4 Commits
2.0.1 ... 2.1.1

Author SHA1 Message Date
05e131baad 2.1.1 2019-10-17 01:49:34 +02:00
0a15fb48a3 Add missing LICENSE file. 2019-10-17 01:45:53 +02:00
ebc6e16aef Merge pull request #32 from phaazon/feature/sample-key
Add Spline::sample_with_key and Spline::clamped_sample_with_key.
2019-09-30 12:59:11 +02:00
cae599e0d7 Add Spline::sample_with_key and Spline::clamped_sample_with_key. 2019-09-30 12:49:36 +02:00
5 changed files with 86 additions and 17 deletions

View File

@ -1,3 +1,12 @@
# 2.1
> Mon Sep 30th 2019
- Add `Spline::sample_with_key` and `Spline::clamped_sample_with_key`. Those methods allow one to
perform the regular `Spline::sample` and `Spline::clamped_sample` but also retreive the base
key that was used to perform the interpolation. The key can be inspected to get the base time,
interpolation, etc. The next key is also returned, if present.
# 2.0.1
> Tue Sep 24th 2019

View File

@ -1,6 +1,6 @@
[package]
name = "splines"
version = "2.0.1"
version = "2.1.1"
license = "BSD-3-Clause"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
description = "Spline interpolation made easy"

30
LICENSE Normal file
View File

@ -0,0 +1,30 @@
Copyright (c) 2019, Dimitri Sabadie <dimitri.sabadie@gmail.com>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of Dimitri Sabadie <dimitri.sabadie@gmail.com> nor the names of other
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

View File

@ -69,7 +69,8 @@ impl<T, V> Spline<T, V> {
self.0.is_empty()
}
/// Sample a spline at a given time.
/// Sample a spline at a given time, returning the interpolated value along with its associated
/// key.
///
/// The current implementation, based on immutability, cannot perform in constant time. This means
/// that samplings processing complexity is currently *O(log n)*. Its possible to achieve *O(1)*
@ -84,7 +85,7 @@ impl<T, V> Spline<T, V> {
/// youre near the beginning of the spline or its end, ensure you have enough keys around to make
/// the sampling.
///
pub fn sample(&self, t: T) -> Option<V>
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
let keys = &self.0;
@ -95,14 +96,17 @@ impl<T, V> Spline<T, V> {
Interpolation::Step(threshold) => {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
Some(if nt < threshold { cp0.value } else { cp1.value })
let value = if nt < threshold { cp0.value } else { cp1.value };
Some((value, cp0, Some(cp1)))
}
Interpolation::Linear => {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
Some((value, cp0, Some(cp1)))
}
Interpolation::Cosine => {
@ -110,8 +114,9 @@ impl<T, V> Spline<T, V> {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
Some((value, cp0, Some(cp1)))
}
Interpolation::CatmullRom => {
@ -124,8 +129,9 @@ impl<T, V> Spline<T, V> {
let cpm0 = &keys[i - 1];
let cpm1 = &keys[i + 2];
let nt = normalize_time(t, cp0, cp1);
let value = Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt);
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
Some((value, cp0, Some(cp1)))
}
}
@ -134,18 +140,30 @@ impl<T, V> Spline<T, V> {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
if let Interpolation::Bezier(v) = cp1.interpolation {
Some(Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt))
} else {
Some(Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt))
}
let value =
if let Interpolation::Bezier(v) = cp1.interpolation {
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
} else {
Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt)
};
Some((value, cp0, Some(cp1)))
}
Interpolation::__NonExhaustive => unreachable!(),
}
}
/// Sample a spline at a given time with clamping.
/// Sample a spline at a given time.
///
pub fn sample(&self, t: T) -> Option<V>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
self.sample_with_key(t).map(|(v, _, _)| v)
}
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
/// associated key.
///
/// # Return
///
@ -155,22 +173,23 @@ impl<T, V> Spline<T, V> {
/// # Error
///
/// This function returns [`None`] if you have no key.
pub fn clamped_sample(&self, t: T) -> Option<V>
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
if self.0.is_empty() {
return None;
}
self.sample(t).or_else(move || {
self.sample_with_key(t).or_else(move || {
let first = self.0.first().unwrap();
if t <= first.t {
Some(first.value)
let second = if self.0.len() >= 2 { Some(&self.0[1]) } else { None };
Some((first.value, &first, second))
} else {
let last = self.0.last().unwrap();
if t >= last.t {
Some(last.value)
Some((last.value, &last, None))
} else {
None
}
@ -178,6 +197,13 @@ impl<T, V> Spline<T, V> {
})
}
/// Sample a spline at a given time with clamping.
pub fn clamped_sample(&self, t: T) -> Option<V>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
}
/// Add a key into the spline.
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
self.0.push(key);

View File

@ -16,6 +16,8 @@ fn step_interpolation_f32() {
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
}
#[test]
@ -31,6 +33,8 @@ fn step_interpolation_f64() {
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
}
#[test]