clause"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
description = "Spline interpolation made easy"

View File

@ -84,19 +84,21 @@ not. Its especially important to see how it copes with the documentation.
So heres a list of currently supported features and how to enable them:
- **Serialization / deserialization.**
+ This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
- This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
types exported by this crate.
+ Enable with the `"serialization"` feature.
- Enable with the `"serialization"` feature.
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
+ Adds some useful implementations of `Interpolate` for some cgmath types.
+ Enable with the `"impl-cgmath"` feature.
- Adds some useful implementations of `Interpolate` for some cgmath types.
- Enable with the `"impl-cgmath"` feature.
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
+ Adds some useful implementations of `Interpolate` for some nalgebra types.
+ Enable with the `"impl-nalgebra"` feature.
- Adds some useful implementations of `Interpolate` for some nalgebra types.
- Enable with the `"impl-nalgebra"` feature.
- **Standard library / no standard library.**
+ Its possible to compile against the standard library or go on your own without it.
+ Compiling with the standard library is enabled by default.
+ Use `default-features = []` in your `Cargo.toml` to disable.
+ Enable explicitly with the `"std"` feature.
- Its possible to compile against the standard library or go on your own without it.
- Compiling with the standard library is enabled by default.
- Use `default-features = []` in your `Cargo.toml` to disable.
- Enable explicitly with the `"std"` feature.
[`Interpolation`]: crate::interpolation::Interpolation
<!-- cargo-sync-readme end -->

View File

@ -2,7 +2,9 @@ use cgmath::{
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
};
use crate::interpolate::{Additive, Interpolate, Linear, One, cubic_hermite_def};
use crate::interpolate::{
Additive, Interpolate, Linear, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
};
macro_rules! impl_interpolate_vec {
($($t:tt)*) => {
@ -29,6 +31,16 @@ macro_rules! impl_interpolate_vec {
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
}
}
@ -61,4 +73,14 @@ where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}

View File

@ -57,6 +57,12 @@ pub trait Interpolate<T>: Sized + Copy {
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
Self::lerp(a.0, b.0, t)
}
/// Quadratic Bézier interpolation.
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
/// Cubic Bézier interpolation.
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
}
/// Set of types that support additions and subtraction.
@ -212,6 +218,34 @@ where V: Linear<T>,
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
}
/// Default implementation of [`Interpolate::quadratic_bezier`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
where V: Linear<T>,
T: Additive + Mul<T, Output = T> + One {
let one_t = T::one() - t;
let one_t_2 = one_t * one_t;
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
}
/// Default implementation of [`Interpolate::cubic_bezier`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
where V: Linear<T>,
T: Additive + Mul<T, Output = T> + One {
let one_t = T::one() - t;
let one_t_2 = one_t * one_t;
let one_t_3 = one_t_2 * one_t;
let three = T::one() + T::one() + T::one();
// mirror the “output” tangent based on the next key “input” tangent
let v_ = b + b - v;
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v_.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
}
macro_rules! impl_interpolate_simple {
($t:ty) => {
impl Interpolate<$t> for $t {
@ -222,6 +256,14 @@ macro_rules! impl_interpolate_simple {
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
quadratic_bezier_def(a, u, b, t)
}
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
}
}
@ -239,6 +281,14 @@ macro_rules! impl_interpolate_via {
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
}
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
quadratic_bezier_def(a, u, b, t as $v)
}
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
cubic_bezier_def(a, u, v, b, t as $v)
}
}
}
}

View File

@ -8,8 +8,8 @@
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub enum Interpolation<T> {
/// Hold a [`Key<T, _>`] until the sampling value passes the normalized step threshold, in which
pub enum Interpolation<T, V> {
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
/// case the next key is used.
///
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
@ -17,20 +17,36 @@ pub enum Interpolation<T> {
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
/// > used.
///
/// [`Key<T, _>`]: crate::key::Key
/// [`Key`]: crate::key::Key
Step(T),
/// Linear interpolation between a key and the next one.
Linear,
/// Cosine interpolation between a key and the next one.
Cosine,
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
CatmullRom
CatmullRom,
/// Bézier interpolation.
///
/// A control point that uses such an interpolation is associated with an extra point. The segmant
/// connecting both is called the _tangent_ of this point. The part of the spline defined between
/// this control point and the next one will be interpolated across with Bézier interpolation. Two
/// cases are possible:
///
/// - The next control point also has a Bézier interpolation mode. In this case, its tangent is
/// used for the interpolation process. This is called _cubic Bézier interpolation_ and it
/// kicks ass.
/// - The next control point doesnt have a Bézier interpolation mode set. In this case, the
/// tangent used for the next control point is defined as the segment connecting that control
/// point and the current control points associated point. This is called _quadratic Bézer
/// interpolation_ and it kicks ass too, but a bit less than cubic.
Bezier(V),
#[doc(hidden)]
__NonExhaustive
}
impl<T> Default for Interpolation<T> {
impl<T, V> Default for Interpolation<T, V> {
/// [`Interpolation::Linear`] is the default.
fn default() -> Self {
Interpolation::Linear
}
}

View File

@ -26,12 +26,12 @@ pub struct Key<T, V> {
/// Carried value.
pub value: V,
/// Interpolation mode.
pub interpolation: Interpolation<T>
pub interpolation: Interpolation<T, V>
}
impl<T, V> Key<T, V> {
/// Create a new key.
pub fn new(t: T, value: V, interpolation: Interpolation<T>) -> Self {
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
Key { t, value, interpolation }
}
}

View File

@ -85,20 +85,22 @@
//! So heres a list of currently supported features and how to enable them:
//!
//! - **Serialization / deserialization.**
//! + This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
//! - This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
//! types exported by this crate.
//! + Enable with the `"serialization"` feature.
//! - Enable with the `"serialization"` feature.
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
//! + Adds some useful implementations of `Interpolate` for some cgmath types.
//! + Enable with the `"impl-cgmath"` feature.
//! - Adds some useful implementations of `Interpolate` for some cgmath types.
//! - Enable with the `"impl-cgmath"` feature.
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
//! + Adds some useful implementations of `Interpolate` for some nalgebra types.
//! + Enable with the `"impl-nalgebra"` feature.
//! - Adds some useful implementations of `Interpolate` for some nalgebra types.
//! - Enable with the `"impl-nalgebra"` feature.
//! - **Standard library / no standard library.**
//! + Its possible to compile against the standard library or go on your own without it.
//! + Compiling with the standard library is enabled by default.
//! + Use `default-features = []` in your `Cargo.toml` to disable.
//! + Enable explicitly with the `"std"` feature.
//! - Its possible to compile against the standard library or go on your own without it.
//! - Compiling with the standard library is enabled by default.
//! - Use `default-features = []` in your `Cargo.toml` to disable.
//! - Enable explicitly with the `"std"` feature.
//!
//! [`Interpolation`]: crate::interpolation::Interpolation
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(not(feature = "std"), feature(alloc))]

View File

@ -3,7 +3,9 @@ use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vect
use num_traits as nt;
use std::ops::Mul;
use crate::interpolate::{Interpolate, Linear, Additive, One, cubic_hermite_def};
use crate::interpolate::{
Interpolate, Linear, Additive, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
};
macro_rules! impl_interpolate_vector {
($($t:tt)*) => {
@ -40,6 +42,16 @@ macro_rules! impl_interpolate_vector {
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
}
}

View File

@ -69,7 +69,8 @@ impl<T, V> Spline<T, V> {
self.0.is_empty()
}
/// Sample a spline at a given time.
/// Sample a spline at a given time, returning the interpolated value along with its associated
/// key.
///
/// The current implementation, based on immutability, cannot perform in constant time. This means
/// that samplings processing complexity is currently *O(log n)*. Its possible to achieve *O(1)*
@ -84,7 +85,7 @@ impl<T, V> Spline<T, V> {
/// youre near the beginning of the spline or its end, ensure you have enough keys around to make
/// the sampling.
///
pub fn sample(&self, t: T) -> Option<V>
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
let keys = &self.0;
@ -93,25 +94,29 @@ impl<T, V> Spline<T, V> {
match cp0.interpolation {
Interpolation::Step(threshold) => {
let cp1 = &keys[i+1];
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
Some(if nt < threshold { cp0.value } else { cp1.value })
let value = if nt < threshold { cp0.value } else { cp1.value };
Some((value, cp0, Some(cp1)))
}
Interpolation::Linear => {
let cp1 = &keys[i+1];
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
Some((value, cp0, Some(cp1)))
}
Interpolation::Cosine => {
let two_t = T::one() + T::one();
let cp1 = &keys[i+1];
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
Some((value, cp0, Some(cp1)))
}
Interpolation::CatmullRom => {
@ -120,18 +125,45 @@ impl<T, V> Spline<T, V> {
if i == 0 || i >= keys.len() - 2 {
None
} else {
let cp1 = &keys[i+1];
let cpm0 = &keys[i-1];
let cpm1 = &keys[i+2];
let cp1 = &keys[i + 1];
let cpm0 = &keys[i - 1];
let cpm1 = &keys[i + 2];
let nt = normalize_time(t, cp0, cp1);
let value = Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt);
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
Some((value, cp0, Some(cp1)))
}
}
Interpolation::Bezier(u) => {
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let value =
if let Interpolation::Bezier(v) = cp1.interpolation {
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
} else {
Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt)
};
Some((value, cp0, Some(cp1)))
}
Interpolation::__NonExhaustive => unreachable!(),
}
}
/// Sample a spline at a given time with clamping.
/// Sample a spline at a given time.
///
pub fn sample(&self, t: T) -> Option<V>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
self.sample_with_key(t).map(|(v, _, _)| v)
}
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
/// associated key.
///
/// # Return
///
@ -141,22 +173,23 @@ impl<T, V> Spline<T, V> {
/// # Error
///
/// This function returns [`None`] if you have no key.
pub fn clamped_sample(&self, t: T) -> Option<V>
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
if self.0.is_empty() {
return None;
}
self.sample(t).or_else(move || {
self.sample_with_key(t).or_else(move || {
let first = self.0.first().unwrap();
if t <= first.t {
Some(first.value)
let second = if self.0.len() >= 2 { Some(&self.0[1]) } else { None };
Some((first.value, &first, second))
} else {
let last = self.0.last().unwrap();
if t >= last.t {
Some(last.value)
Some((last.value, &last, None))
} else {
None
}
@ -164,6 +197,13 @@ impl<T, V> Spline<T, V> {
})
}
/// Sample a spline at a given time with clamping.
pub fn clamped_sample(&self, t: T) -> Option<V>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
}
/// Add a key into the spline.
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
self.0.push(key);
@ -178,6 +218,54 @@ impl<T, V> Spline<T, V> {
Some(self.0.remove(index))
}
}
/// Update a key and return the key already present.
///
/// The key is updated — if present — with the provided function.
///
/// # Notes
///
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
/// your key. If you just want to change the interpolation mode or the carried value, consider
/// using the [`Spline::get_mut`] method instead as it will be way faster.
pub fn replace<F>(
&mut self,
index: usize,
f: F
) -> Option<Key<T, V>>
where
F: FnOnce(&Key<T, V>) -> Key<T, V>,
T: PartialOrd
{
let key = self.remove(index)?;
self.add(f(&key));
Some(key)
}
/// Get a key at a given index.
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
self.0.get(index)
}
/// Mutably get a key at a given index.
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
self.0.get_mut(index).map(|key| KeyMut {
value: &mut key.value,
interpolation: &mut key.interpolation
})
}
}
/// A mutable [`Key`].
///
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
/// want to achieve this, youre advised to use [`Spline::replace`].
pub struct KeyMut<'a, T, V> {
/// Carried value.
pub value: &'a mut V,
/// Interpolation mode to use for that key.
pub interpolation: &'a mut Interpolation<T, V>,
}
// Normalize a time ([0;1]) given two control points.

View File

@ -16,6 +16,8 @@ fn step_interpolation_f32() {
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
}
#[test]
@ -31,6 +33,8 @@ fn step_interpolation_f64() {
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
}
#[test]