5 Commits
2.0 ... 2.1.0

Author SHA1 Message Date
ebc6e16aef Merge pull request #32 from phaazon/feature/sample-key
Add Spline::sample_with_key and Spline::clamped_sample_with_key.
2019-09-30 12:59:11 +02:00
cae599e0d7 Add Spline::sample_with_key and Spline::clamped_sample_with_key. 2019-09-30 12:49:36 +02:00
336c1c7e80 Merge pull request #31 from phaazon/fix/bezier-interpolation
Fix/bezier interpolation
2019-09-24 21:36:04 +02:00
ea29e08836 Fix cubic Bézier interpolation. 2019-09-24 21:31:18 +02:00
3ab98420c8 Remove unneeded comments. 2019-09-24 17:40:01 +02:00
5 changed files with 68 additions and 24 deletions

View File

@ -1,6 +1,22 @@
# 2.1
> Mon Sep 30th 2019
- Add `Spline::sample_with_key` and `Spline::clamped_sample_with_key`. Those methods allow one to
perform the regular `Spline::sample` and `Spline::clamped_sample` but also retreive the base
key that was used to perform the interpolation. The key can be inspected to get the base time,
interpolation, etc. The next key is also returned, if present.
# 2.0.1
> Tue Sep 24th 2019
- Fix the cubic Bézier curve interpolation. The “output” tangent is now taken by mirroring the
next keys tangent around its control point.
# 2.0.0
> Mon Sep 24th 2019
> Mon Sep 23rd 2019
## Major changes

View File

@ -1,6 +1,6 @@
[package]
name = "splines"
version = "2.0.0"
version = "2.1.0"
license = "BSD-3-Clause"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
description = "Spline interpolation made easy"

View File

@ -240,7 +240,10 @@ where V: Linear<T>,
let one_t_3 = one_t_2 * one_t;
let three = T::one() + T::one() + T::one();
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
// mirror the “output” tangent based on the next key “input” tangent
let v_ = b + b - v;
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v_.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
}
macro_rules! impl_interpolate_simple {

View File

@ -69,7 +69,8 @@ impl<T, V> Spline<T, V> {
self.0.is_empty()
}
/// Sample a spline at a given time.
/// Sample a spline at a given time, returning the interpolated value along with its associated
/// key.
///
/// The current implementation, based on immutability, cannot perform in constant time. This means
/// that samplings processing complexity is currently *O(log n)*. Its possible to achieve *O(1)*
@ -84,7 +85,7 @@ impl<T, V> Spline<T, V> {
/// youre near the beginning of the spline or its end, ensure you have enough keys around to make
/// the sampling.
///
pub fn sample(&self, t: T) -> Option<V>
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
let keys = &self.0;
@ -95,14 +96,17 @@ impl<T, V> Spline<T, V> {
Interpolation::Step(threshold) => {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
Some(if nt < threshold { cp0.value } else { cp1.value })
let value = if nt < threshold { cp0.value } else { cp1.value };
Some((value, cp0, Some(cp1)))
}
Interpolation::Linear => {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
Some((value, cp0, Some(cp1)))
}
Interpolation::Cosine => {
@ -110,8 +114,9 @@ impl<T, V> Spline<T, V> {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
Some((value, cp0, Some(cp1)))
}
Interpolation::CatmullRom => {
@ -124,8 +129,9 @@ impl<T, V> Spline<T, V> {
let cpm0 = &keys[i - 1];
let cpm1 = &keys[i + 2];
let nt = normalize_time(t, cp0, cp1);
let value = Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt);
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
Some((value, cp0, Some(cp1)))
}
}
@ -134,23 +140,30 @@ impl<T, V> Spline<T, V> {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
if let Interpolation::Bezier(v) = cp1.interpolation {
Some(Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt))
//let one_nt = T::one() - nt;
//let one_nt_2 = one_nt * one_nt;
//let one_nt_3 = one_nt_2 * one_nt;
//let three_one_nt_2 = one_nt_2 + one_nt_2 + one_nt_2; // one_nt_2 * 3
//let r = cp0.value * one_nt_3;
} else {
Some(Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt))
}
let value =
if let Interpolation::Bezier(v) = cp1.interpolation {
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
} else {
Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt)
};
Some((value, cp0, Some(cp1)))
}
Interpolation::__NonExhaustive => unreachable!(),
}
}
/// Sample a spline at a given time with clamping.
/// Sample a spline at a given time.
///
pub fn sample(&self, t: T) -> Option<V>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
self.sample_with_key(t).map(|(v, _, _)| v)
}
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
/// associated key.
///
/// # Return
///
@ -160,22 +173,23 @@ impl<T, V> Spline<T, V> {
/// # Error
///
/// This function returns [`None`] if you have no key.
pub fn clamped_sample(&self, t: T) -> Option<V>
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
if self.0.is_empty() {
return None;
}
self.sample(t).or_else(move || {
self.sample_with_key(t).or_else(move || {
let first = self.0.first().unwrap();
if t <= first.t {
Some(first.value)
let second = if self.0.len() >= 2 { Some(&self.0[1]) } else { None };
Some((first.value, &first, second))
} else {
let last = self.0.last().unwrap();
if t >= last.t {
Some(last.value)
Some((last.value, &last, None))
} else {
None
}
@ -183,6 +197,13 @@ impl<T, V> Spline<T, V> {
})
}
/// Sample a spline at a given time with clamping.
pub fn clamped_sample(&self, t: T) -> Option<V>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
}
/// Add a key into the spline.
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
self.0.push(key);

View File

@ -16,6 +16,8 @@ fn step_interpolation_f32() {
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
}
#[test]
@ -31,6 +33,8 @@ fn step_interpolation_f64() {
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
}
#[test]