Compare commits
9 Commits
Author | SHA1 | Date | |
---|---|---|---|
425433cd5b | |||
cc0a9580ab | |||
05e131baad | |||
0a15fb48a3 | |||
ebc6e16aef | |||
cae599e0d7 | |||
336c1c7e80 | |||
ea29e08836 | |||
3ab98420c8 |
6
.github/workflows/ci.yaml
vendored
6
.github/workflows/ci.yaml
vendored
@ -26,14 +26,18 @@ jobs:
|
||||
cargo test --verbose --all-features
|
||||
|
||||
build-macosx:
|
||||
runs-on: macosx-latest
|
||||
runs-on: macOS-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Rust requirements
|
||||
run: curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y --profile=minimal
|
||||
- name: Build
|
||||
run: |
|
||||
. ~/.cargo/env
|
||||
cargo build --verbose --all-features
|
||||
- name: Test
|
||||
run: |
|
||||
. ~/.cargo/env
|
||||
cargo test --verbose --all-features
|
||||
|
||||
check-readme:
|
||||
|
30
CHANGELOG.md
30
CHANGELOG.md
@ -1,6 +1,34 @@
|
||||
# 2.2.0
|
||||
|
||||
> Mon Oct 17th 2019
|
||||
|
||||
- Add `Interpolation::StrokeBezier`.
|
||||
|
||||
# 2.1.1
|
||||
|
||||
> Mon Oct 17th 2019
|
||||
|
||||
- Licensing support in the crate.
|
||||
|
||||
# 2.1
|
||||
|
||||
> Mon Sep 30th 2019
|
||||
|
||||
- Add `Spline::sample_with_key` and `Spline::clamped_sample_with_key`. Those methods allow one to
|
||||
perform the regular `Spline::sample` and `Spline::clamped_sample` but also retreive the base
|
||||
key that was used to perform the interpolation. The key can be inspected to get the base time,
|
||||
interpolation, etc. The next key is also returned, if present.
|
||||
|
||||
# 2.0.1
|
||||
|
||||
> Tue Sep 24th 2019
|
||||
|
||||
- Fix the cubic Bézier curve interpolation. The “output” tangent is now taken by mirroring the
|
||||
next key’s tangent around its control point.
|
||||
|
||||
# 2.0.0
|
||||
|
||||
> Mon Sep 24th 2019
|
||||
> Mon Sep 23rd 2019
|
||||
|
||||
## Major changes
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "splines"
|
||||
version = "2.0.0"
|
||||
version = "2.2.0"
|
||||
license = "BSD-3-Clause"
|
||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||
description = "Spline interpolation made easy"
|
||||
|
30
LICENSE
Normal file
30
LICENSE
Normal file
@ -0,0 +1,30 @@
|
||||
Copyright (c) 2019, Dimitri Sabadie <dimitri.sabadie@gmail.com>
|
||||
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following
|
||||
disclaimer in the documentation and/or other materials provided
|
||||
with the distribution.
|
||||
|
||||
* Neither the name of Dimitri Sabadie <dimitri.sabadie@gmail.com> nor the names of other
|
||||
contributors may be used to endorse or promote products derived
|
||||
from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
@ -240,7 +240,10 @@ where V: Linear<T>,
|
||||
let one_t_3 = one_t_2 * one_t;
|
||||
let three = T::one() + T::one() + T::one();
|
||||
|
||||
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
|
||||
// mirror the “output” tangent based on the next key “input” tangent
|
||||
let v_ = b + b - v;
|
||||
|
||||
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v_.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
|
||||
}
|
||||
|
||||
macro_rules! impl_interpolate_simple {
|
||||
|
@ -40,6 +40,18 @@ pub enum Interpolation<T, V> {
|
||||
/// point and the current control point’s associated point. This is called _quadratic Bézer
|
||||
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
||||
Bezier(V),
|
||||
/// A special Bézier interpolation using an _input tangent_ and an _output tangent_.
|
||||
///
|
||||
/// With this kind of interpolation, a control point has an input tangent, which has the same role
|
||||
/// as the one defined by [`Interpolation::Bezier`], and an output tangent, which has the same
|
||||
/// role defined by the next key’s [`Interpolation::Bezier`] if present, normally.
|
||||
///
|
||||
/// What it means is that instead of setting the output tangent as the next key’s Bézier tangent,
|
||||
/// this interpolation mode allows you to manually set the output tangent. That will yield more
|
||||
/// control on the tangents but might generate discontinuities. Use with care.
|
||||
///
|
||||
/// Stroke Bézier interpolation is always a cubic Bézier interpolation by default.
|
||||
StrokeBezier(V, V),
|
||||
#[doc(hidden)]
|
||||
__NonExhaustive
|
||||
}
|
||||
|
@ -69,7 +69,8 @@ impl<T, V> Spline<T, V> {
|
||||
self.0.is_empty()
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time.
|
||||
/// Sample a spline at a given time, returning the interpolated value along with its associated
|
||||
/// key.
|
||||
///
|
||||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||||
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
||||
@ -83,8 +84,7 @@ impl<T, V> Spline<T, V> {
|
||||
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
|
||||
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
||||
/// the sampling.
|
||||
///
|
||||
pub fn sample(&self, t: T) -> Option<V>
|
||||
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
let keys = &self.0;
|
||||
@ -95,14 +95,17 @@ impl<T, V> Spline<T, V> {
|
||||
Interpolation::Step(threshold) => {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
Some(if nt < threshold { cp0.value } else { cp1.value })
|
||||
let value = if nt < threshold { cp0.value } else { cp1.value };
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::Linear => {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::Cosine => {
|
||||
@ -110,8 +113,9 @@ impl<T, V> Spline<T, V> {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
||||
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::CatmullRom => {
|
||||
@ -124,8 +128,9 @@ impl<T, V> Spline<T, V> {
|
||||
let cpm0 = &keys[i - 1];
|
||||
let cpm1 = &keys[i + 2];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt);
|
||||
|
||||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
}
|
||||
|
||||
@ -134,23 +139,38 @@ impl<T, V> Spline<T, V> {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
|
||||
if let Interpolation::Bezier(v) = cp1.interpolation {
|
||||
Some(Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt))
|
||||
//let one_nt = T::one() - nt;
|
||||
//let one_nt_2 = one_nt * one_nt;
|
||||
//let one_nt_3 = one_nt_2 * one_nt;
|
||||
//let three_one_nt_2 = one_nt_2 + one_nt_2 + one_nt_2; // one_nt_2 * 3
|
||||
//let r = cp0.value * one_nt_3;
|
||||
} else {
|
||||
Some(Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt))
|
||||
}
|
||||
let value =
|
||||
if let Interpolation::Bezier(v) = cp1.interpolation {
|
||||
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
|
||||
} else {
|
||||
Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt)
|
||||
};
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::StrokeBezier(input, output) => {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = Interpolate::cubic_bezier(cp0.value, input, output, cp1.value, nt);
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::__NonExhaustive => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping.
|
||||
/// Sample a spline at a given time.
|
||||
///
|
||||
pub fn sample(&self, t: T) -> Option<V>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
self.sample_with_key(t).map(|(v, _, _)| v)
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
|
||||
/// associated key.
|
||||
///
|
||||
/// # Return
|
||||
///
|
||||
@ -160,22 +180,23 @@ impl<T, V> Spline<T, V> {
|
||||
/// # Error
|
||||
///
|
||||
/// This function returns [`None`] if you have no key.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
if self.0.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
self.sample(t).or_else(move || {
|
||||
self.sample_with_key(t).or_else(move || {
|
||||
let first = self.0.first().unwrap();
|
||||
if t <= first.t {
|
||||
Some(first.value)
|
||||
let second = if self.0.len() >= 2 { Some(&self.0[1]) } else { None };
|
||||
Some((first.value, &first, second))
|
||||
} else {
|
||||
let last = self.0.last().unwrap();
|
||||
|
||||
if t >= last.t {
|
||||
Some(last.value)
|
||||
Some((last.value, &last, None))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
@ -183,6 +204,13 @@ impl<T, V> Spline<T, V> {
|
||||
})
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
|
||||
}
|
||||
|
||||
/// Add a key into the spline.
|
||||
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
|
||||
self.0.push(key);
|
||||
|
@ -16,6 +16,8 @@ fn step_interpolation_f32() {
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -31,6 +33,8 @@ fn step_interpolation_f64() {
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
Reference in New Issue
Block a user