Compare commits
6 Commits
Author | SHA1 | Date | |
---|---|---|---|
425433cd5b | |||
cc0a9580ab | |||
05e131baad | |||
0a15fb48a3 | |||
ebc6e16aef | |||
cae599e0d7 |
6
.github/workflows/ci.yaml
vendored
6
.github/workflows/ci.yaml
vendored
@ -26,14 +26,18 @@ jobs:
|
|||||||
cargo test --verbose --all-features
|
cargo test --verbose --all-features
|
||||||
|
|
||||||
build-macosx:
|
build-macosx:
|
||||||
runs-on: macosx-latest
|
runs-on: macOS-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v1
|
- uses: actions/checkout@v1
|
||||||
|
- name: Rust requirements
|
||||||
|
run: curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y --profile=minimal
|
||||||
- name: Build
|
- name: Build
|
||||||
run: |
|
run: |
|
||||||
|
. ~/.cargo/env
|
||||||
cargo build --verbose --all-features
|
cargo build --verbose --all-features
|
||||||
- name: Test
|
- name: Test
|
||||||
run: |
|
run: |
|
||||||
|
. ~/.cargo/env
|
||||||
cargo test --verbose --all-features
|
cargo test --verbose --all-features
|
||||||
|
|
||||||
check-readme:
|
check-readme:
|
||||||
|
21
CHANGELOG.md
21
CHANGELOG.md
@ -1,3 +1,24 @@
|
|||||||
|
# 2.2.0
|
||||||
|
|
||||||
|
> Mon Oct 17th 2019
|
||||||
|
|
||||||
|
- Add `Interpolation::StrokeBezier`.
|
||||||
|
|
||||||
|
# 2.1.1
|
||||||
|
|
||||||
|
> Mon Oct 17th 2019
|
||||||
|
|
||||||
|
- Licensing support in the crate.
|
||||||
|
|
||||||
|
# 2.1
|
||||||
|
|
||||||
|
> Mon Sep 30th 2019
|
||||||
|
|
||||||
|
- Add `Spline::sample_with_key` and `Spline::clamped_sample_with_key`. Those methods allow one to
|
||||||
|
perform the regular `Spline::sample` and `Spline::clamped_sample` but also retreive the base
|
||||||
|
key that was used to perform the interpolation. The key can be inspected to get the base time,
|
||||||
|
interpolation, etc. The next key is also returned, if present.
|
||||||
|
|
||||||
# 2.0.1
|
# 2.0.1
|
||||||
|
|
||||||
> Tue Sep 24th 2019
|
> Tue Sep 24th 2019
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "splines"
|
name = "splines"
|
||||||
version = "2.0.1"
|
version = "2.2.0"
|
||||||
license = "BSD-3-Clause"
|
license = "BSD-3-Clause"
|
||||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||||
description = "Spline interpolation made easy"
|
description = "Spline interpolation made easy"
|
||||||
|
30
LICENSE
Normal file
30
LICENSE
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
Copyright (c) 2019, Dimitri Sabadie <dimitri.sabadie@gmail.com>
|
||||||
|
|
||||||
|
All rights reserved.
|
||||||
|
|
||||||
|
Redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions are met:
|
||||||
|
|
||||||
|
* Redistributions of source code must retain the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
* Redistributions in binary form must reproduce the above
|
||||||
|
copyright notice, this list of conditions and the following
|
||||||
|
disclaimer in the documentation and/or other materials provided
|
||||||
|
with the distribution.
|
||||||
|
|
||||||
|
* Neither the name of Dimitri Sabadie <dimitri.sabadie@gmail.com> nor the names of other
|
||||||
|
contributors may be used to endorse or promote products derived
|
||||||
|
from this software without specific prior written permission.
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||||
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||||
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||||
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||||
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||||
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||||
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
@ -40,6 +40,18 @@ pub enum Interpolation<T, V> {
|
|||||||
/// point and the current control point’s associated point. This is called _quadratic Bézer
|
/// point and the current control point’s associated point. This is called _quadratic Bézer
|
||||||
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
||||||
Bezier(V),
|
Bezier(V),
|
||||||
|
/// A special Bézier interpolation using an _input tangent_ and an _output tangent_.
|
||||||
|
///
|
||||||
|
/// With this kind of interpolation, a control point has an input tangent, which has the same role
|
||||||
|
/// as the one defined by [`Interpolation::Bezier`], and an output tangent, which has the same
|
||||||
|
/// role defined by the next key’s [`Interpolation::Bezier`] if present, normally.
|
||||||
|
///
|
||||||
|
/// What it means is that instead of setting the output tangent as the next key’s Bézier tangent,
|
||||||
|
/// this interpolation mode allows you to manually set the output tangent. That will yield more
|
||||||
|
/// control on the tangents but might generate discontinuities. Use with care.
|
||||||
|
///
|
||||||
|
/// Stroke Bézier interpolation is always a cubic Bézier interpolation by default.
|
||||||
|
StrokeBezier(V, V),
|
||||||
#[doc(hidden)]
|
#[doc(hidden)]
|
||||||
__NonExhaustive
|
__NonExhaustive
|
||||||
}
|
}
|
||||||
|
@ -69,7 +69,8 @@ impl<T, V> Spline<T, V> {
|
|||||||
self.0.is_empty()
|
self.0.is_empty()
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Sample a spline at a given time.
|
/// Sample a spline at a given time, returning the interpolated value along with its associated
|
||||||
|
/// key.
|
||||||
///
|
///
|
||||||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||||||
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
||||||
@ -83,8 +84,7 @@ impl<T, V> Spline<T, V> {
|
|||||||
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
|
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
|
||||||
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
||||||
/// the sampling.
|
/// the sampling.
|
||||||
///
|
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||||
pub fn sample(&self, t: T) -> Option<V>
|
|
||||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||||
V: Interpolate<T> {
|
V: Interpolate<T> {
|
||||||
let keys = &self.0;
|
let keys = &self.0;
|
||||||
@ -95,14 +95,17 @@ impl<T, V> Spline<T, V> {
|
|||||||
Interpolation::Step(threshold) => {
|
Interpolation::Step(threshold) => {
|
||||||
let cp1 = &keys[i + 1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
Some(if nt < threshold { cp0.value } else { cp1.value })
|
let value = if nt < threshold { cp0.value } else { cp1.value };
|
||||||
|
|
||||||
|
Some((value, cp0, Some(cp1)))
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::Linear => {
|
Interpolation::Linear => {
|
||||||
let cp1 = &keys[i + 1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
|
||||||
|
|
||||||
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
Some((value, cp0, Some(cp1)))
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::Cosine => {
|
Interpolation::Cosine => {
|
||||||
@ -110,8 +113,9 @@ impl<T, V> Spline<T, V> {
|
|||||||
let cp1 = &keys[i + 1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
||||||
|
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
|
||||||
|
|
||||||
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
Some((value, cp0, Some(cp1)))
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::CatmullRom => {
|
Interpolation::CatmullRom => {
|
||||||
@ -124,8 +128,9 @@ impl<T, V> Spline<T, V> {
|
|||||||
let cpm0 = &keys[i - 1];
|
let cpm0 = &keys[i - 1];
|
||||||
let cpm1 = &keys[i + 2];
|
let cpm1 = &keys[i + 2];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
let value = Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt);
|
||||||
|
|
||||||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
Some((value, cp0, Some(cp1)))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -134,18 +139,38 @@ impl<T, V> Spline<T, V> {
|
|||||||
let cp1 = &keys[i + 1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
|
||||||
|
let value =
|
||||||
if let Interpolation::Bezier(v) = cp1.interpolation {
|
if let Interpolation::Bezier(v) = cp1.interpolation {
|
||||||
Some(Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt))
|
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
|
||||||
} else {
|
} else {
|
||||||
Some(Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt))
|
Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt)
|
||||||
|
};
|
||||||
|
|
||||||
|
Some((value, cp0, Some(cp1)))
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Interpolation::StrokeBezier(input, output) => {
|
||||||
|
let cp1 = &keys[i + 1];
|
||||||
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
let value = Interpolate::cubic_bezier(cp0.value, input, output, cp1.value, nt);
|
||||||
|
|
||||||
|
Some((value, cp0, Some(cp1)))
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::__NonExhaustive => unreachable!(),
|
Interpolation::__NonExhaustive => unreachable!(),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Sample a spline at a given time with clamping.
|
/// Sample a spline at a given time.
|
||||||
|
///
|
||||||
|
pub fn sample(&self, t: T) -> Option<V>
|
||||||
|
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||||
|
V: Interpolate<T> {
|
||||||
|
self.sample_with_key(t).map(|(v, _, _)| v)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
|
||||||
|
/// associated key.
|
||||||
///
|
///
|
||||||
/// # Return
|
/// # Return
|
||||||
///
|
///
|
||||||
@ -155,22 +180,23 @@ impl<T, V> Spline<T, V> {
|
|||||||
/// # Error
|
/// # Error
|
||||||
///
|
///
|
||||||
/// This function returns [`None`] if you have no key.
|
/// This function returns [`None`] if you have no key.
|
||||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||||
V: Interpolate<T> {
|
V: Interpolate<T> {
|
||||||
if self.0.is_empty() {
|
if self.0.is_empty() {
|
||||||
return None;
|
return None;
|
||||||
}
|
}
|
||||||
|
|
||||||
self.sample(t).or_else(move || {
|
self.sample_with_key(t).or_else(move || {
|
||||||
let first = self.0.first().unwrap();
|
let first = self.0.first().unwrap();
|
||||||
if t <= first.t {
|
if t <= first.t {
|
||||||
Some(first.value)
|
let second = if self.0.len() >= 2 { Some(&self.0[1]) } else { None };
|
||||||
|
Some((first.value, &first, second))
|
||||||
} else {
|
} else {
|
||||||
let last = self.0.last().unwrap();
|
let last = self.0.last().unwrap();
|
||||||
|
|
||||||
if t >= last.t {
|
if t >= last.t {
|
||||||
Some(last.value)
|
Some((last.value, &last, None))
|
||||||
} else {
|
} else {
|
||||||
None
|
None
|
||||||
}
|
}
|
||||||
@ -178,6 +204,13 @@ impl<T, V> Spline<T, V> {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Sample a spline at a given time with clamping.
|
||||||
|
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||||
|
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||||
|
V: Interpolate<T> {
|
||||||
|
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
|
||||||
|
}
|
||||||
|
|
||||||
/// Add a key into the spline.
|
/// Add a key into the spline.
|
||||||
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
|
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
|
||||||
self.0.push(key);
|
self.0.push(key);
|
||||||
|
@ -16,6 +16,8 @@ fn step_interpolation_f32() {
|
|||||||
assert_eq!(spline.sample(0.9), Some(10.));
|
assert_eq!(spline.sample(0.9), Some(10.));
|
||||||
assert_eq!(spline.sample(1.), None);
|
assert_eq!(spline.sample(1.), None);
|
||||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||||
|
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||||
|
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
@ -31,6 +33,8 @@ fn step_interpolation_f64() {
|
|||||||
assert_eq!(spline.sample(0.9), Some(10.));
|
assert_eq!(spline.sample(0.9), Some(10.));
|
||||||
assert_eq!(spline.sample(1.), None);
|
assert_eq!(spline.sample(1.), None);
|
||||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||||
|
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||||
|
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
|
Reference in New Issue
Block a user