Compare commits

...

100 Commits

Author SHA1 Message Date
cf13f70ea9 stm32/test: add stm32f446 (board not in HIL rig yet) 2023-11-27 00:38:57 +01:00
6bdacb4f69 stm32/sdmmc: use unwrap to ensure panics get printed to defmt. 2023-11-27 00:35:41 +01:00
ff3baf1e90 Merge pull request #2220 from jamesmunns/patch-2
Minor readme typo
2023-11-25 22:13:34 +00:00
d5dcbadbbe Minor readme typo 2023-11-25 22:31:03 +01:00
0ad0d27150 Merge pull request #2219 from embassy-rs/no-concat-bytes
cyw43: remove feature(concat_bytes).
2023-11-25 00:09:02 +00:00
03d500f548 cyw43: remove feature(concat_bytes). 2023-11-25 01:06:43 +01:00
8b46343b34 Merge pull request #2199 from adamgreig/stm32-dac
STM32 DAC: update to new PAC, combine ch1/ch2, fix trigger selection
2023-11-24 23:51:07 +00:00
a3ea01473a stm32: fix dac trait 2023-11-25 00:30:30 +01:00
cf84c8bfd1 WIP: use generated metapac from corresponding PR for CI 2023-11-25 00:30:29 +01:00
09d7950313 STM32 DAC: Rework DAC driver, support all families. 2023-11-25 00:29:45 +01:00
267cbaebe6 STM32 DAC: Disable circular writes with GPDMA as it doesn't yet support circular transfers 2023-11-25 00:29:45 +01:00
31fc337e2f STM32 DAC: Swap to new TSEL enum entirely in-HAL 2023-11-25 00:29:45 +01:00
135f350020 STM32 DAC: Use new Mode enum for setting channel mode 2023-11-25 00:29:45 +01:00
897663e023 STM32: Add cfg to differentiate L4 and L4+ families 2023-11-25 00:29:45 +01:00
2218d30c80 STM32: Remove vestigal build.rs cfgs, add new flashsize_X and package_X cfgs, use in F3 RCC 2023-11-25 00:29:45 +01:00
f5c9e3baa6 Merge pull request #2200 from barnabywalters/asynci2cv1
Implemented async I2C for v1
2023-11-24 23:08:47 +00:00
47bac9df70 Merge pull request #2216 from embassy-rs/stable
executor: add support for main/task macros in stable Rust
2023-11-24 22:57:46 +00:00
3efc3eee57 stm32/i2c: implement async i2c v1. 2023-11-24 23:55:46 +01:00
bc65b8f7ec stm32/i2c: add async, dual interrupt scaffolding. 2023-11-24 23:55:45 +01:00
78f8e6112a Merge pull request #2217 from embassy-rs/no-try
embassy-embedded-hal: don't use feature(try_blocks).
2023-11-24 22:55:02 +00:00
996c3c1f7e executor: make task arena size configurable. 2023-11-24 23:52:09 +01:00
171cdb94c7 executor: add support for main/task macros in stable (allocates tasks in an arena) 2023-11-24 23:52:09 +01:00
1fbc150fd6 executor: add some tests. 2023-11-24 23:52:09 +01:00
259cf6192b executor: Remove non-functional rtos-trace-interrupt. 2023-11-24 23:52:09 +01:00
5528c33649 embassy-embedded-hal: don't use feature(try_blocks). 2023-11-24 18:44:55 +01:00
e8ff5a2baf Merge pull request #2215 from andresv/stm32-allow-eha-without-time
stm32 i2c: allow EHA traits without time feature
2023-11-24 15:34:44 +00:00
4f8c79c911 stm32 i2c: allow EHA traits without time feature 2023-11-24 15:56:19 +02:00
738971938a Merge pull request #2214 from aspizu/patch-1
add faq for deploying to RP2040 using elf2uf2-rs
2023-11-24 12:01:38 +00:00
jan
dec7c1a28b add faq for deploying to RP2040 using elf2uf2-rs 2023-11-24 04:10:13 +05:30
e0727fe1f6 Merge pull request #2211 from embassy-rs/cache-lockfiles
ci: cache lockfiles
2023-11-21 16:37:47 +00:00
ba9cc102e2 ci: cache lockfiles
- Removes the slow "updating crates.io index, updating git" at start of the job.
- Avoids CI being randomly slower if a widely-used dep (like serde) gets bumped causing rebuilding everything.
2023-11-21 17:33:07 +01:00
32b59148a8 Merge pull request #2210 from embassy-rs/lulf-patch-1
fix: faq.adoc syntax
2023-11-21 15:04:43 +00:00
bd2e6b0422 Update faq.adoc 2023-11-21 16:01:46 +01:00
85059f693b Merge pull request #2209 from bugadani/faq
Direct the ESP32 users towards esp-hal
2023-11-21 15:54:04 +01:00
c211d51c06 Add note for Xtensa 2023-11-21 15:53:30 +01:00
7f1fd199bb Merge pull request #2207 from mickvangelderen/split-can-bus-2
Split can bus 2
2023-11-21 14:45:10 +00:00
5ddd2cf9a6 Merge pull request #2208 from jamesmunns/add-faq
Add FAQ with one question from chat
2023-11-21 14:42:28 +00:00
88f893da45 Format 2023-11-21 15:40:07 +01:00
aedd41eac4 Add FAQ with one question from chat 2023-11-21 15:38:33 +01:00
19ba7da3fd Rename _flush* methods 2023-11-21 15:37:38 +01:00
06a83c0f89 Refactor bxcan split. 2023-11-21 15:34:34 +01:00
766ec77ec5 Merge pull request #2198 from adamgreig/stm32-opamp
STM32: Don't enable opamps in new(), wait until configured
2023-11-20 22:47:19 +00:00
d1af696605 STM32 opamp: use impl Peripheral instead of directly taking pins 2023-11-20 21:35:05 +00:00
2386619f1f STM32: Disable opamp when OpAmpOutput is dropped, not when the parent OpAmp is dropped 2023-11-20 21:17:09 +00:00
382949e1ff Merge pull request #2197 from MabezDev/priority-channel
Priority channel
2023-11-20 11:34:33 +00:00
454828accb revert module changes, reexport heapless relevant items 2023-11-20 11:28:31 +00:00
cf82fa687c Merge pull request #2192 from RobertTDowling/stm32h7-adc-clock
stm32h7 ADC: Fix stalled clock in default h7 config
2023-11-20 00:00:25 +00:00
7f258cd3c4 PR feedback 2023-11-19 15:56:34 -08:00
3a939fb511 Merge pull request #2204 from Slowki/fix/igmp-compile-error
populate `medium` in DriverAdapter struct in IGMP code
2023-11-19 22:43:55 +00:00
b8e9e00b44 add build with igmp enabled to ci.sh 2023-11-19 17:26:16 -05:00
ff2f1049b1 Merge pull request #2139 from jamesmunns/patch-1
Update RP2040 memory.x
2023-11-19 22:17:27 +00:00
be17e1b363 populate medium in DriverAdapter struct in IGMP code 2023-11-19 17:11:56 -05:00
f3c77e59c4 Add docs, touch all linker fragments 2023-11-19 23:10:11 +01:00
30424d83ff Update RP2040 memory.x
The RP2040 has 264KiB of memory, not 256KiB.
2023-11-19 23:10:11 +01:00
e3be0b957a Merge pull request #2203 from embassy-rs/h7-sai4only-fix
stm32/sai: fix build on chips with only SAI4 (like stm32h725re), improve sync config.
2023-11-19 21:13:01 +00:00
5221705495 stm32/sai: fix build on chips with only SAI4 (like stm32h725re), improve sync config. 2023-11-19 22:06:05 +01:00
814e096d22 STM32: Don't enable opamps in new(), wait until configured. 2023-11-18 19:37:56 +00:00
5a60024af7 docs 2023-11-18 15:09:41 +00:00
f482a105b8 more clean up, refactor channel into module to share code 2023-11-18 15:01:12 +00:00
7589b5e13e reduce duplication further by sharing Dynamic sender/receiver 2023-11-18 14:56:29 +00:00
2efa73f431 docs and simple test for priority 2023-11-18 14:37:15 +00:00
270ec324b0 Reduce duplication, fix tests 2023-11-18 14:31:09 +00:00
ca0d02933b Priority channel using binary heap 2023-11-18 14:21:43 +00:00
5bc7557826 Merge pull request #2173 from andresv/expose-i2c-async-api-without-time
STM32 I2C: expose async API without needing "time" feature.
2023-11-17 23:47:46 +00:00
4947b13615 stm32h7 ADC: Fix stalled clock in default h7 config 2023-11-15 17:11:16 -08:00
006260fedd Merge pull request #2184 from sammko/cyw43-multicast-macs
cyw43: Add Control method to add multicast HW address
2023-11-16 00:09:15 +00:00
e3ee24017d cyw43: Add Control method to add multicast HW address 2023-11-16 00:05:13 +00:00
467b53076c Merge pull request #2189 from embassy-rs/executor-hax
executor: add faster ARM-specific impl.
2023-11-15 18:16:40 +00:00
27e6634c9d executor: add faster ARM-specific impl.
Does a wake+poll in 79 cycles in nrf52840.
2023-11-15 18:47:11 +01:00
1f9b649f80 executor: release v0.3.3 2023-11-15 18:44:01 +01:00
bef9b7a853 executor: remove atomic-polyfill. 2023-11-15 18:43:27 +01:00
50a983fd9b executor: add missing main macro reexport on xtensa. 2023-11-14 18:45:23 +01:00
7e5deae589 Merge pull request #2170 from korken89/fix/embassy-net-dns
Fix for embassy net dns entries not being extensible
2023-11-14 07:56:08 +00:00
a2c440ef8c Update changelog 2023-11-14 08:50:51 +01:00
fd670a9ae5 Use smoltcp constant in results from DNS 2023-11-14 08:50:51 +01:00
ef69f386ab Update smoltcp and fix errors from that 2023-11-14 08:50:51 +01:00
872f1ec4c2 Merge pull request #2183 from embassy-rs/buffereduarte-fix
nrf/buffered_uarte: fix missing hwfc enable.
2023-11-13 23:26:19 +00:00
6ccd8c051e nrf/buffered_uarte: add test for recovering from buffer full. 2023-11-14 00:22:30 +01:00
c46418f123 nrf/buffered_uarte: fix hang when buffer full due to PPI missing the endrx event.
Fixes #2181
2023-11-14 00:22:17 +01:00
19ff043acd nrf/buffered_uarte: fix missing hwfc enable. 2023-11-13 22:37:13 +01:00
ea99671729 Merge pull request #2180 from MaxiluxSystems/gpdma-drop-fix
stm32/gpdma: fix drop() to use documented method for aborting transfer
2023-11-13 16:53:50 +00:00
8eff749823 stm32/gpdma: fix drop() to use RM's method for aborting transfer
see e.g. STM32H503 RM section 15.4.4...

1. Write 1 into GPDMA_CxCR.SUSP
2. Poll GPDMA_CxSR.SUSPF until it is 1
3. Write 1 into GPDMA_CxCR.RESET (occurs upon next init, in new_inner())
2023-11-13 16:41:09 +00:00
cdcd3e26dd Merge pull request #2179 from t-moe/features/embassy-futures-bump
Bump embassy-futures 0.1.0 -> 0.1.1
2023-11-13 11:40:09 +00:00
18c1f9dd56 Bump embassy-futures 0.1.0 -> 0.1.1 2023-11-13 11:25:11 +01:00
ac7134ed0d Merge pull request #2178 from embassy-rs/rcc-no-spaghetti
stm32/rcc: unify f2 into f4/f7.
2023-11-13 01:08:27 +00:00
ace5221080 stm32/rcc: unify f2 into f4/f7. 2023-11-13 01:59:33 +01:00
2376b3bdfa stm32/rcc: fix pll enum naming on f4, f7. 2023-11-13 01:56:50 +01:00
f00e97a5f1 Merge pull request #2177 from embassy-rs/rcc-no-spaghetti
stm32/rcc: unify l0l1 and l4l5.
2023-11-13 00:46:43 +00:00
066dc297ed stm32/rcc: unify l0l1 and l4l5. 2023-11-13 01:05:07 +01:00
4fe344ebc0 stm32/rcc: consistent casing and naming for PLL enums. 2023-11-13 00:52:01 +01:00
0f2208c0af stm32 i2c: remove mod dummy_time 2023-11-11 14:29:24 +02:00
6c42885d4a stm32 i2c: remove pub _timeout api 2023-11-11 14:05:58 +02:00
39c7371621 Merge pull request #2163 from embassy-rs/update-heapless
Update heapless to v0.8
2023-11-10 15:51:33 +00:00
4647df14b1 Update heapless to v0.8, embedded-nal-async to v0.7 2023-11-10 16:43:53 +01:00
3b33cc4691 i2c: expose async api without needing time
This exposes I2C async API without needing "time" feature. With "time" feature additional async API with timeouts is exposed.
2023-11-10 16:04:25 +02:00
b3367be9c8 Merge pull request #2161 from xoviat/low-power
add low power for g4
2023-11-09 01:16:02 +00:00
da4feb3693 Merge branch 'main' of github.com:embassy-rs/embassy into low-power 2023-11-08 19:13:12 -06:00
05a4bb3a4a rustfmt 2023-11-08 19:06:29 -06:00
4b4c28d875 stm32: add low power for g4 2023-11-08 19:04:20 -06:00
1977acdb11 Merge pull request #2164 from embassy-rs/msos-descriptor
usb: remove msos-descriptor feature.
2023-11-08 22:23:37 +00:00
168 changed files with 4526 additions and 2294 deletions

View File

@ -12,9 +12,19 @@ export CARGO_TARGET_DIR=/ci/cache/target
# used when pointing stm32-metapac to a CI-built one.
export CARGO_NET_GIT_FETCH_WITH_CLI=true
# Restore lockfiles
if [ -f /ci/cache/lockfiles.tar ]; then
echo Restoring lockfiles...
tar xf /ci/cache/lockfiles.tar
fi
hashtime restore /ci/cache/filetime.json || true
hashtime save /ci/cache/filetime.json
sed -i 's/channel.*/channel = "stable"/g' rust-toolchain.toml
./ci_stable.sh
# Save lockfiles
echo Saving lockfiles...
find . -type f -name Cargo.lock -exec tar -cf /ci/cache/lockfiles.tar '{}' \+

10
.github/ci/build.sh vendored
View File

@ -18,7 +18,17 @@ fi
# used when pointing stm32-metapac to a CI-built one.
export CARGO_NET_GIT_FETCH_WITH_CLI=true
# Restore lockfiles
if [ -f /ci/cache/lockfiles.tar ]; then
echo Restoring lockfiles...
tar xf /ci/cache/lockfiles.tar
fi
hashtime restore /ci/cache/filetime.json || true
hashtime save /ci/cache/filetime.json
./ci.sh
# Save lockfiles
echo Saving lockfiles...
find . -type f -name Cargo.lock -exec tar -cf /ci/cache/lockfiles.tar '{}' \+

3
.github/ci/test.sh vendored
View File

@ -15,6 +15,9 @@ export CARGO_NET_GIT_FETCH_WITH_CLI=true
hashtime restore /ci/cache/filetime.json || true
hashtime save /ci/cache/filetime.json
MIRIFLAGS=-Zmiri-ignore-leaks cargo miri test --manifest-path ./embassy-executor/Cargo.toml
MIRIFLAGS=-Zmiri-ignore-leaks cargo miri test --manifest-path ./embassy-executor/Cargo.toml --features nightly
cargo test --manifest-path ./embassy-sync/Cargo.toml
cargo test --manifest-path ./embassy-embedded-hal/Cargo.toml
cargo test --manifest-path ./embassy-hal-internal/Cargo.toml

5
ci.sh
View File

@ -38,6 +38,7 @@ cargo batch \
--- build --release --manifest-path embassy-sync/Cargo.toml --target thumbv6m-none-eabi --features nightly,defmt \
--- build --release --manifest-path embassy-time/Cargo.toml --target thumbv6m-none-eabi --features nightly,defmt,defmt-timestamp-uptime,tick-hz-32_768,generic-queue-8 \
--- build --release --manifest-path embassy-net/Cargo.toml --target thumbv7em-none-eabi --features defmt,tcp,udp,dns,proto-ipv4,medium-ethernet \
--- build --release --manifest-path embassy-net/Cargo.toml --target thumbv7em-none-eabi --features defmt,tcp,udp,dns,proto-ipv4,igmp,medium-ethernet \
--- build --release --manifest-path embassy-net/Cargo.toml --target thumbv7em-none-eabi --features defmt,tcp,udp,dns,dhcpv4,medium-ethernet \
--- build --release --manifest-path embassy-net/Cargo.toml --target thumbv7em-none-eabi --features defmt,tcp,udp,dns,dhcpv4,medium-ethernet,nightly,dhcpv4-hostname \
--- build --release --manifest-path embassy-net/Cargo.toml --target thumbv7em-none-eabi --features defmt,tcp,udp,dns,proto-ipv6,medium-ethernet \
@ -110,6 +111,7 @@ cargo batch \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32h753zi,defmt,exti,time-driver-any,unstable-traits,time \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32h735zg,defmt,exti,time-driver-any,unstable-traits,time \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32h755zi-cm7,defmt,exti,time-driver-any,unstable-traits,time \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32h725re,defmt,exti,time-driver-any,unstable-traits,time \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32h7b3ai,defmt,exti,time-driver-any,unstable-traits,time \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32l476vg,defmt,exti,time-driver-any,unstable-traits,time \
--- build --release --manifest-path embassy-stm32/Cargo.toml --target thumbv7em-none-eabi --features nightly,stm32l422cb,defmt,exti,time-driver-any,unstable-traits,time \
@ -188,6 +190,7 @@ cargo batch \
--- build --release --manifest-path examples/wasm/Cargo.toml --target wasm32-unknown-unknown --out-dir out/examples/wasm \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv7m-none-eabi --features stm32f103c8 --out-dir out/tests/stm32f103c8 \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv7em-none-eabi --features stm32f429zi --out-dir out/tests/stm32f429zi \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv7em-none-eabi --features stm32f446re --out-dir out/tests/stm32f446re \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv7em-none-eabi --features stm32g491re --out-dir out/tests/stm32g491re \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv6m-none-eabi --features stm32g071rb --out-dir out/tests/stm32g071rb \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv6m-none-eabi --features stm32c031c6 --out-dir out/tests/stm32c031c6 \
@ -218,6 +221,8 @@ cargo batch \
rm out/tests/stm32wb55rg/wpan_mac
rm out/tests/stm32wb55rg/wpan_ble
# not in CI yet.
rm -rf out/tests/stm32f446re
# unstable, I think it's running out of RAM?
rm out/tests/stm32f207zg/eth

View File

@ -1,4 +1,5 @@
use core::cmp::{max, min};
use core::iter::zip;
use embassy_net_driver_channel as ch;
use embassy_net_driver_channel::driver::{HardwareAddress, LinkState};
@ -16,6 +17,12 @@ pub struct Error {
pub status: u32,
}
#[derive(Debug)]
pub enum AddMulticastAddressError {
NotMulticast,
NoFreeSlots,
}
pub struct Control<'a> {
state_ch: ch::StateRunner<'a>,
events: &'a Events,
@ -316,6 +323,54 @@ impl<'a> Control<'a> {
self.set_iovar_u32x2("bss", 0, 1).await; // bss = BSS_UP
}
/// Add specified address to the list of hardware addresses the device
/// listens on. The address must be a Group address (I/G bit set). Up
/// to 10 addresses are supported by the firmware. Returns the number of
/// address slots filled after adding, or an error.
pub async fn add_multicast_address(&mut self, address: [u8; 6]) -> Result<usize, AddMulticastAddressError> {
// The firmware seems to ignore non-multicast addresses, so let's
// prevent the user from adding them and wasting space.
if address[0] & 0x01 != 1 {
return Err(AddMulticastAddressError::NotMulticast);
}
let mut buf = [0; 64];
self.get_iovar("mcast_list", &mut buf).await;
let n = u32::from_le_bytes(buf[..4].try_into().unwrap()) as usize;
let (used, free) = buf[4..].split_at_mut(n * 6);
if used.chunks(6).any(|a| a == address) {
return Ok(n);
}
if free.len() < 6 {
return Err(AddMulticastAddressError::NoFreeSlots);
}
free[..6].copy_from_slice(&address);
let n = n + 1;
buf[..4].copy_from_slice(&(n as u32).to_le_bytes());
self.set_iovar_v::<80>("mcast_list", &buf).await;
Ok(n)
}
/// Retrieve the list of configured multicast hardware addresses.
pub async fn list_mulistcast_addresses(&mut self, result: &mut [[u8; 6]; 10]) -> usize {
let mut buf = [0; 64];
self.get_iovar("mcast_list", &mut buf).await;
let n = u32::from_le_bytes(buf[..4].try_into().unwrap()) as usize;
let used = &buf[4..][..n * 6];
for (addr, output) in zip(used.chunks(6), result.iter_mut()) {
output.copy_from_slice(addr)
}
n
}
async fn set_iovar_u32x2(&mut self, name: &str, val1: u32, val2: u32) {
let mut buf = [0; 8];
buf[0..4].copy_from_slice(&val1.to_le_bytes());

View File

@ -1,6 +1,6 @@
#![no_std]
#![no_main]
#![feature(async_fn_in_trait, type_alias_impl_trait, concat_bytes)]
#![feature(async_fn_in_trait, type_alias_impl_trait)]
#![allow(stable_features, unknown_lints, async_fn_in_trait)]
#![deny(unused_must_use)]
@ -27,7 +27,7 @@ use ioctl::IoctlState;
use crate::bus::Bus;
pub use crate::bus::SpiBusCyw43;
pub use crate::control::{Control, Error as ControlError, Scanner};
pub use crate::control::{AddMulticastAddressError, Control, Error as ControlError, Scanner};
pub use crate::runner::Runner;
pub use crate::structs::BssInfo;

View File

@ -1,54 +1,48 @@
macro_rules! nvram {
($($s:literal,)*) => {
concat_bytes!($($s, b"\x00",)* b"\x00\x00")
};
}
pub static NVRAM: &'static [u8] = &*nvram!(
b"NVRAMRev=$Rev$",
b"manfid=0x2d0",
b"prodid=0x0727",
b"vendid=0x14e4",
b"devid=0x43e2",
b"boardtype=0x0887",
b"boardrev=0x1100",
b"boardnum=22",
b"macaddr=00:A0:50:b5:59:5e",
b"sromrev=11",
b"boardflags=0x00404001",
b"boardflags3=0x04000000",
b"xtalfreq=37400",
b"nocrc=1",
b"ag0=255",
b"aa2g=1",
b"ccode=ALL",
b"pa0itssit=0x20",
b"extpagain2g=0",
b"pa2ga0=-168,6649,-778",
b"AvVmid_c0=0x0,0xc8",
b"cckpwroffset0=5",
b"maxp2ga0=84",
b"txpwrbckof=6",
b"cckbw202gpo=0",
b"legofdmbw202gpo=0x66111111",
b"mcsbw202gpo=0x77711111",
b"propbw202gpo=0xdd",
b"ofdmdigfilttype=18",
b"ofdmdigfilttypebe=18",
b"papdmode=1",
b"papdvalidtest=1",
b"pacalidx2g=45",
b"papdepsoffset=-30",
b"papdendidx=58",
b"ltecxmux=0",
b"ltecxpadnum=0x0102",
b"ltecxfnsel=0x44",
b"ltecxgcigpio=0x01",
b"il0macaddr=00:90:4c:c5:12:38",
b"wl0id=0x431b",
b"deadman_to=0xffffffff",
b"muxenab=0x100",
b"spurconfig=0x3",
b"glitch_based_crsmin=1",
b"btc_mode=1",
);
pub static NVRAM: &'static [u8] = b"
NVRAMRev=$Rev$\x00\
manfid=0x2d0\x00\
prodid=0x0727\x00\
vendid=0x14e4\x00\
devid=0x43e2\x00\
boardtype=0x0887\x00\
boardrev=0x1100\x00\
boardnum=22\x00\
macaddr=00:A0:50:b5:59:5e\x00\
sromrev=11\x00\
boardflags=0x00404001\x00\
boardflags3=0x04000000\x00\
xtalfreq=37400\x00\
nocrc=1\x00\
ag0=255\x00\
aa2g=1\x00\
ccode=ALL\x00\
pa0itssit=0x20\x00\
extpagain2g=0\x00\
pa2ga0=-168,6649,-778\x00\
AvVmid_c0=0x0,0xc8\x00\
cckpwroffset0=5\x00\
maxp2ga0=84\x00\
txpwrbckof=6\x00\
cckbw202gpo=0\x00\
legofdmbw202gpo=0x66111111\x00\
mcsbw202gpo=0x77711111\x00\
propbw202gpo=0xdd\x00\
ofdmdigfilttype=18\x00\
ofdmdigfilttypebe=18\x00\
papdmode=1\x00\
papdvalidtest=1\x00\
pacalidx2g=45\x00\
papdepsoffset=-30\x00\
papdendidx=58\x00\
ltecxmux=0\x00\
ltecxpadnum=0x0102\x00\
ltecxfnsel=0x44\x00\
ltecxgcigpio=0x01\x00\
il0macaddr=00:90:4c:c5:12:38\x00\
wl0id=0x431b\x00\
deadman_to=0xffffffff\x00\
muxenab=0x100\x00\
spurconfig=0x3\x00\
glitch_based_crsmin=1\x00\
btc_mode=1\x00\
\x00";

View File

@ -10,3 +10,4 @@
* xref:examples.adoc[Examples]
* xref:developer.adoc[Developer]
** xref:developer_stm32.adoc[Developer: STM32]
* xref:faq.adoc[Frequently Asked Questions]

View File

@ -0,0 +1,38 @@
= Frequently Asked Questions
These are a list of unsorted, commonly asked questions and answers.
Please feel free to add items to link:https://github.com/embassy-rs/embassy/edit/main/docs/modules/ROOT/pages/faq.adoc[this page], especially if someone in the chat answered a question for you!
== How to deploy to RP2040 without a debugging probe.
Install link:https://github.com/JoNil/elf2uf2-rs[elf2uf2-rs] for converting the generated elf binary into a uf2 file.
Configure the runner to use this tool, add this to `.cargo/config.toml`:
[source,toml]
----
[target.'cfg(all(target_arch = "arm", target_os = "none"))']
runner = "elf2uf2-rs --deploy --serial --verbose"
----
The command-line parameters `--deploy` will detect your device and upload the binary, `--serial` starts a serial connection. See the documentation for more info.
== Missing main macro
If you see an error like this:
[source,rust]
----
#[embassy_executor::main]
| ^^^^ could not find `main` in `embassy_executor`
----
You are likely missing some features of the `embassy-executor` crate.
For Cortex-M targets, consider making sure that ALL of the following features are active in your `Cargo.toml` for the `embassy-executor` crate:
* `arch-cortex-m`
* `executor-thread`
* `nightly`
For Xtensa ESP32, consider using the executors and `#[main]` macro provided by your appropriate link:https://crates.io/crates/esp-hal-common[HAL crate].

View File

@ -1,5 +1,5 @@
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(feature = "nightly", feature(async_fn_in_trait, impl_trait_projections, try_blocks))]
#![cfg_attr(feature = "nightly", feature(async_fn_in_trait, impl_trait_projections))]
#![cfg_attr(feature = "nightly", allow(stable_features, unknown_lints, async_fn_in_trait))]
#![warn(missing_docs)]

View File

@ -66,19 +66,29 @@ where
let mut bus = self.bus.lock().await;
self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let op_res: Result<(), BUS::Error> = try {
let op_res = 'ops: {
for op in operations {
match op {
Operation::Read(buf) => bus.read(buf).await?,
Operation::Write(buf) => bus.write(buf).await?,
Operation::Transfer(read, write) => bus.transfer(read, write).await?,
Operation::TransferInPlace(buf) => bus.transfer_in_place(buf).await?,
let res = match op {
Operation::Read(buf) => bus.read(buf).await,
Operation::Write(buf) => bus.write(buf).await,
Operation::Transfer(read, write) => bus.transfer(read, write).await,
Operation::TransferInPlace(buf) => bus.transfer_in_place(buf).await,
#[cfg(not(feature = "time"))]
Operation::DelayUs(_) => return Err(SpiDeviceError::DelayUsNotSupported),
Operation::DelayUs(us) => return Err(SpiDeviceError::DelayUsNotSupported),
#[cfg(feature = "time")]
Operation::DelayUs(us) => embassy_time::Timer::after_micros(*us as _).await,
Operation::DelayUs(us) => match bus.flush().await {
Err(e) => Err(e),
Ok(()) => {
embassy_time::Timer::after_micros(*us as _).await;
Ok(())
}
},
};
if let Err(e) = res {
break 'ops Err(e);
}
}
Ok(())
};
// On failure, it's important to still flush and deassert CS.
@ -131,19 +141,29 @@ where
bus.set_config(&self.config).map_err(|_| SpiDeviceError::Config)?;
self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let op_res: Result<(), BUS::Error> = try {
let op_res = 'ops: {
for op in operations {
match op {
Operation::Read(buf) => bus.read(buf).await?,
Operation::Write(buf) => bus.write(buf).await?,
Operation::Transfer(read, write) => bus.transfer(read, write).await?,
Operation::TransferInPlace(buf) => bus.transfer_in_place(buf).await?,
let res = match op {
Operation::Read(buf) => bus.read(buf).await,
Operation::Write(buf) => bus.write(buf).await,
Operation::Transfer(read, write) => bus.transfer(read, write).await,
Operation::TransferInPlace(buf) => bus.transfer_in_place(buf).await,
#[cfg(not(feature = "time"))]
Operation::DelayUs(_) => return Err(SpiDeviceError::DelayUsNotSupported),
Operation::DelayUs(us) => return Err(SpiDeviceError::DelayUsNotSupported),
#[cfg(feature = "time")]
Operation::DelayUs(us) => embassy_time::Timer::after_micros(*us as _).await,
Operation::DelayUs(us) => match bus.flush().await {
Err(e) => Err(e),
Ok(()) => {
embassy_time::Timer::after_micros(*us as _).await;
Ok(())
}
},
};
if let Err(e) = res {
break 'ops Err(e);
}
}
Ok(())
};
// On failure, it's important to still flush and deassert CS.

View File

@ -5,6 +5,11 @@ All notable changes to this project will be documented in this file.
The format is based on [Keep a Changelog](https://keepachangelog.com/en/1.0.0/),
and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0.html).
## 0.3.3 - 2023-11-15
- Add `main` macro reexport for Xtensa arch.
- Remove use of `atomic-polyfill`. The executor now has multiple implementations of its internal data structures for cases where the target supports atomics or doesn't.
## 0.3.2 - 2023-11-06
- Use `atomic-polyfill` for `riscv32`

View File

@ -1,6 +1,6 @@
[package]
name = "embassy-executor"
version = "0.3.2"
version = "0.3.3"
edition = "2021"
license = "MIT OR Apache-2.0"
description = "async/await executor designed for embedded usage"
@ -27,6 +27,30 @@ default-target = "thumbv7em-none-eabi"
targets = ["thumbv7em-none-eabi"]
features = ["nightly", "defmt", "arch-cortex-m", "executor-thread", "executor-interrupt"]
[dependencies]
defmt = { version = "0.3", optional = true }
log = { version = "0.4.14", optional = true }
rtos-trace = { version = "0.1.2", optional = true }
embassy-macros = { version = "0.2.1", path = "../embassy-macros" }
embassy-time = { version = "0.1.5", path = "../embassy-time", optional = true}
critical-section = "1.1"
# needed for riscv
# remove when https://github.com/rust-lang/rust/pull/114499 is merged
portable-atomic = { version = "1.5", optional = true }
# arch-cortex-m dependencies
cortex-m = { version = "0.7.6", optional = true }
# arch-wasm dependencies
wasm-bindgen = { version = "0.2.82", optional = true }
js-sys = { version = "0.3", optional = true }
[dev-dependencies]
critical-section = { version = "1.1", features = ["std"] }
[features]
# Architecture
@ -34,7 +58,7 @@ _arch = [] # some arch was picked
arch-std = ["_arch", "critical-section/std"]
arch-cortex-m = ["_arch", "dep:cortex-m"]
arch-xtensa = ["_arch"]
arch-riscv32 = ["_arch"]
arch-riscv32 = ["_arch", "dep:portable-atomic"]
arch-wasm = ["_arch", "dep:wasm-bindgen", "dep:js-sys"]
# Enable the thread-mode executor (using WFE/SEV in Cortex-M, WFI in other embedded archs)
@ -43,28 +67,53 @@ executor-thread = []
executor-interrupt = []
# Enable nightly-only features
nightly = []
nightly = ["embassy-macros/nightly"]
turbowakers = []
integrated-timers = ["dep:embassy-time"]
# Trace interrupt invocations with rtos-trace.
rtos-trace-interrupt = ["rtos-trace", "embassy-macros/rtos-trace-interrupt"]
# BEGIN AUTOGENERATED CONFIG FEATURES
# Generated by gen_config.py. DO NOT EDIT.
task-arena-size-64 = []
task-arena-size-128 = []
task-arena-size-192 = []
task-arena-size-256 = []
task-arena-size-320 = []
task-arena-size-384 = []
task-arena-size-512 = []
task-arena-size-640 = []
task-arena-size-768 = []
task-arena-size-1024 = []
task-arena-size-1280 = []
task-arena-size-1536 = []
task-arena-size-2048 = []
task-arena-size-2560 = []
task-arena-size-3072 = []
task-arena-size-4096 = [] # Default
task-arena-size-5120 = []
task-arena-size-6144 = []
task-arena-size-8192 = []
task-arena-size-10240 = []
task-arena-size-12288 = []
task-arena-size-16384 = []
task-arena-size-20480 = []
task-arena-size-24576 = []
task-arena-size-32768 = []
task-arena-size-40960 = []
task-arena-size-49152 = []
task-arena-size-65536 = []
task-arena-size-81920 = []
task-arena-size-98304 = []
task-arena-size-131072 = []
task-arena-size-163840 = []
task-arena-size-196608 = []
task-arena-size-262144 = []
task-arena-size-327680 = []
task-arena-size-393216 = []
task-arena-size-524288 = []
task-arena-size-655360 = []
task-arena-size-786432 = []
task-arena-size-1048576 = []
[dependencies]
defmt = { version = "0.3", optional = true }
log = { version = "0.4.14", optional = true }
rtos-trace = { version = "0.1.2", optional = true }
embassy-macros = { version = "0.2.1", path = "../embassy-macros" }
embassy-time = { version = "0.1.5", path = "../embassy-time", optional = true}
atomic-polyfill = "1.0.1"
critical-section = "1.1"
# arch-cortex-m dependencies
cortex-m = { version = "0.7.6", optional = true }
# arch-wasm dependencies
wasm-bindgen = { version = "0.2.82", optional = true }
js-sys = { version = "0.3", optional = true }
# END AUTOGENERATED CONFIG FEATURES

View File

@ -2,10 +2,36 @@
An async/await executor designed for embedded usage.
- No `alloc`, no heap needed. Task futures are statically allocated.
- No `alloc`, no heap needed.
- With nightly Rust, task futures can be fully statically allocated.
- No "fixed capacity" data structures, executor works with 1 or 1000 tasks without needing config/tuning.
- Integrated timer queue: sleeping is easy, just do `Timer::after_secs(1).await;`.
- No busy-loop polling: CPU sleeps when there's no work to do, using interrupts or `WFE/SEV`.
- Efficient polling: a wake will only poll the woken task, not all of them.
- Fair: a task can't monopolize CPU time even if it's constantly being woken. All other tasks get a chance to run before a given task gets polled for the second time.
- Creating multiple executor instances is supported, to run tasks with multiple priority levels. This allows higher-priority tasks to preempt lower-priority tasks.
## Task arena
When the `nightly` Cargo feature is not enabled, `embassy-executor` allocates tasks out of an arena (a very simple bump allocator).
If the task arena gets full, the program will panic at runtime. To guarantee this doesn't happen, you must set the size to the sum of sizes of all tasks.
Tasks are allocated from the arena when spawned for the first time. If the task exists, the allocation is not released to the arena, but can be reused to spawn the task again. For multiple-instance tasks (like `#[embassy_executor::task(pool_size = 4)]`), the first spawn will allocate memory for all instances. This is done for performance and to increase predictability (for example, spawning at least 1 instance of every task at boot guarantees an immediate panic if the arena is too small, while allocating instances on-demand could delay the panic to only when the program is under load).
The arena size can be configured in two ways:
- Via Cargo features: enable a Cargo feature like `task-arena-size-8192`. Only a selection of values
is available, check `Cargo.toml` for the list.
- Via environment variables at build time: set the variable named `EMBASSY_EXECUTOR_TASK_ARENA_SIZE`. For example
`EMBASSY_EXECUTOR_TASK_ARENA_SIZE=4321 cargo build`. You can also set them in the `[env]` section of `.cargo/config.toml`.
Any value can be set, unlike with Cargo features.
Environment variables take precedence over Cargo features. If two Cargo features are enabled for the same setting
with different values, compilation fails.
## Statically allocating tasks
When using nightly Rust, enable the `nightly` Cargo feature. This will make `embassy-executor` use the `type_alias_impl_trait` feature to allocate all tasks in `static`s. Each task gets its own `static`, with the exact size to hold the task (or multiple instances of it, if using `pool_size`) calculated automatically at compile time. If tasks don't fit in RAM, this is detected at compile time by the linker. Runtime panics due to running out of memory are not possible.
The configured arena size is ignored, no arena is used at all.

View File

@ -1,6 +1,97 @@
use std::env;
use std::collections::HashMap;
use std::fmt::Write;
use std::path::PathBuf;
use std::{env, fs};
static CONFIGS: &[(&str, usize)] = &[
// BEGIN AUTOGENERATED CONFIG FEATURES
// Generated by gen_config.py. DO NOT EDIT.
("TASK_ARENA_SIZE", 4096),
// END AUTOGENERATED CONFIG FEATURES
];
struct ConfigState {
value: usize,
seen_feature: bool,
seen_env: bool,
}
fn main() {
let crate_name = env::var("CARGO_PKG_NAME")
.unwrap()
.to_ascii_uppercase()
.replace('-', "_");
// only rebuild if build.rs changed. Otherwise Cargo will rebuild if any
// other file changed.
println!("cargo:rerun-if-changed=build.rs");
// Rebuild if config envvar changed.
for (name, _) in CONFIGS {
println!("cargo:rerun-if-env-changed={crate_name}_{name}");
}
let mut configs = HashMap::new();
for (name, default) in CONFIGS {
configs.insert(
*name,
ConfigState {
value: *default,
seen_env: false,
seen_feature: false,
},
);
}
let prefix = format!("{crate_name}_");
for (var, value) in env::vars() {
if let Some(name) = var.strip_prefix(&prefix) {
let Some(cfg) = configs.get_mut(name) else {
panic!("Unknown env var {name}")
};
let Ok(value) = value.parse::<usize>() else {
panic!("Invalid value for env var {name}: {value}")
};
cfg.value = value;
cfg.seen_env = true;
}
if let Some(feature) = var.strip_prefix("CARGO_FEATURE_") {
if let Some(i) = feature.rfind('_') {
let name = &feature[..i];
let value = &feature[i + 1..];
if let Some(cfg) = configs.get_mut(name) {
let Ok(value) = value.parse::<usize>() else {
panic!("Invalid value for feature {name}: {value}")
};
// envvars take priority.
if !cfg.seen_env {
if cfg.seen_feature {
panic!("multiple values set for feature {}: {} and {}", name, cfg.value, value);
}
cfg.value = value;
cfg.seen_feature = true;
}
}
}
}
}
let mut data = String::new();
for (name, cfg) in &configs {
writeln!(&mut data, "pub const {}: usize = {};", name, cfg.value).unwrap();
}
let out_dir = PathBuf::from(env::var_os("OUT_DIR").unwrap());
let out_file = out_dir.join("config.rs").to_string_lossy().to_string();
fs::write(out_file, data).unwrap();
// cortex-m targets
let target = env::var("TARGET").unwrap();
if target.starts_with("thumbv6m-") {

View File

@ -0,0 +1,82 @@
import os
abspath = os.path.abspath(__file__)
dname = os.path.dirname(abspath)
os.chdir(dname)
features = []
def feature(name, default, min=None, max=None, pow2=None, vals=None, factors=[]):
if vals is None:
assert min is not None
assert max is not None
vals = set()
val = min
while val <= max:
vals.add(val)
for f in factors:
if val * f <= max:
vals.add(val * f)
if (pow2 == True or (isinstance(pow2, int) and val >= pow2)) and val > 0:
val *= 2
else:
val += 1
vals.add(default)
vals = sorted(list(vals))
features.append(
{
"name": name,
"default": default,
"vals": vals,
}
)
feature(
"task_arena_size", default=4096, min=64, max=1024 * 1024, pow2=True, factors=[3, 5]
)
# ========= Update Cargo.toml
things = ""
for f in features:
name = f["name"].replace("_", "-")
for val in f["vals"]:
things += f"{name}-{val} = []"
if val == f["default"]:
things += " # Default"
things += "\n"
things += "\n"
SEPARATOR_START = "# BEGIN AUTOGENERATED CONFIG FEATURES\n"
SEPARATOR_END = "# END AUTOGENERATED CONFIG FEATURES\n"
HELP = "# Generated by gen_config.py. DO NOT EDIT.\n"
with open("Cargo.toml", "r") as f:
data = f.read()
before, data = data.split(SEPARATOR_START, maxsplit=1)
_, after = data.split(SEPARATOR_END, maxsplit=1)
data = before + SEPARATOR_START + HELP + things + SEPARATOR_END + after
with open("Cargo.toml", "w") as f:
f.write(data)
# ========= Update build.rs
things = ""
for f in features:
name = f["name"].upper()
things += f' ("{name}", {f["default"]}),\n'
SEPARATOR_START = "// BEGIN AUTOGENERATED CONFIG FEATURES\n"
SEPARATOR_END = "// END AUTOGENERATED CONFIG FEATURES\n"
HELP = " // Generated by gen_config.py. DO NOT EDIT.\n"
with open("build.rs", "r") as f:
data = f.read()
before, data = data.split(SEPARATOR_START, maxsplit=1)
_, after = data.split(SEPARATOR_END, maxsplit=1)
data = before + SEPARATOR_START + HELP + things + " " + SEPARATOR_END + after
with open("build.rs", "w") as f:
f.write(data)

View File

@ -51,7 +51,6 @@ mod thread {
use core::arch::asm;
use core::marker::PhantomData;
#[cfg(feature = "nightly")]
pub use embassy_macros::main_cortex_m as main;
use crate::{raw, Spawner};
@ -115,12 +114,12 @@ mod thread {
pub use interrupt::*;
#[cfg(feature = "executor-interrupt")]
mod interrupt {
use core::cell::UnsafeCell;
use core::cell::{Cell, UnsafeCell};
use core::mem::MaybeUninit;
use atomic_polyfill::{AtomicBool, Ordering};
use cortex_m::interrupt::InterruptNumber;
use cortex_m::peripheral::NVIC;
use critical_section::Mutex;
use crate::raw;
@ -146,7 +145,7 @@ mod interrupt {
/// It is somewhat more complex to use, it's recommended to use the thread-mode
/// [`Executor`] instead, if it works for your use case.
pub struct InterruptExecutor {
started: AtomicBool,
started: Mutex<Cell<bool>>,
executor: UnsafeCell<MaybeUninit<raw::Executor>>,
}
@ -158,7 +157,7 @@ mod interrupt {
#[inline]
pub const fn new() -> Self {
Self {
started: AtomicBool::new(false),
started: Mutex::new(Cell::new(false)),
executor: UnsafeCell::new(MaybeUninit::uninit()),
}
}
@ -167,7 +166,8 @@ mod interrupt {
///
/// # Safety
///
/// You MUST call this from the interrupt handler, and from nowhere else.
/// - You MUST call this from the interrupt handler, and from nowhere else.
/// - You must not call this before calling `start()`.
pub unsafe fn on_interrupt(&'static self) {
let executor = unsafe { (&*self.executor.get()).assume_init_ref() };
executor.poll();
@ -196,11 +196,7 @@ mod interrupt {
/// do it after.
///
pub fn start(&'static self, irq: impl InterruptNumber) -> crate::SendSpawner {
if self
.started
.compare_exchange(false, true, Ordering::Acquire, Ordering::Relaxed)
.is_err()
{
if critical_section::with(|cs| self.started.borrow(cs).replace(true)) {
panic!("InterruptExecutor::start() called multiple times on the same executor.");
}
@ -222,10 +218,10 @@ mod interrupt {
/// This returns a [`SendSpawner`] you can use to spawn tasks on this
/// executor.
///
/// This MUST only be called on an executor that has already been spawned.
/// This MUST only be called on an executor that has already been started.
/// The function will panic otherwise.
pub fn spawner(&'static self) -> crate::SendSpawner {
if !self.started.load(Ordering::Acquire) {
if !critical_section::with(|cs| self.started.borrow(cs).get()) {
panic!("InterruptExecutor::spawner() called on uninitialized executor.");
}
let executor = unsafe { (&*self.executor.get()).assume_init_ref() };

View File

@ -7,9 +7,8 @@ pub use thread::*;
mod thread {
use core::marker::PhantomData;
use atomic_polyfill::{AtomicBool, Ordering};
#[cfg(feature = "nightly")]
pub use embassy_macros::main_riscv as main;
use portable_atomic::{AtomicBool, Ordering};
use crate::{raw, Spawner};

View File

@ -8,7 +8,6 @@ mod thread {
use std::marker::PhantomData;
use std::sync::{Condvar, Mutex};
#[cfg(feature = "nightly")]
pub use embassy_macros::main_std as main;
use crate::{raw, Spawner};

View File

@ -8,7 +8,6 @@ mod thread {
use core::marker::PhantomData;
#[cfg(feature = "nightly")]
pub use embassy_macros::main_wasm as main;
use js_sys::Promise;
use wasm_bindgen::prelude::*;

View File

@ -8,6 +8,8 @@ mod thread {
use core::marker::PhantomData;
use core::sync::atomic::{AtomicBool, Ordering};
pub use embassy_macros::main_riscv as main;
use crate::{raw, Spawner};
/// global atomic used to keep track of whether there is work to do since sev() is not available on Xtensa

View File

@ -1,5 +1,5 @@
#![cfg_attr(not(any(feature = "arch-std", feature = "arch-wasm")), no_std)]
#![cfg_attr(all(feature = "nightly", feature = "arch-xtensa"), feature(asm_experimental_arch))]
#![cfg_attr(feature = "arch-xtensa", feature(asm_experimental_arch))]
#![allow(clippy::new_without_default)]
#![doc = include_str!("../README.md")]
#![warn(missing_docs)]
@ -7,7 +7,6 @@
// This mod MUST go first, so that the others see its macros.
pub(crate) mod fmt;
#[cfg(feature = "nightly")]
pub use embassy_macros::task;
macro_rules! check_at_most_one {
@ -41,28 +40,101 @@ pub mod raw;
mod spawner;
pub use spawner::*;
mod config {
#![allow(unused)]
include!(concat!(env!("OUT_DIR"), "/config.rs"));
}
/// Implementation details for embassy macros.
/// Do not use. Used for macros and HALs only. Not covered by semver guarantees.
#[doc(hidden)]
#[cfg(not(feature = "nightly"))]
pub mod _export {
#[cfg(feature = "rtos-trace")]
pub use rtos_trace::trace;
use core::alloc::Layout;
use core::cell::{Cell, UnsafeCell};
use core::future::Future;
use core::mem::MaybeUninit;
use core::ptr::null_mut;
/// Expands the given block of code when `embassy-executor` is compiled with
/// the `rtos-trace-interrupt` feature.
#[doc(hidden)]
#[macro_export]
#[cfg(feature = "rtos-trace-interrupt")]
macro_rules! rtos_trace_interrupt {
($($tt:tt)*) => { $($tt)* };
use critical_section::{CriticalSection, Mutex};
use crate::raw::TaskPool;
struct Arena<const N: usize> {
buf: UnsafeCell<MaybeUninit<[u8; N]>>,
ptr: Mutex<Cell<*mut u8>>,
}
/// Does not expand the given block of code when `embassy-executor` is
/// compiled without the `rtos-trace-interrupt` feature.
#[doc(hidden)]
#[macro_export]
#[cfg(not(feature = "rtos-trace-interrupt"))]
macro_rules! rtos_trace_interrupt {
($($tt:tt)*) => {};
unsafe impl<const N: usize> Sync for Arena<N> {}
unsafe impl<const N: usize> Send for Arena<N> {}
impl<const N: usize> Arena<N> {
const fn new() -> Self {
Self {
buf: UnsafeCell::new(MaybeUninit::uninit()),
ptr: Mutex::new(Cell::new(null_mut())),
}
}
fn alloc<T>(&'static self, cs: CriticalSection) -> &'static mut MaybeUninit<T> {
let layout = Layout::new::<T>();
let start = self.buf.get().cast::<u8>();
let end = unsafe { start.add(N) };
let mut ptr = self.ptr.borrow(cs).get();
if ptr.is_null() {
ptr = self.buf.get().cast::<u8>();
}
let bytes_left = (end as usize) - (ptr as usize);
let align_offset = (ptr as usize).next_multiple_of(layout.align()) - (ptr as usize);
if align_offset + layout.size() > bytes_left {
panic!("embassy-executor: task arena is full. You must increase the arena size, see the documentation for details: https://docs.embassy.dev/embassy-executor/");
}
let res = unsafe { ptr.add(align_offset) };
let ptr = unsafe { ptr.add(align_offset + layout.size()) };
self.ptr.borrow(cs).set(ptr);
unsafe { &mut *(res as *mut MaybeUninit<T>) }
}
}
static ARENA: Arena<{ crate::config::TASK_ARENA_SIZE }> = Arena::new();
pub struct TaskPoolRef {
// type-erased `&'static mut TaskPool<F, N>`
// Needed because statics can't have generics.
ptr: Mutex<Cell<*mut ()>>,
}
unsafe impl Sync for TaskPoolRef {}
unsafe impl Send for TaskPoolRef {}
impl TaskPoolRef {
pub const fn new() -> Self {
Self {
ptr: Mutex::new(Cell::new(null_mut())),
}
}
/// Get the pool for this ref, allocating it from the arena the first time.
///
/// safety: for a given TaskPoolRef instance, must always call with the exact
/// same generic params.
pub unsafe fn get<F: Future, const N: usize>(&'static self) -> &'static TaskPool<F, N> {
critical_section::with(|cs| {
let ptr = self.ptr.borrow(cs);
if ptr.get().is_null() {
let pool = ARENA.alloc::<TaskPool<F, N>>(cs);
pool.write(TaskPool::new());
ptr.set(pool as *mut _ as _);
}
unsafe { &*(ptr.get() as *const _) }
})
}
}
}

View File

@ -7,7 +7,15 @@
//! Using this module requires respecting subtle safety contracts. If you can, prefer using the safe
//! [executor wrappers](crate::Executor) and the [`embassy_executor::task`](embassy_macros::task) macro, which are fully safe.
#[cfg_attr(target_has_atomic = "ptr", path = "run_queue_atomics.rs")]
#[cfg_attr(not(target_has_atomic = "ptr"), path = "run_queue_critical_section.rs")]
mod run_queue;
#[cfg_attr(all(cortex_m, target_has_atomic = "8"), path = "state_atomics_arm.rs")]
#[cfg_attr(all(not(cortex_m), target_has_atomic = "8"), path = "state_atomics.rs")]
#[cfg_attr(not(target_has_atomic = "8"), path = "state_critical_section.rs")]
mod state;
#[cfg(feature = "integrated-timers")]
mod timer_queue;
pub(crate) mod util;
@ -21,7 +29,6 @@ use core::pin::Pin;
use core::ptr::NonNull;
use core::task::{Context, Poll};
use atomic_polyfill::{AtomicU32, Ordering};
#[cfg(feature = "integrated-timers")]
use embassy_time::driver::{self, AlarmHandle};
#[cfg(feature = "integrated-timers")]
@ -30,21 +37,14 @@ use embassy_time::Instant;
use rtos_trace::trace;
use self::run_queue::{RunQueue, RunQueueItem};
use self::state::State;
use self::util::{SyncUnsafeCell, UninitCell};
pub use self::waker::task_from_waker;
use super::SpawnToken;
/// Task is spawned (has a future)
pub(crate) const STATE_SPAWNED: u32 = 1 << 0;
/// Task is in the executor run queue
pub(crate) const STATE_RUN_QUEUED: u32 = 1 << 1;
/// Task is in the executor timer queue
#[cfg(feature = "integrated-timers")]
pub(crate) const STATE_TIMER_QUEUED: u32 = 1 << 2;
/// Raw task header for use in task pointers.
pub(crate) struct TaskHeader {
pub(crate) state: AtomicU32,
pub(crate) state: State,
pub(crate) run_queue_item: RunQueueItem,
pub(crate) executor: SyncUnsafeCell<Option<&'static SyncExecutor>>,
poll_fn: SyncUnsafeCell<Option<unsafe fn(TaskRef)>>,
@ -116,7 +116,7 @@ impl<F: Future + 'static> TaskStorage<F> {
pub const fn new() -> Self {
Self {
raw: TaskHeader {
state: AtomicU32::new(0),
state: State::new(),
run_queue_item: RunQueueItem::new(),
executor: SyncUnsafeCell::new(None),
// Note: this is lazily initialized so that a static `TaskStorage` will go in `.bss`
@ -161,7 +161,7 @@ impl<F: Future + 'static> TaskStorage<F> {
match future.poll(&mut cx) {
Poll::Ready(_) => {
this.future.drop_in_place();
this.raw.state.fetch_and(!STATE_SPAWNED, Ordering::AcqRel);
this.raw.state.despawn();
#[cfg(feature = "integrated-timers")]
this.raw.expires_at.set(Instant::MAX);
@ -193,11 +193,7 @@ impl<F: Future + 'static> AvailableTask<F> {
///
/// This function returns `None` if a task has already been spawned and has not finished running.
pub fn claim(task: &'static TaskStorage<F>) -> Option<Self> {
task.raw
.state
.compare_exchange(0, STATE_SPAWNED | STATE_RUN_QUEUED, Ordering::AcqRel, Ordering::Acquire)
.ok()
.map(|_| Self { task })
task.raw.state.spawn().then(|| Self { task })
}
fn initialize_impl<S>(self, future: impl FnOnce() -> F) -> SpawnToken<S> {
@ -394,8 +390,7 @@ impl SyncExecutor {
#[cfg(feature = "integrated-timers")]
task.expires_at.set(Instant::MAX);
let state = task.state.fetch_and(!STATE_RUN_QUEUED, Ordering::AcqRel);
if state & STATE_SPAWNED == 0 {
if !task.state.run_dequeue() {
// If task is not running, ignore it. This can happen in the following scenario:
// - Task gets dequeued, poll starts
// - While task is being polled, it gets woken. It gets placed in the queue.
@ -546,18 +541,7 @@ impl Executor {
/// You can obtain a `TaskRef` from a `Waker` using [`task_from_waker`].
pub fn wake_task(task: TaskRef) {
let header = task.header();
let res = header.state.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |state| {
// If already scheduled, or if not started,
if (state & STATE_RUN_QUEUED != 0) || (state & STATE_SPAWNED == 0) {
None
} else {
// Mark it as scheduled
Some(state | STATE_RUN_QUEUED)
}
});
if res.is_ok() {
if header.state.run_enqueue() {
// We have just marked the task as scheduled, so enqueue it.
unsafe {
let executor = header.executor.get().unwrap_unchecked();
@ -571,18 +555,7 @@ pub fn wake_task(task: TaskRef) {
/// You can obtain a `TaskRef` from a `Waker` using [`task_from_waker`].
pub fn wake_task_no_pend(task: TaskRef) {
let header = task.header();
let res = header.state.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |state| {
// If already scheduled, or if not started,
if (state & STATE_RUN_QUEUED != 0) || (state & STATE_SPAWNED == 0) {
None
} else {
// Mark it as scheduled
Some(state | STATE_RUN_QUEUED)
}
});
if res.is_ok() {
if header.state.run_enqueue() {
// We have just marked the task as scheduled, so enqueue it.
unsafe {
let executor = header.executor.get().unwrap_unchecked();

View File

@ -1,7 +1,6 @@
use core::ptr;
use core::ptr::NonNull;
use atomic_polyfill::{AtomicPtr, Ordering};
use core::sync::atomic::{AtomicPtr, Ordering};
use super::{TaskHeader, TaskRef};
use crate::raw::util::SyncUnsafeCell;

View File

@ -0,0 +1,75 @@
use core::cell::Cell;
use critical_section::{CriticalSection, Mutex};
use super::TaskRef;
pub(crate) struct RunQueueItem {
next: Mutex<Cell<Option<TaskRef>>>,
}
impl RunQueueItem {
pub const fn new() -> Self {
Self {
next: Mutex::new(Cell::new(None)),
}
}
}
/// Atomic task queue using a very, very simple lock-free linked-list queue:
///
/// To enqueue a task, task.next is set to the old head, and head is atomically set to task.
///
/// Dequeuing is done in batches: the queue is emptied by atomically replacing head with
/// null. Then the batch is iterated following the next pointers until null is reached.
///
/// Note that batches will be iterated in the reverse order as they were enqueued. This is OK
/// for our purposes: it can't create fairness problems since the next batch won't run until the
/// current batch is completely processed, so even if a task enqueues itself instantly (for example
/// by waking its own waker) can't prevent other tasks from running.
pub(crate) struct RunQueue {
head: Mutex<Cell<Option<TaskRef>>>,
}
impl RunQueue {
pub const fn new() -> Self {
Self {
head: Mutex::new(Cell::new(None)),
}
}
/// Enqueues an item. Returns true if the queue was empty.
///
/// # Safety
///
/// `item` must NOT be already enqueued in any queue.
#[inline(always)]
pub(crate) unsafe fn enqueue(&self, task: TaskRef) -> bool {
critical_section::with(|cs| {
let prev = self.head.borrow(cs).replace(Some(task));
task.header().run_queue_item.next.borrow(cs).set(prev);
prev.is_none()
})
}
/// Empty the queue, then call `on_task` for each task that was in the queue.
/// NOTE: It is OK for `on_task` to enqueue more tasks. In this case they're left in the queue
/// and will be processed by the *next* call to `dequeue_all`, *not* the current one.
pub(crate) fn dequeue_all(&self, on_task: impl Fn(TaskRef)) {
// Atomically empty the queue.
let mut next = critical_section::with(|cs| self.head.borrow(cs).take());
// Iterate the linked list of tasks that were previously in the queue.
while let Some(task) = next {
// If the task re-enqueues itself, the `next` pointer will get overwritten.
// Therefore, first read the next pointer, and only then process the task.
// safety: we know if the task is enqueued, no one else will touch the `next` pointer.
let cs = unsafe { CriticalSection::new() };
next = task.header().run_queue_item.next.borrow(cs).get();
on_task(task);
}
}
}

View File

@ -0,0 +1,73 @@
use core::sync::atomic::{AtomicU32, Ordering};
/// Task is spawned (has a future)
pub(crate) const STATE_SPAWNED: u32 = 1 << 0;
/// Task is in the executor run queue
pub(crate) const STATE_RUN_QUEUED: u32 = 1 << 1;
/// Task is in the executor timer queue
#[cfg(feature = "integrated-timers")]
pub(crate) const STATE_TIMER_QUEUED: u32 = 1 << 2;
pub(crate) struct State {
state: AtomicU32,
}
impl State {
pub const fn new() -> State {
Self {
state: AtomicU32::new(0),
}
}
/// If task is idle, mark it as spawned + run_queued and return true.
#[inline(always)]
pub fn spawn(&self) -> bool {
self.state
.compare_exchange(0, STATE_SPAWNED | STATE_RUN_QUEUED, Ordering::AcqRel, Ordering::Acquire)
.is_ok()
}
/// Unmark the task as spawned.
#[inline(always)]
pub fn despawn(&self) {
self.state.fetch_and(!STATE_SPAWNED, Ordering::AcqRel);
}
/// Mark the task as run-queued if it's spawned and isn't already run-queued. Return true on success.
#[inline(always)]
pub fn run_enqueue(&self) -> bool {
self.state
.fetch_update(Ordering::SeqCst, Ordering::SeqCst, |state| {
// If already scheduled, or if not started,
if (state & STATE_RUN_QUEUED != 0) || (state & STATE_SPAWNED == 0) {
None
} else {
// Mark it as scheduled
Some(state | STATE_RUN_QUEUED)
}
})
.is_ok()
}
/// Unmark the task as run-queued. Return whether the task is spawned.
#[inline(always)]
pub fn run_dequeue(&self) -> bool {
let state = self.state.fetch_and(!STATE_RUN_QUEUED, Ordering::AcqRel);
state & STATE_SPAWNED != 0
}
/// Mark the task as timer-queued. Return whether it was newly queued (i.e. not queued before)
#[cfg(feature = "integrated-timers")]
#[inline(always)]
pub fn timer_enqueue(&self) -> bool {
let old_state = self.state.fetch_or(STATE_TIMER_QUEUED, Ordering::AcqRel);
old_state & STATE_TIMER_QUEUED == 0
}
/// Unmark the task as timer-queued.
#[cfg(feature = "integrated-timers")]
#[inline(always)]
pub fn timer_dequeue(&self) {
self.state.fetch_and(!STATE_TIMER_QUEUED, Ordering::AcqRel);
}
}

View File

@ -0,0 +1,103 @@
use core::arch::asm;
use core::sync::atomic::{compiler_fence, AtomicBool, AtomicU32, Ordering};
// Must be kept in sync with the layout of `State`!
pub(crate) const STATE_SPAWNED: u32 = 1 << 0;
pub(crate) const STATE_RUN_QUEUED: u32 = 1 << 8;
#[repr(C, align(4))]
pub(crate) struct State {
/// Task is spawned (has a future)
spawned: AtomicBool,
/// Task is in the executor run queue
run_queued: AtomicBool,
/// Task is in the executor timer queue
timer_queued: AtomicBool,
pad: AtomicBool,
}
impl State {
pub const fn new() -> State {
Self {
spawned: AtomicBool::new(false),
run_queued: AtomicBool::new(false),
timer_queued: AtomicBool::new(false),
pad: AtomicBool::new(false),
}
}
fn as_u32(&self) -> &AtomicU32 {
unsafe { &*(self as *const _ as *const AtomicU32) }
}
/// If task is idle, mark it as spawned + run_queued and return true.
#[inline(always)]
pub fn spawn(&self) -> bool {
compiler_fence(Ordering::Release);
let r = self
.as_u32()
.compare_exchange(
0,
STATE_SPAWNED | STATE_RUN_QUEUED,
Ordering::Relaxed,
Ordering::Relaxed,
)
.is_ok();
compiler_fence(Ordering::Acquire);
r
}
/// Unmark the task as spawned.
#[inline(always)]
pub fn despawn(&self) {
compiler_fence(Ordering::Release);
self.spawned.store(false, Ordering::Relaxed);
}
/// Mark the task as run-queued if it's spawned and isn't already run-queued. Return true on success.
#[inline(always)]
pub fn run_enqueue(&self) -> bool {
unsafe {
loop {
let state: u32;
asm!("ldrex {}, [{}]", out(reg) state, in(reg) self, options(nostack));
if (state & STATE_RUN_QUEUED != 0) || (state & STATE_SPAWNED == 0) {
asm!("clrex", options(nomem, nostack));
return false;
}
let outcome: usize;
let new_state = state | STATE_RUN_QUEUED;
asm!("strex {}, {}, [{}]", out(reg) outcome, in(reg) new_state, in(reg) self, options(nostack));
if outcome == 0 {
return true;
}
}
}
}
/// Unmark the task as run-queued. Return whether the task is spawned.
#[inline(always)]
pub fn run_dequeue(&self) -> bool {
compiler_fence(Ordering::Release);
let r = self.spawned.load(Ordering::Relaxed);
self.run_queued.store(false, Ordering::Relaxed);
r
}
/// Mark the task as timer-queued. Return whether it was newly queued (i.e. not queued before)
#[cfg(feature = "integrated-timers")]
#[inline(always)]
pub fn timer_enqueue(&self) -> bool {
!self.timer_queued.swap(true, Ordering::Relaxed)
}
/// Unmark the task as timer-queued.
#[cfg(feature = "integrated-timers")]
#[inline(always)]
pub fn timer_dequeue(&self) {
self.timer_queued.store(false, Ordering::Relaxed);
}
}

View File

@ -0,0 +1,93 @@
use core::cell::Cell;
use critical_section::Mutex;
/// Task is spawned (has a future)
pub(crate) const STATE_SPAWNED: u32 = 1 << 0;
/// Task is in the executor run queue
pub(crate) const STATE_RUN_QUEUED: u32 = 1 << 1;
/// Task is in the executor timer queue
#[cfg(feature = "integrated-timers")]
pub(crate) const STATE_TIMER_QUEUED: u32 = 1 << 2;
pub(crate) struct State {
state: Mutex<Cell<u32>>,
}
impl State {
pub const fn new() -> State {
Self {
state: Mutex::new(Cell::new(0)),
}
}
fn update<R>(&self, f: impl FnOnce(&mut u32) -> R) -> R {
critical_section::with(|cs| {
let s = self.state.borrow(cs);
let mut val = s.get();
let r = f(&mut val);
s.set(val);
r
})
}
/// If task is idle, mark it as spawned + run_queued and return true.
#[inline(always)]
pub fn spawn(&self) -> bool {
self.update(|s| {
if *s == 0 {
*s = STATE_SPAWNED | STATE_RUN_QUEUED;
true
} else {
false
}
})
}
/// Unmark the task as spawned.
#[inline(always)]
pub fn despawn(&self) {
self.update(|s| *s &= !STATE_SPAWNED);
}
/// Mark the task as run-queued if it's spawned and isn't already run-queued. Return true on success.
#[inline(always)]
pub fn run_enqueue(&self) -> bool {
self.update(|s| {
if (*s & STATE_RUN_QUEUED != 0) || (*s & STATE_SPAWNED == 0) {
false
} else {
*s |= STATE_RUN_QUEUED;
true
}
})
}
/// Unmark the task as run-queued. Return whether the task is spawned.
#[inline(always)]
pub fn run_dequeue(&self) -> bool {
self.update(|s| {
let ok = *s & STATE_SPAWNED != 0;
*s &= !STATE_RUN_QUEUED;
ok
})
}
/// Mark the task as timer-queued. Return whether it was newly queued (i.e. not queued before)
#[cfg(feature = "integrated-timers")]
#[inline(always)]
pub fn timer_enqueue(&self) -> bool {
self.update(|s| {
let ok = *s & STATE_TIMER_QUEUED == 0;
*s |= STATE_TIMER_QUEUED;
ok
})
}
/// Unmark the task as timer-queued.
#[cfg(feature = "integrated-timers")]
#[inline(always)]
pub fn timer_dequeue(&self) {
self.update(|s| *s &= !STATE_TIMER_QUEUED);
}
}

View File

@ -1,9 +1,8 @@
use core::cmp::min;
use atomic_polyfill::Ordering;
use embassy_time::Instant;
use super::{TaskRef, STATE_TIMER_QUEUED};
use super::TaskRef;
use crate::raw::util::SyncUnsafeCell;
pub(crate) struct TimerQueueItem {
@ -32,10 +31,7 @@ impl TimerQueue {
pub(crate) unsafe fn update(&self, p: TaskRef) {
let task = p.header();
if task.expires_at.get() != Instant::MAX {
let old_state = task.state.fetch_or(STATE_TIMER_QUEUED, Ordering::AcqRel);
let is_new = old_state & STATE_TIMER_QUEUED == 0;
if is_new {
if task.state.timer_enqueue() {
task.timer_queue_item.next.set(self.head.get());
self.head.set(Some(p));
}
@ -75,7 +71,7 @@ impl TimerQueue {
} else {
// Remove it
prev.set(task.timer_queue_item.next.get());
task.state.fetch_and(!STATE_TIMER_QUEUED, Ordering::AcqRel);
task.state.timer_dequeue();
}
}
}

View File

@ -0,0 +1,137 @@
#![cfg_attr(feature = "nightly", feature(type_alias_impl_trait))]
use std::boxed::Box;
use std::future::poll_fn;
use std::sync::{Arc, Mutex};
use std::task::Poll;
use embassy_executor::raw::Executor;
use embassy_executor::task;
#[export_name = "__pender"]
fn __pender(context: *mut ()) {
unsafe {
let trace = &*(context as *const Trace);
trace.push("pend");
}
}
#[derive(Clone)]
struct Trace {
trace: Arc<Mutex<Vec<&'static str>>>,
}
impl Trace {
fn new() -> Self {
Self {
trace: Arc::new(Mutex::new(Vec::new())),
}
}
fn push(&self, value: &'static str) {
self.trace.lock().unwrap().push(value)
}
fn get(&self) -> Vec<&'static str> {
self.trace.lock().unwrap().clone()
}
}
fn setup() -> (&'static Executor, Trace) {
let trace = Trace::new();
let context = Box::leak(Box::new(trace.clone())) as *mut _ as *mut ();
let executor = &*Box::leak(Box::new(Executor::new(context)));
(executor, trace)
}
#[test]
fn executor_noop() {
let (executor, trace) = setup();
unsafe { executor.poll() };
assert!(trace.get().is_empty())
}
#[test]
fn executor_task() {
#[task]
async fn task1(trace: Trace) {
trace.push("poll task1")
}
let (executor, trace) = setup();
executor.spawner().spawn(task1(trace.clone())).unwrap();
unsafe { executor.poll() };
unsafe { executor.poll() };
assert_eq!(
trace.get(),
&[
"pend", // spawning a task pends the executor
"poll task1", // poll only once.
]
)
}
#[test]
fn executor_task_self_wake() {
#[task]
async fn task1(trace: Trace) {
poll_fn(|cx| {
trace.push("poll task1");
cx.waker().wake_by_ref();
Poll::Pending
})
.await
}
let (executor, trace) = setup();
executor.spawner().spawn(task1(trace.clone())).unwrap();
unsafe { executor.poll() };
unsafe { executor.poll() };
assert_eq!(
trace.get(),
&[
"pend", // spawning a task pends the executor
"poll task1", //
"pend", // task self-wakes
"poll task1", //
"pend", // task self-wakes
]
)
}
#[test]
fn executor_task_self_wake_twice() {
#[task]
async fn task1(trace: Trace) {
poll_fn(|cx| {
trace.push("poll task1");
cx.waker().wake_by_ref();
trace.push("poll task1 wake 2");
cx.waker().wake_by_ref();
Poll::Pending
})
.await
}
let (executor, trace) = setup();
executor.spawner().spawn(task1(trace.clone())).unwrap();
unsafe { executor.poll() };
unsafe { executor.poll() };
assert_eq!(
trace.get(),
&[
"pend", // spawning a task pends the executor
"poll task1", //
"pend", // task self-wakes
"poll task1 wake 2", // task self-wakes again, shouldn't pend
"poll task1", //
"pend", // task self-wakes
"poll task1 wake 2", // task self-wakes again, shouldn't pend
]
)
}

View File

@ -1,6 +1,6 @@
[package]
name = "embassy-futures"
version = "0.1.0"
version = "0.1.1"
edition = "2021"
description = "no-std, no-alloc utilities for working with futures"
repository = "https://github.com/embassy-rs/embassy"

View File

@ -21,5 +21,4 @@ proc-macro2 = "1.0.29"
proc-macro = true
[features]
# Enabling this cause interrupt::take! to require embassy-executor
rtos-trace-interrupt = []
nightly = []

View File

@ -79,6 +79,7 @@ pub fn run(args: &[NestedMeta], f: syn::ItemFn) -> Result<TokenStream, TokenStre
task_inner.vis = syn::Visibility::Inherited;
task_inner.sig.ident = task_inner_ident.clone();
#[cfg(feature = "nightly")]
let mut task_outer: ItemFn = parse_quote! {
#visibility fn #task_ident(#fargs) -> ::embassy_executor::SpawnToken<impl Sized> {
type Fut = impl ::core::future::Future + 'static;
@ -87,6 +88,14 @@ pub fn run(args: &[NestedMeta], f: syn::ItemFn) -> Result<TokenStream, TokenStre
unsafe { POOL._spawn_async_fn(move || #task_inner_ident(#(#arg_names,)*)) }
}
};
#[cfg(not(feature = "nightly"))]
let mut task_outer: ItemFn = parse_quote! {
#visibility fn #task_ident(#fargs) -> ::embassy_executor::SpawnToken<impl Sized> {
const POOL_SIZE: usize = #pool_size;
static POOL: ::embassy_executor::_export::TaskPoolRef = ::embassy_executor::_export::TaskPoolRef::new();
unsafe { POOL.get::<_, POOL_SIZE>()._spawn_async_fn(move || #task_inner_ident(#(#arg_names,)*)) }
}
};
task_outer.attrs.append(&mut task_inner.attrs.clone());

View File

@ -10,7 +10,7 @@ edition = "2021"
# See more keys and their definitions at https://doc.rust-lang.org/cargo/reference/manifest.html
[dependencies]
heapless = "0.7.16"
heapless = "0.8"
defmt = { version = "0.3", optional = true }
log = { version = "0.4", default-features = false, optional = true }
embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-rc.1" }

View File

@ -15,9 +15,9 @@ embassy-net-driver-channel = { version = "0.2.0", path = "../embassy-net-driver-
embedded-hal = { version = "1.0.0-rc.1" }
embedded-hal-async = { version = "=1.0.0-rc.1" }
noproto = { git="https://github.com/embassy-rs/noproto", rev = "c90f3a78d7b5642415e0a07af401320b84d8ab6f", default-features = false, features = ["derive"] }
noproto = { git="https://github.com/embassy-rs/noproto", rev = "f5e6d1f325b6ad4e344f60452b09576e24671f62", default-features = false, features = ["derive"] }
#noproto = { version = "0.1", path = "/home/dirbaio/noproto", default-features = false, features = ["derive"] }
heapless = "0.7.16"
heapless = "0.8"
[package.metadata.embassy_docs]
src_base = "https://github.com/embassy-rs/embassy/blob/embassy-net-esp-hosted-v$VERSION/embassy-net-esp-hosted/src/"

View File

@ -97,8 +97,8 @@ impl<'a> Control<'a> {
pub async fn connect(&mut self, ssid: &str, password: &str) -> Result<(), Error> {
let req = proto::CtrlMsgReqConnectAp {
ssid: String::from(ssid),
pwd: String::from(password),
ssid: unwrap!(String::try_from(ssid)),
pwd: unwrap!(String::try_from(password)),
bssid: String::new(),
listen_interval: 3,
is_wpa3_supported: false,

View File

@ -8,6 +8,8 @@ and this project adheres to [Semantic Versioning](https://semver.org/spec/v2.0.0
## Unreleased
- Avoid never resolving `TcpIo::read` when the output buffer is empty.
- Update to `smoltcp` git.
- Forward constants from `smoltcp` in DNS query results so changing DNS result size in `smoltcp` properly propagates.
## 0.2.1 - 2023-10-31

View File

@ -25,7 +25,7 @@ features = ["nightly", "defmt", "tcp", "udp", "dns", "dhcpv4", "proto-ipv6", "me
default = []
std = []
defmt = ["dep:defmt", "smoltcp/defmt", "embassy-net-driver/defmt"]
defmt = ["dep:defmt", "smoltcp/defmt", "embassy-net-driver/defmt", "heapless/defmt-03"]
nightly = ["dep:embedded-io-async", "dep:embedded-nal-async"]
@ -46,7 +46,7 @@ igmp = ["smoltcp/proto-igmp"]
defmt = { version = "0.3", optional = true }
log = { version = "0.4.14", optional = true }
smoltcp = { version = "0.10.0", default-features = false, features = [
smoltcp = { git = "https://github.com/smoltcp-rs/smoltcp.git", rev = "b57e2f9e70e82a13f31d5ea17e55232c11cc2b2d", default-features = false, features = [
"socket",
"async",
] }
@ -57,10 +57,10 @@ embassy-sync = { version = "0.4.0", path = "../embassy-sync" }
embedded-io-async = { version = "0.6.0", optional = true }
managed = { version = "0.8.0", default-features = false, features = [ "map" ] }
heapless = { version = "0.7.5", default-features = false }
heapless = { version = "0.8", default-features = false }
as-slice = "0.2.1"
generic-array = { version = "0.14.4", default-features = false }
stable_deref_trait = { version = "1.2.0", default-features = false }
futures = { version = "0.3.17", default-features = false, features = [ "async-await" ] }
atomic-pool = "1.0"
embedded-nal-async = { version = "0.6.0", optional = true }
embedded-nal-async = { version = "0.7", optional = true }

View File

@ -63,7 +63,11 @@ where
}
/// Make a query for a given name and return the corresponding IP addresses.
pub async fn query(&self, name: &str, qtype: DnsQueryType) -> Result<Vec<IpAddress, 1>, Error> {
pub async fn query(
&self,
name: &str,
qtype: DnsQueryType,
) -> Result<Vec<IpAddress, { smoltcp::config::DNS_MAX_RESULT_COUNT }>, Error> {
self.stack.dns_query(name, qtype).await
}
}
@ -101,7 +105,8 @@ where
async fn get_host_by_address(
&self,
_addr: embedded_nal_async::IpAddr,
) -> Result<heapless::String<256>, Self::Error> {
_result: &mut [u8],
) -> Result<usize, Self::Error> {
todo!()
}
}

View File

@ -494,7 +494,11 @@ impl<D: Driver> Stack<D> {
/// Make a query for a given name and return the corresponding IP addresses.
#[cfg(feature = "dns")]
pub async fn dns_query(&self, name: &str, qtype: dns::DnsQueryType) -> Result<Vec<IpAddress, 1>, dns::Error> {
pub async fn dns_query(
&self,
name: &str,
qtype: dns::DnsQueryType,
) -> Result<Vec<IpAddress, { smoltcp::config::DNS_MAX_RESULT_COUNT }>, dns::Error> {
// For A and AAAA queries we try detect whether `name` is just an IP address
match qtype {
#[cfg(feature = "proto-ipv4")]
@ -612,9 +616,11 @@ impl<D: Driver> Stack<D> {
let addr = addr.into();
self.with_mut(|s, i| {
let (_hardware_addr, medium) = to_smoltcp_hardware_address(i.device.hardware_address());
let mut smoldev = DriverAdapter {
cx: Some(cx),
inner: &mut i.device,
medium,
};
match s
@ -649,9 +655,11 @@ impl<D: Driver> Stack<D> {
let addr = addr.into();
self.with_mut(|s, i| {
let (_hardware_addr, medium) = to_smoltcp_hardware_address(i.device.hardware_address());
let mut smoldev = DriverAdapter {
cx: Some(cx),
inner: &mut i.device,
medium,
};
match s

View File

@ -618,10 +618,7 @@ pub mod client {
async fn connect<'a>(
&'a self,
remote: embedded_nal_async::SocketAddr,
) -> Result<Self::Connection<'a>, Self::Error>
where
Self: 'a,
{
) -> Result<Self::Connection<'a>, Self::Error> {
let addr: crate::IpAddress = match remote.ip() {
#[cfg(feature = "proto-ipv4")]
IpAddr::V4(addr) => crate::IpAddress::Ipv4(crate::Ipv4Address::from_bytes(&addr.octets())),

View File

@ -12,7 +12,7 @@ use core::cmp::min;
use core::future::poll_fn;
use core::marker::PhantomData;
use core::slice;
use core::sync::atomic::{compiler_fence, AtomicU8, AtomicUsize, Ordering};
use core::sync::atomic::{compiler_fence, AtomicBool, AtomicU8, AtomicUsize, Ordering};
use core::task::Poll;
use embassy_hal_internal::atomic_ring_buffer::RingBuffer;
@ -41,7 +41,9 @@ mod sealed {
pub rx_waker: AtomicWaker,
pub rx_buf: RingBuffer,
pub rx_bufs: AtomicU8,
pub rx_started: AtomicBool,
pub rx_started_count: AtomicU8,
pub rx_ended_count: AtomicU8,
pub rx_ppi_ch: AtomicU8,
}
}
@ -65,7 +67,9 @@ impl State {
rx_waker: AtomicWaker::new(),
rx_buf: RingBuffer::new(),
rx_bufs: AtomicU8::new(0),
rx_started: AtomicBool::new(false),
rx_started_count: AtomicU8::new(0),
rx_ended_count: AtomicU8::new(0),
rx_ppi_ch: AtomicU8::new(0),
}
}
@ -104,28 +108,20 @@ impl<U: UarteInstance> interrupt::typelevel::Handler<U::Interrupt> for Interrupt
s.rx_waker.wake();
}
// If not RXing, start.
if s.rx_bufs.load(Ordering::Relaxed) == 0 {
let (ptr, len) = rx.push_buf();
if len >= half_len {
//trace!(" irq_rx: starting {:?}", half_len);
s.rx_bufs.store(1, Ordering::Relaxed);
if r.events_endrx.read().bits() != 0 {
//trace!(" irq_rx: endrx");
r.events_endrx.reset();
// Set up the DMA read
r.rxd.ptr.write(|w| unsafe { w.ptr().bits(ptr as u32) });
r.rxd.maxcnt.write(|w| unsafe { w.maxcnt().bits(half_len as _) });
// Start UARTE Receive transaction
r.tasks_startrx.write(|w| unsafe { w.bits(1) });
rx.push_done(half_len);
r.intenset.write(|w| w.rxstarted().set());
}
let val = s.rx_ended_count.load(Ordering::Relaxed);
s.rx_ended_count.store(val.wrapping_add(1), Ordering::Relaxed);
}
if r.events_rxstarted.read().bits() != 0 {
if r.events_rxstarted.read().bits() != 0 || !s.rx_started.load(Ordering::Relaxed) {
//trace!(" irq_rx: rxstarted");
let (ptr, len) = rx.push_buf();
if len >= half_len {
r.events_rxstarted.reset();
//trace!(" irq_rx: starting second {:?}", half_len);
// Set up the DMA read
@ -134,11 +130,50 @@ impl<U: UarteInstance> interrupt::typelevel::Handler<U::Interrupt> for Interrupt
let chn = s.rx_ppi_ch.load(Ordering::Relaxed);
// Enable endrx -> startrx PPI channel.
// From this point on, if endrx happens, startrx is automatically fired.
ppi::regs().chenset.write(|w| unsafe { w.bits(1 << chn) });
// It is possible that endrx happened BEFORE enabling the PPI. In this case
// the PPI channel doesn't trigger, and we'd hang. We have to detect this
// and manually start.
// check again in case endrx has happened between the last check and now.
if r.events_endrx.read().bits() != 0 {
//trace!(" irq_rx: endrx");
r.events_endrx.reset();
let val = s.rx_ended_count.load(Ordering::Relaxed);
s.rx_ended_count.store(val.wrapping_add(1), Ordering::Relaxed);
}
let rx_ended = s.rx_ended_count.load(Ordering::Relaxed);
let rx_started = s.rx_started_count.load(Ordering::Relaxed);
// If we started the same amount of transfers as ended, the last rxend has
// already occured.
let rxend_happened = rx_started == rx_ended;
// Check if the PPI channel is still enabled. The PPI channel disables itself
// when it fires, so if it's still enabled it hasn't fired.
let ppi_ch_enabled = ppi::regs().chen.read().bits() & (1 << chn) != 0;
// if rxend happened, and the ppi channel hasn't fired yet, the rxend got missed.
// this condition also naturally matches if `!started`, needed to kickstart the DMA.
if rxend_happened && ppi_ch_enabled {
//trace!("manually starting.");
// disable the ppi ch, it's of no use anymore.
ppi::regs().chenclr.write(|w| unsafe { w.bits(1 << chn) });
// manually start
r.tasks_startrx.write(|w| unsafe { w.bits(1) });
}
rx.push_done(half_len);
r.events_rxstarted.reset();
s.rx_started_count.store(rx_started.wrapping_add(1), Ordering::Relaxed);
s.rx_started.store(true, Ordering::Relaxed);
} else {
//trace!(" irq_rx: rxstarted no buf");
r.intenclr.write(|w| w.rxstarted().clear());
@ -282,6 +317,8 @@ impl<'d, U: UarteInstance, T: TimerInstance> BufferedUarte<'d, U, T> {
let r = U::regs();
let hwfc = cts.is_some();
rxd.conf().write(|w| w.input().connect().drive().h0h1());
r.psel.rxd.write(|w| unsafe { w.bits(rxd.psel_bits()) });
@ -303,7 +340,8 @@ impl<'d, U: UarteInstance, T: TimerInstance> BufferedUarte<'d, U, T> {
// Initialize state
let s = U::buffered_state();
s.tx_count.store(0, Ordering::Relaxed);
s.rx_bufs.store(0, Ordering::Relaxed);
s.rx_started_count.store(0, Ordering::Relaxed);
s.rx_ended_count.store(0, Ordering::Relaxed);
let len = tx_buffer.len();
unsafe { s.tx_buf.init(tx_buffer.as_mut_ptr(), len) };
let len = rx_buffer.len();
@ -311,7 +349,7 @@ impl<'d, U: UarteInstance, T: TimerInstance> BufferedUarte<'d, U, T> {
// Configure
r.config.write(|w| {
w.hwfc().bit(false);
w.hwfc().bit(hwfc);
w.parity().variant(config.parity);
w
});
@ -333,6 +371,7 @@ impl<'d, U: UarteInstance, T: TimerInstance> BufferedUarte<'d, U, T> {
w.endtx().set();
w.rxstarted().set();
w.error().set();
w.endrx().set();
w
});

View File

@ -94,5 +94,5 @@ pio = {version= "0.2.1" }
rp2040-boot2 = "0.3"
[dev-dependencies]
embassy-executor = { version = "0.3.1", path = "../embassy-executor", features = ["nightly", "arch-std", "executor-thread"] }
embassy-executor = { version = "0.3.3", path = "../embassy-executor", features = ["nightly", "arch-std", "executor-thread"] }
static_cell = { version = "2" }

View File

@ -21,7 +21,7 @@ embassy-net-driver = { version = "0.2.0", path = "../embassy-net-driver", option
defmt = { version = "0.3", optional = true }
cortex-m = "0.7.6"
heapless = "0.7.16"
heapless = "0.8"
aligned = "0.4.1"
bit_field = "0.10.2"

View File

@ -4,7 +4,6 @@
any(feature = "ble", feature = "mac"),
allow(stable_features, unknown_lints, async_fn_in_trait)
)]
#![cfg_attr(feature = "mac", feature(type_alias_impl_trait, concat_bytes))]
// This must go FIRST so that all the other modules see its macros.
mod fmt;

View File

@ -18,7 +18,7 @@ flavors = [
{ regex_feature = "stm32f7.*", target = "thumbv7em-none-eabi" },
{ regex_feature = "stm32c0.*", target = "thumbv6m-none-eabi" },
{ regex_feature = "stm32g0.*", target = "thumbv6m-none-eabi" },
{ regex_feature = "stm32g4.*", target = "thumbv7em-none-eabi" },
{ regex_feature = "stm32g4.*", target = "thumbv7em-none-eabi", features = ["low-power"] },
{ regex_feature = "stm32h5.*", target = "thumbv8m.main-none-eabihf" },
{ regex_feature = "stm32h7.*", target = "thumbv7em-none-eabi" },
{ regex_feature = "stm32l0.*", target = "thumbv6m-none-eabi", features = ["low-power"] },
@ -39,7 +39,7 @@ embassy-hal-internal = {version = "0.1.0", path = "../embassy-hal-internal", fea
embassy-embedded-hal = {version = "0.1.0", path = "../embassy-embedded-hal" }
embassy-net-driver = { version = "0.2.0", path = "../embassy-net-driver" }
embassy-usb-driver = {version = "0.1.0", path = "../embassy-usb-driver", optional = true }
embassy-executor = { version = "0.3.1", path = "../embassy-executor", optional = true }
embassy-executor = { version = "0.3.3", path = "../embassy-executor", optional = true }
embedded-hal-02 = { package = "embedded-hal", version = "0.2.6", features = ["unproven"] }
embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-rc.1", optional = true}
@ -58,7 +58,7 @@ rand_core = "0.6.3"
sdio-host = "0.5.0"
embedded-sdmmc = { git = "https://github.com/embassy-rs/embedded-sdmmc-rs", rev = "a4f293d3a6f72158385f79c98634cb8a14d0d2fc", optional = true }
critical-section = "1.1"
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-1374ed622714ef4702826699ca21cc1f741f4133" }
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-7117ad49c06fa00c388130a34977e029910083bd" }
vcell = "0.1.3"
bxcan = "0.7.0"
nb = "1.0.0"
@ -76,7 +76,7 @@ critical-section = { version = "1.1", features = ["std"] }
[build-dependencies]
proc-macro2 = "1.0.36"
quote = "1.0.15"
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-1374ed622714ef4702826699ca21cc1f741f4133", default-features = false, features = ["metadata"]}
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-7117ad49c06fa00c388130a34977e029910083bd", default-features = false, features = ["metadata"]}
[features]

View File

@ -61,10 +61,10 @@ fn main() {
let mut singletons: Vec<String> = Vec::new();
for p in METADATA.peripherals {
if let Some(r) = &p.registers {
println!("cargo:rustc-cfg=peri_{}", p.name.to_ascii_lowercase());
match r.kind {
// Generate singletons per pin, not per port
"gpio" => {
println!("{}", p.name);
let port_letter = p.name.strip_prefix("GPIO").unwrap();
for pin_num in 0..16 {
singletons.push(format!("P{}{}", port_letter, pin_num));
@ -996,8 +996,8 @@ fn main() {
// SDMMCv1 uses the same channel for both directions, so just implement for RX
(("sdmmc", "RX"), quote!(crate::sdmmc::SdmmcDma)),
(("quadspi", "QUADSPI"), quote!(crate::qspi::QuadDma)),
(("dac", "CH1"), quote!(crate::dac::DmaCh1)),
(("dac", "CH2"), quote!(crate::dac::DmaCh2)),
(("dac", "CH1"), quote!(crate::dac::DacDma1)),
(("dac", "CH2"), quote!(crate::dac::DacDma2)),
]
.into();
@ -1137,6 +1137,23 @@ fn main() {
}
}
// ========
// Write peripheral_interrupts module.
let mut mt = TokenStream::new();
for p in METADATA.peripherals {
let mut pt = TokenStream::new();
for irq in p.interrupts {
let iname = format_ident!("{}", irq.interrupt);
let sname = format_ident!("{}", irq.signal);
pt.extend(quote!(pub type #sname = crate::interrupt::typelevel::#iname;));
}
let pname = format_ident!("{}", p.name);
mt.extend(quote!(pub mod #pname { #pt }));
}
g.extend(quote!(#[allow(non_camel_case_types)] pub mod peripheral_interrupts { #mt }));
// ========
// Write foreach_foo! macrotables
@ -1295,6 +1312,9 @@ fn main() {
let mut m = String::new();
// DO NOT ADD more macros like these.
// These turned to be a bad idea!
// Instead, make build.rs generate the final code.
make_table(&mut m, "foreach_flash_region", &flash_regions_table);
make_table(&mut m, "foreach_interrupt", &interrupts_table);
make_table(&mut m, "foreach_peripheral", &peripherals_table);
@ -1331,15 +1351,6 @@ fn main() {
if let Some(core) = core_name {
println!("cargo:rustc-cfg={}_{}", &chip_name[..chip_name.len() - 2], core);
} else {
println!("cargo:rustc-cfg={}", &chip_name[..chip_name.len() - 2]);
}
// ========
// stm32f3 wildcard features used in RCC
if chip_name.starts_with("stm32f3") {
println!("cargo:rustc-cfg={}x{}", &chip_name[..9], &chip_name[10..11]);
}
// =======
@ -1354,16 +1365,25 @@ fn main() {
if &chip_name[..8] == "stm32wba" {
println!("cargo:rustc-cfg={}", &chip_name[..8]); // stm32wba
println!("cargo:rustc-cfg={}", &chip_name[..10]); // stm32wba52
println!("cargo:rustc-cfg=package_{}", &chip_name[10..11]);
println!("cargo:rustc-cfg=flashsize_{}", &chip_name[11..12]);
} else {
println!("cargo:rustc-cfg={}", &chip_name[..7]); // stm32f4
println!("cargo:rustc-cfg={}", &chip_name[..9]); // stm32f429
println!("cargo:rustc-cfg={}x", &chip_name[..8]); // stm32f42x
println!("cargo:rustc-cfg={}x{}", &chip_name[..7], &chip_name[8..9]); // stm32f4x9
println!("cargo:rustc-cfg=package_{}", &chip_name[9..10]);
println!("cargo:rustc-cfg=flashsize_{}", &chip_name[10..11]);
}
// Handle time-driver-XXXX features.
if env::var("CARGO_FEATURE_TIME_DRIVER_ANY").is_ok() {}
println!("cargo:rustc-cfg={}", &chip_name[..chip_name.len() - 2]);
// Mark the L4+ chips as they have many differences to regular L4.
if &chip_name[..7] == "stm32l4" {
if "pqrs".contains(&chip_name[7..8]) {
println!("cargo:rustc-cfg=stm32l4_plus");
} else {
println!("cargo:rustc-cfg=stm32l4_nonplus");
}
}
println!("cargo:rerun-if-changed=build.rs");
}

View File

@ -1,4 +1,3 @@
use core::cell::{RefCell, RefMut};
use core::future::poll_fn;
use core::marker::PhantomData;
use core::ops::{Deref, DerefMut};
@ -84,7 +83,7 @@ impl<T: Instance> interrupt::typelevel::Handler<T::SCEInterrupt> for SceInterrup
}
pub struct Can<'d, T: Instance> {
pub can: RefCell<bxcan::Can<BxcanInstance<'d, T>>>,
pub can: bxcan::Can<BxcanInstance<'d, T>>,
}
#[derive(Debug)]
@ -175,17 +174,12 @@ impl<'d, T: Instance> Can<'d, T> {
tx.set_as_af(tx.af_num(), AFType::OutputPushPull);
let can = bxcan::Can::builder(BxcanInstance(peri)).leave_disabled();
let can_ref_cell = RefCell::new(can);
Self { can: can_ref_cell }
Self { can }
}
pub fn set_bitrate(&mut self, bitrate: u32) {
let bit_timing = Self::calc_bxcan_timings(T::frequency(), bitrate).unwrap();
self.can
.borrow_mut()
.modify_config()
.set_bit_timing(bit_timing)
.leave_disabled();
self.can.modify_config().set_bit_timing(bit_timing).leave_disabled();
}
/// Enables the peripheral and synchronizes with the bus.
@ -193,7 +187,7 @@ impl<'d, T: Instance> Can<'d, T> {
/// This will wait for 11 consecutive recessive bits (bus idle state).
/// Contrary to enable method from bxcan library, this will not freeze the executor while waiting.
pub async fn enable(&mut self) {
while self.borrow_mut().enable_non_blocking().is_err() {
while self.enable_non_blocking().is_err() {
// SCE interrupt is only generated for entering sleep mode, but not leaving.
// Yield to allow other tasks to execute while can bus is initializing.
embassy_futures::yield_now().await;
@ -202,46 +196,46 @@ impl<'d, T: Instance> Can<'d, T> {
/// Queues the message to be sent but exerts backpressure
pub async fn write(&mut self, frame: &Frame) -> bxcan::TransmitStatus {
CanTx { can: &self.can }.write(frame).await
self.split().0.write(frame).await
}
/// Attempts to transmit a frame without blocking.
///
/// Returns [Err(TryWriteError::Full)] if all transmit mailboxes are full.
pub fn try_write(&mut self, frame: &Frame) -> Result<bxcan::TransmitStatus, TryWriteError> {
CanTx { can: &self.can }.try_write(frame)
self.split().0.try_write(frame)
}
/// Waits for a specific transmit mailbox to become empty
pub async fn flush(&self, mb: bxcan::Mailbox) {
CanTx { can: &self.can }.flush(mb).await
CanTx::<T>::flush_inner(mb).await
}
/// Waits until any of the transmit mailboxes become empty
pub async fn flush_any(&self) {
CanTx { can: &self.can }.flush_any().await
CanTx::<T>::flush_any_inner().await
}
/// Waits until all of the transmit mailboxes become empty
pub async fn flush_all(&self) {
CanTx { can: &self.can }.flush_all().await
CanTx::<T>::flush_all_inner().await
}
/// Returns a tuple of the time the message was received and the message frame
pub async fn read(&mut self) -> Result<Envelope, BusError> {
CanRx { can: &self.can }.read().await
self.split().1.read().await
}
/// Attempts to read a can frame without blocking.
///
/// Returns [Err(TryReadError::Empty)] if there are no frames in the rx queue.
pub fn try_read(&mut self) -> Result<Envelope, TryReadError> {
CanRx { can: &self.can }.try_read()
self.split().1.try_read()
}
/// Waits while receive queue is empty.
pub async fn wait_not_empty(&mut self) {
CanRx { can: &self.can }.wait_not_empty().await
self.split().1.wait_not_empty().await
}
unsafe fn receive_fifo(fifo: RxFifo) {
@ -385,24 +379,25 @@ impl<'d, T: Instance> Can<'d, T> {
Some((sjw - 1) << 24 | (bs1 as u32 - 1) << 16 | (bs2 as u32 - 1) << 20 | (prescaler - 1))
}
pub fn split<'c>(&'c self) -> (CanTx<'c, 'd, T>, CanRx<'c, 'd, T>) {
(CanTx { can: &self.can }, CanRx { can: &self.can })
pub fn split<'c>(&'c mut self) -> (CanTx<'c, 'd, T>, CanRx<'c, 'd, T>) {
let (tx, rx0, rx1) = self.can.split_by_ref();
(CanTx { tx }, CanRx { rx0, rx1 })
}
pub fn as_mut(&self) -> RefMut<'_, bxcan::Can<BxcanInstance<'d, T>>> {
self.can.borrow_mut()
pub fn as_mut(&mut self) -> &mut bxcan::Can<BxcanInstance<'d, T>> {
&mut self.can
}
}
pub struct CanTx<'c, 'd, T: Instance> {
can: &'c RefCell<bxcan::Can<BxcanInstance<'d, T>>>,
tx: &'c mut bxcan::Tx<BxcanInstance<'d, T>>,
}
impl<'c, 'd, T: Instance> CanTx<'c, 'd, T> {
pub async fn write(&mut self, frame: &Frame) -> bxcan::TransmitStatus {
poll_fn(|cx| {
T::state().tx_waker.register(cx.waker());
if let Ok(status) = self.can.borrow_mut().transmit(frame) {
if let Ok(status) = self.tx.transmit(frame) {
return Poll::Ready(status);
}
@ -415,11 +410,10 @@ impl<'c, 'd, T: Instance> CanTx<'c, 'd, T> {
///
/// Returns [Err(TryWriteError::Full)] if all transmit mailboxes are full.
pub fn try_write(&mut self, frame: &Frame) -> Result<bxcan::TransmitStatus, TryWriteError> {
self.can.borrow_mut().transmit(frame).map_err(|_| TryWriteError::Full)
self.tx.transmit(frame).map_err(|_| TryWriteError::Full)
}
/// Waits for a specific transmit mailbox to become empty
pub async fn flush(&self, mb: bxcan::Mailbox) {
async fn flush_inner(mb: bxcan::Mailbox) {
poll_fn(|cx| {
T::state().tx_waker.register(cx.waker());
if T::regs().tsr().read().tme(mb.index()) {
@ -431,8 +425,12 @@ impl<'c, 'd, T: Instance> CanTx<'c, 'd, T> {
.await;
}
/// Waits until any of the transmit mailboxes become empty
pub async fn flush_any(&self) {
/// Waits for a specific transmit mailbox to become empty
pub async fn flush(&self, mb: bxcan::Mailbox) {
Self::flush_inner(mb).await
}
async fn flush_any_inner() {
poll_fn(|cx| {
T::state().tx_waker.register(cx.waker());
@ -449,8 +447,12 @@ impl<'c, 'd, T: Instance> CanTx<'c, 'd, T> {
.await;
}
/// Waits until all of the transmit mailboxes become empty
pub async fn flush_all(&self) {
/// Waits until any of the transmit mailboxes become empty
pub async fn flush_any(&self) {
Self::flush_any_inner().await
}
async fn flush_all_inner() {
poll_fn(|cx| {
T::state().tx_waker.register(cx.waker());
@ -466,11 +468,17 @@ impl<'c, 'd, T: Instance> CanTx<'c, 'd, T> {
})
.await;
}
/// Waits until all of the transmit mailboxes become empty
pub async fn flush_all(&self) {
Self::flush_all_inner().await
}
}
#[allow(dead_code)]
pub struct CanRx<'c, 'd, T: Instance> {
can: &'c RefCell<bxcan::Can<BxcanInstance<'d, T>>>,
rx0: &'c mut bxcan::Rx0<BxcanInstance<'d, T>>,
rx1: &'c mut bxcan::Rx1<BxcanInstance<'d, T>>,
}
impl<'c, 'd, T: Instance> CanRx<'c, 'd, T> {
@ -538,7 +546,7 @@ impl<'d, T: Instance> Drop for Can<'d, T> {
}
impl<'d, T: Instance> Deref for Can<'d, T> {
type Target = RefCell<bxcan::Can<BxcanInstance<'d, T>>>;
type Target = bxcan::Can<BxcanInstance<'d, T>>;
fn deref(&self) -> &Self::Target {
&self.can

View File

@ -1,136 +1,66 @@
//! Provide access to the STM32 digital-to-analog converter (DAC).
#![macro_use]
//! Provide access to the STM32 digital-to-analog converter (DAC).
use core::marker::PhantomData;
use embassy_hal_internal::{into_ref, PeripheralRef};
use crate::dma::NoDma;
#[cfg(any(dac_v3, dac_v4, dac_v5, dac_v6, dac_v7))]
use crate::pac::dac;
use crate::rcc::RccPeripheral;
use crate::{peripherals, Peripheral};
mod tsel;
pub use tsel::TriggerSel;
/// Operating mode for DAC channel
#[cfg(any(dac_v3, dac_v4, dac_v5, dac_v6, dac_v7))]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Custom Errors
pub enum Error {
UnconfiguredChannel,
InvalidValue,
pub enum Mode {
/// Normal mode, channel is connected to external pin with buffer enabled.
NormalExternalBuffered,
/// Normal mode, channel is connected to external pin and internal peripherals
/// with buffer enabled.
NormalBothBuffered,
/// Normal mode, channel is connected to external pin with buffer disabled.
NormalExternalUnbuffered,
/// Normal mode, channel is connected to internal peripherals with buffer disabled.
NormalInternalUnbuffered,
/// Sample-and-hold mode, channel is connected to external pin with buffer enabled.
SampleHoldExternalBuffered,
/// Sample-and-hold mode, channel is connected to external pin and internal peripherals
/// with buffer enabled.
SampleHoldBothBuffered,
/// Sample-and-hold mode, channel is connected to external pin and internal peripherals
/// with buffer disabled.
SampleHoldBothUnbuffered,
/// Sample-and-hold mode, channel is connected to internal peripherals with buffer disabled.
SampleHoldInternalUnbuffered,
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// DAC Channels
pub enum Channel {
Ch1,
Ch2,
}
impl Channel {
const fn index(&self) -> usize {
#[cfg(any(dac_v3, dac_v4, dac_v5, dac_v6, dac_v7))]
impl Mode {
fn mode(&self) -> dac::vals::Mode {
match self {
Channel::Ch1 => 0,
Channel::Ch2 => 1,
Mode::NormalExternalBuffered => dac::vals::Mode::NORMAL_EXT_BUFEN,
Mode::NormalBothBuffered => dac::vals::Mode::NORMAL_EXT_INT_BUFEN,
Mode::NormalExternalUnbuffered => dac::vals::Mode::NORMAL_EXT_BUFDIS,
Mode::NormalInternalUnbuffered => dac::vals::Mode::NORMAL_INT_BUFDIS,
Mode::SampleHoldExternalBuffered => dac::vals::Mode::SAMPHOLD_EXT_BUFEN,
Mode::SampleHoldBothBuffered => dac::vals::Mode::SAMPHOLD_EXT_INT_BUFEN,
Mode::SampleHoldBothUnbuffered => dac::vals::Mode::SAMPHOLD_EXT_INT_BUFDIS,
Mode::SampleHoldInternalUnbuffered => dac::vals::Mode::SAMPHOLD_INT_BUFDIS,
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Trigger sources for CH1
pub enum Ch1Trigger {
#[cfg(dac_v3)]
Tim1,
Tim2,
#[cfg(not(dac_v3))]
Tim3,
#[cfg(dac_v3)]
Tim4,
#[cfg(dac_v3)]
Tim5,
Tim6,
Tim7,
#[cfg(dac_v3)]
Tim8,
Tim15,
#[cfg(dac_v3)]
Hrtim1Dactrg1,
#[cfg(dac_v3)]
Hrtim1Dactrg2,
#[cfg(dac_v3)]
Lptim1,
#[cfg(dac_v3)]
Lptim2,
#[cfg(dac_v3)]
Lptim3,
Exti9,
Software,
}
impl Ch1Trigger {
fn tsel(&self) -> dac::vals::Tsel1 {
match self {
#[cfg(dac_v3)]
Ch1Trigger::Tim1 => dac::vals::Tsel1::TIM1_TRGO,
Ch1Trigger::Tim2 => dac::vals::Tsel1::TIM2_TRGO,
#[cfg(not(dac_v3))]
Ch1Trigger::Tim3 => dac::vals::Tsel1::TIM3_TRGO,
#[cfg(dac_v3)]
Ch1Trigger::Tim4 => dac::vals::Tsel1::TIM4_TRGO,
#[cfg(dac_v3)]
Ch1Trigger::Tim5 => dac::vals::Tsel1::TIM5_TRGO,
Ch1Trigger::Tim6 => dac::vals::Tsel1::TIM6_TRGO,
Ch1Trigger::Tim7 => dac::vals::Tsel1::TIM7_TRGO,
#[cfg(dac_v3)]
Ch1Trigger::Tim8 => dac::vals::Tsel1::TIM8_TRGO,
Ch1Trigger::Tim15 => dac::vals::Tsel1::TIM15_TRGO,
#[cfg(dac_v3)]
Ch1Trigger::Hrtim1Dactrg1 => dac::vals::Tsel1::HRTIM1_DACTRG1,
#[cfg(dac_v3)]
Ch1Trigger::Hrtim1Dactrg2 => dac::vals::Tsel1::HRTIM1_DACTRG2,
#[cfg(dac_v3)]
Ch1Trigger::Lptim1 => dac::vals::Tsel1::LPTIM1_OUT,
#[cfg(dac_v3)]
Ch1Trigger::Lptim2 => dac::vals::Tsel1::LPTIM2_OUT,
#[cfg(dac_v3)]
Ch1Trigger::Lptim3 => dac::vals::Tsel1::LPTIM3_OUT,
Ch1Trigger::Exti9 => dac::vals::Tsel1::EXTI9,
Ch1Trigger::Software => dac::vals::Tsel1::SOFTWARE,
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Trigger sources for CH2
pub enum Ch2Trigger {
Tim6,
Tim8,
Tim7,
Tim5,
Tim2,
Tim4,
Exti9,
Software,
}
impl Ch2Trigger {
fn tsel(&self) -> dac::vals::Tsel2 {
match self {
Ch2Trigger::Tim6 => dac::vals::Tsel2::TIM6_TRGO,
Ch2Trigger::Tim8 => dac::vals::Tsel2::TIM8_TRGO,
Ch2Trigger::Tim7 => dac::vals::Tsel2::TIM7_TRGO,
Ch2Trigger::Tim5 => dac::vals::Tsel2::TIM5_TRGO,
Ch2Trigger::Tim2 => dac::vals::Tsel2::TIM2_TRGO,
Ch2Trigger::Tim4 => dac::vals::Tsel2::TIM4_TRGO,
Ch2Trigger::Exti9 => dac::vals::Tsel2::EXTI9,
Ch2Trigger::Software => dac::vals::Tsel2::SOFTWARE,
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Single 8 or 12 bit value that can be output by the DAC
/// Single 8 or 12 bit value that can be output by the DAC.
///
/// 12-bit values outside the permitted range are silently truncated.
pub enum Value {
// 8 bit value
Bit8(u8),
@ -142,7 +72,21 @@ pub enum Value {
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Array variant of [`Value`]
/// Dual 8 or 12 bit values that can be output by the DAC channels 1 and 2 simultaneously.
///
/// 12-bit values outside the permitted range are silently truncated.
pub enum DualValue {
// 8 bit value
Bit8(u8, u8),
// 12 bit value stored in a u16, left-aligned
Bit12Left(u16, u16),
// 12 bit value stored in a u16, right-aligned
Bit12Right(u16, u16),
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Array variant of [`Value`].
pub enum ValueArray<'a> {
// 8 bit values
Bit8(&'a [u8]),
@ -151,398 +95,395 @@ pub enum ValueArray<'a> {
// 12 bit values stored in a u16, right-aligned
Bit12Right(&'a [u16]),
}
/// Provide common functions for DAC channels
pub trait DacChannel<T: Instance, Tx> {
const CHANNEL: Channel;
/// Enable trigger of the given channel
fn set_trigger_enable(&mut self, on: bool) -> Result<(), Error> {
T::regs().cr().modify(|reg| {
reg.set_ten(Self::CHANNEL.index(), on);
});
Ok(())
}
/// Set mode register of the given channel
#[cfg(any(dac_v2, dac_v3))]
fn set_channel_mode(&mut self, val: u8) -> Result<(), Error> {
T::regs().mcr().modify(|reg| {
reg.set_mode(Self::CHANNEL.index(), val);
});
Ok(())
}
/// Set enable register of the given channel
fn set_channel_enable(&mut self, on: bool) -> Result<(), Error> {
T::regs().cr().modify(|reg| {
reg.set_en(Self::CHANNEL.index(), on);
});
Ok(())
}
/// Enable the DAC channel `ch`
fn enable_channel(&mut self) -> Result<(), Error> {
self.set_channel_enable(true)
}
/// Disable the DAC channel `ch`
fn disable_channel(&mut self) -> Result<(), Error> {
self.set_channel_enable(false)
}
/// Perform a software trigger on `ch`
fn trigger(&mut self) {
T::regs().swtrigr().write(|reg| {
reg.set_swtrig(Self::CHANNEL.index(), true);
});
}
/// Set a value to be output by the DAC on trigger.
///
/// The `value` is written to the corresponding "data holding register".
fn set(&mut self, value: Value) -> Result<(), Error> {
match value {
Value::Bit8(v) => T::regs().dhr8r(Self::CHANNEL.index()).write(|reg| reg.set_dhr(v)),
Value::Bit12Left(v) => T::regs().dhr12l(Self::CHANNEL.index()).write(|reg| reg.set_dhr(v)),
Value::Bit12Right(v) => T::regs().dhr12r(Self::CHANNEL.index()).write(|reg| reg.set_dhr(v)),
}
Ok(())
}
}
/// Hold two DAC channels
/// Driver for a single DAC channel.
///
/// Note: This consumes the DAC `Instance` only once, allowing to get both channels simultaneously.
///
/// # Example for obtaining both DAC channels
///
/// ```ignore
/// // DMA channels and pins may need to be changed for your controller
/// let (dac_ch1, dac_ch2) =
/// embassy_stm32::dac::Dac::new(p.DAC1, p.DMA1_CH3, p.DMA1_CH4, p.PA4, p.PA5).split();
/// ```
pub struct Dac<'d, T: Instance, TxCh1, TxCh2> {
ch1: DacCh1<'d, T, TxCh1>,
ch2: DacCh2<'d, T, TxCh2>,
}
/// DAC CH1
///
/// Note: This consumes the DAC `Instance`. Use [`Dac::new`] to get both channels simultaneously.
pub struct DacCh1<'d, T: Instance, Tx> {
/// To consume T
_peri: PeripheralRef<'d, T>,
#[allow(unused)] // For chips whose DMA is not (yet) supported
dma: PeripheralRef<'d, Tx>,
}
/// DAC CH2
///
/// Note: This consumes the DAC `Instance`. Use [`Dac::new`] to get both channels simultaneously.
pub struct DacCh2<'d, T: Instance, Tx> {
/// Instead of PeripheralRef to consume T
/// If you want to use both channels, either together or independently,
/// create a [`Dac`] first and use it to access each channel.
pub struct DacChannel<'d, T: Instance, const N: u8, DMA = NoDma> {
phantom: PhantomData<&'d mut T>,
#[allow(unused)] // For chips whose DMA is not (yet) supported
dma: PeripheralRef<'d, Tx>,
#[allow(unused)]
dma: PeripheralRef<'d, DMA>,
}
impl<'d, T: Instance, Tx> DacCh1<'d, T, Tx> {
/// Obtain DAC CH1
pub fn new(
peri: impl Peripheral<P = T> + 'd,
dma: impl Peripheral<P = Tx> + 'd,
pin: impl Peripheral<P = impl DacPin<T, 1>> + crate::gpio::sealed::Pin + 'd,
) -> Self {
pin.set_as_analog();
into_ref!(peri, dma);
T::enable_and_reset();
pub type DacCh1<'d, T, DMA = NoDma> = DacChannel<'d, T, 1, DMA>;
pub type DacCh2<'d, T, DMA = NoDma> = DacChannel<'d, T, 2, DMA>;
let mut dac = Self { _peri: peri, dma };
impl<'d, T: Instance, const N: u8, DMA> DacChannel<'d, T, N, DMA> {
const IDX: usize = (N - 1) as usize;
// Configure each activated channel. All results can be `unwrap`ed since they
// will only error if the channel is not configured (i.e. ch1, ch2 are false)
#[cfg(any(dac_v2, dac_v3))]
dac.set_channel_mode(0).unwrap();
dac.enable_channel().unwrap();
dac.set_trigger_enable(true).unwrap();
dac
}
/// Select a new trigger for this channel
/// Create a new `DacChannel` instance, consuming the underlying DAC peripheral.
///
/// **Important**: This disables the channel!
pub fn select_trigger(&mut self, trigger: Ch1Trigger) -> Result<(), Error> {
unwrap!(self.disable_channel());
T::regs().cr().modify(|reg| {
reg.set_tsel1(trigger.tsel());
});
Ok(())
}
/// Write `data` to the DAC CH1 via DMA.
/// If you're not using DMA, pass [`dma::NoDma`] for the `dma` argument.
///
/// To prevent delays/glitches when outputting a periodic waveform, the `circular` flag can be set.
/// This will configure a circular DMA transfer that periodically outputs the `data`.
/// Note that for performance reasons in circular mode the transfer complete interrupt is disabled.
/// The channel is enabled on creation and begins to drive the output pin.
/// Note that some methods, such as `set_trigger()` and `set_mode()`, will
/// disable the channel; you must re-enable it with `enable()`.
///
/// **Important:** Channel 1 has to be configured for the DAC instance!
pub async fn write(&mut self, data: ValueArray<'_>, circular: bool) -> Result<(), Error>
where
Tx: DmaCh1<T>,
{
let channel = Channel::Ch1.index();
debug!("Writing to channel {}", channel);
// Enable DAC and DMA
T::regs().cr().modify(|w| {
w.set_en(channel, true);
w.set_dmaen(channel, true);
});
let tx_request = self.dma.request();
let dma_channel = &mut self.dma;
let tx_options = crate::dma::TransferOptions {
circular,
half_transfer_ir: false,
complete_transfer_ir: !circular,
..Default::default()
};
// Initiate the correct type of DMA transfer depending on what data is passed
let tx_f = match data {
ValueArray::Bit8(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr8r(channel).as_ptr() as *mut u8,
tx_options,
)
},
ValueArray::Bit12Left(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12l(channel).as_ptr() as *mut u16,
tx_options,
)
},
ValueArray::Bit12Right(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12r(channel).as_ptr() as *mut u16,
tx_options,
)
},
};
tx_f.await;
// finish dma
// TODO: Do we need to check any status registers here?
T::regs().cr().modify(|w| {
// Disable the DAC peripheral
w.set_en(channel, false);
// Disable the DMA. TODO: Is this necessary?
w.set_dmaen(channel, false);
});
Ok(())
}
}
impl<'d, T: Instance, Tx> DacCh2<'d, T, Tx> {
/// Obtain DAC CH2
/// By default, triggering is disabled, but it can be enabled using
/// [`DacChannel::set_trigger()`].
pub fn new(
_peri: impl Peripheral<P = T> + 'd,
dma: impl Peripheral<P = Tx> + 'd,
pin: impl Peripheral<P = impl DacPin<T, 2>> + crate::gpio::sealed::Pin + 'd,
dma: impl Peripheral<P = DMA> + 'd,
pin: impl Peripheral<P = impl DacPin<T, N> + crate::gpio::sealed::Pin> + 'd,
) -> Self {
into_ref!(dma, pin);
pin.set_as_analog();
into_ref!(_peri, dma);
T::enable_and_reset();
let mut dac = Self {
phantom: PhantomData,
dma,
};
// Configure each activated channel. All results can be `unwrap`ed since they
// will only error if the channel is not configured (i.e. ch1, ch2 are false)
#[cfg(any(dac_v2, dac_v3))]
dac.set_channel_mode(0).unwrap();
dac.enable_channel().unwrap();
dac.set_trigger_enable(true).unwrap();
#[cfg(any(dac_v5, dac_v6, dac_v7))]
dac.set_hfsel();
dac.enable();
dac
}
/// Select a new trigger for this channel
pub fn select_trigger(&mut self, trigger: Ch2Trigger) -> Result<(), Error> {
unwrap!(self.disable_channel());
T::regs().cr().modify(|reg| {
reg.set_tsel2(trigger.tsel());
});
Ok(())
}
/// Write `data` to the DAC CH2 via DMA.
/// Create a new `DacChannel` instance where the external output pin is not used,
/// so the DAC can only be used to generate internal signals.
/// The GPIO pin is therefore available to be used for other functions.
///
/// To prevent delays/glitches when outputting a periodic waveform, the `circular` flag can be set.
/// This will configure a circular DMA transfer that periodically outputs the `data`.
/// Note that for performance reasons in circular mode the transfer complete interrupt is disabled.
/// The channel is set to [`Mode::NormalInternalUnbuffered`] and enabled on creation.
/// Note that some methods, such as `set_trigger()` and `set_mode()`, will disable the
/// channel; you must re-enable it with `enable()`.
///
/// **Important:** Channel 2 has to be configured for the DAC instance!
pub async fn write(&mut self, data: ValueArray<'_>, circular: bool) -> Result<(), Error>
where
Tx: DmaCh2<T>,
{
let channel = Channel::Ch2.index();
debug!("Writing to channel {}", channel);
// Enable DAC and DMA
T::regs().cr().modify(|w| {
w.set_en(channel, true);
w.set_dmaen(channel, true);
});
let tx_request = self.dma.request();
let dma_channel = &mut self.dma;
let tx_options = crate::dma::TransferOptions {
circular,
half_transfer_ir: false,
complete_transfer_ir: !circular,
..Default::default()
};
// Initiate the correct type of DMA transfer depending on what data is passed
let tx_f = match data {
ValueArray::Bit8(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr8r(channel).as_ptr() as *mut u8,
tx_options,
)
},
ValueArray::Bit12Left(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12l(channel).as_ptr() as *mut u16,
tx_options,
)
},
ValueArray::Bit12Right(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12r(channel).as_ptr() as *mut u16,
tx_options,
)
},
};
tx_f.await;
// finish dma
// TODO: Do we need to check any status registers here?
T::regs().cr().modify(|w| {
// Disable the DAC peripheral
w.set_en(channel, false);
// Disable the DMA. TODO: Is this necessary?
w.set_dmaen(channel, false);
});
Ok(())
}
}
impl<'d, T: Instance, TxCh1, TxCh2> Dac<'d, T, TxCh1, TxCh2> {
/// Create a new DAC instance with both channels.
/// If you're not using DMA, pass [`dma::NoDma`] for the `dma` argument.
///
/// This is used to obtain two independent channels via `split()` for use e.g. with DMA.
pub fn new(
peri: impl Peripheral<P = T> + 'd,
dma_ch1: impl Peripheral<P = TxCh1> + 'd,
dma_ch2: impl Peripheral<P = TxCh2> + 'd,
pin_ch1: impl Peripheral<P = impl DacPin<T, 1>> + crate::gpio::sealed::Pin + 'd,
pin_ch2: impl Peripheral<P = impl DacPin<T, 2>> + crate::gpio::sealed::Pin + 'd,
) -> Self {
pin_ch1.set_as_analog();
pin_ch2.set_as_analog();
into_ref!(peri, dma_ch1, dma_ch2);
/// By default, triggering is disabled, but it can be enabled using
/// [`DacChannel::set_trigger()`].
#[cfg(all(any(dac_v3, dac_v4, dac_v5, dac_v6, dac_v7), not(any(stm32h56x, stm32h57x))))]
pub fn new_internal(_peri: impl Peripheral<P = T> + 'd, dma: impl Peripheral<P = DMA> + 'd) -> Self {
into_ref!(dma);
T::enable_and_reset();
let mut dac_ch1 = DacCh1 {
_peri: peri,
dma: dma_ch1,
};
let mut dac_ch2 = DacCh2 {
let mut dac = Self {
phantom: PhantomData,
dma: dma_ch2,
dma,
};
#[cfg(any(dac_v5, dac_v6, dac_v7))]
dac.set_hfsel();
dac.set_mode(Mode::NormalInternalUnbuffered);
dac.enable();
dac
}
// Configure each activated channel. All results can be `unwrap`ed since they
// will only error if the channel is not configured (i.e. ch1, ch2 are false)
#[cfg(any(dac_v2, dac_v3))]
dac_ch1.set_channel_mode(0).unwrap();
dac_ch1.enable_channel().unwrap();
dac_ch1.set_trigger_enable(true).unwrap();
/// Enable or disable this channel.
pub fn set_enable(&mut self, on: bool) {
critical_section::with(|_| {
T::regs().cr().modify(|reg| {
reg.set_en(Self::IDX, on);
});
});
}
#[cfg(any(dac_v2, dac_v3))]
dac_ch2.set_channel_mode(0).unwrap();
dac_ch2.enable_channel().unwrap();
dac_ch2.set_trigger_enable(true).unwrap();
/// Enable this channel.
pub fn enable(&mut self) {
self.set_enable(true)
}
Self {
ch1: dac_ch1,
ch2: dac_ch2,
/// Disable this channel.
pub fn disable(&mut self) {
self.set_enable(false)
}
/// Set the trigger source for this channel.
///
/// This method disables the channel, so you may need to re-enable afterwards.
pub fn set_trigger(&mut self, source: TriggerSel) {
critical_section::with(|_| {
T::regs().cr().modify(|reg| {
reg.set_en(Self::IDX, false);
reg.set_tsel(Self::IDX, source as u8);
});
});
}
/// Enable or disable triggering for this channel.
pub fn set_triggering(&mut self, on: bool) {
critical_section::with(|_| {
T::regs().cr().modify(|reg| {
reg.set_ten(Self::IDX, on);
});
});
}
/// Software trigger this channel.
pub fn trigger(&mut self) {
T::regs().swtrigr().write(|reg| {
reg.set_swtrig(Self::IDX, true);
});
}
/// Set mode of this channel.
///
/// This method disables the channel, so you may need to re-enable afterwards.
#[cfg(any(dac_v3, dac_v4, dac_v5, dac_v6, dac_v7))]
pub fn set_mode(&mut self, mode: Mode) {
critical_section::with(|_| {
T::regs().cr().modify(|reg| {
reg.set_en(Self::IDX, false);
});
T::regs().mcr().modify(|reg| {
reg.set_mode(Self::IDX, mode.mode());
});
});
}
/// Write a new value to this channel.
///
/// If triggering is not enabled, the new value is immediately output; otherwise,
/// it will be output after the next trigger.
pub fn set(&mut self, value: Value) {
match value {
Value::Bit8(v) => T::regs().dhr8r(Self::IDX).write(|reg| reg.set_dhr(v)),
Value::Bit12Left(v) => T::regs().dhr12l(Self::IDX).write(|reg| reg.set_dhr(v)),
Value::Bit12Right(v) => T::regs().dhr12r(Self::IDX).write(|reg| reg.set_dhr(v)),
}
}
/// Split the DAC into CH1 and CH2 for independent use.
pub fn split(self) -> (DacCh1<'d, T, TxCh1>, DacCh2<'d, T, TxCh2>) {
/// Read the current output value of the DAC.
pub fn read(&self) -> u16 {
T::regs().dor(Self::IDX).read().dor()
}
/// Set HFSEL as appropriate for the current peripheral clock frequency.
#[cfg(dac_v5)]
fn set_hfsel(&mut self) {
if T::frequency() >= crate::time::mhz(80) {
critical_section::with(|_| {
T::regs().cr().modify(|reg| {
reg.set_hfsel(true);
});
});
}
}
/// Set HFSEL as appropriate for the current peripheral clock frequency.
#[cfg(any(dac_v6, dac_v7))]
fn set_hfsel(&mut self) {
if T::frequency() >= crate::time::mhz(160) {
critical_section::with(|_| {
T::regs().mcr().modify(|reg| {
reg.set_hfsel(0b10);
});
});
} else if T::frequency() >= crate::time::mhz(80) {
critical_section::with(|_| {
T::regs().mcr().modify(|reg| {
reg.set_hfsel(0b01);
});
});
}
}
}
macro_rules! impl_dma_methods {
($n:literal, $trait:ident) => {
impl<'d, T: Instance, DMA> DacChannel<'d, T, $n, DMA>
where
DMA: $trait<T>,
{
/// Write `data` to this channel via DMA.
///
/// To prevent delays or glitches when outputing a periodic waveform, the `circular`
/// flag can be set. This configures a circular DMA transfer that continually outputs
/// `data`. Note that for performance reasons in circular mode the transfer-complete
/// interrupt is disabled.
#[cfg(not(gpdma))]
pub async fn write(&mut self, data: ValueArray<'_>, circular: bool) {
// Enable DAC and DMA
T::regs().cr().modify(|w| {
w.set_en(Self::IDX, true);
w.set_dmaen(Self::IDX, true);
});
let tx_request = self.dma.request();
let dma_channel = &mut self.dma;
let tx_options = crate::dma::TransferOptions {
circular,
half_transfer_ir: false,
complete_transfer_ir: !circular,
..Default::default()
};
// Initiate the correct type of DMA transfer depending on what data is passed
let tx_f = match data {
ValueArray::Bit8(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr8r(Self::IDX).as_ptr() as *mut u8,
tx_options,
)
},
ValueArray::Bit12Left(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12l(Self::IDX).as_ptr() as *mut u16,
tx_options,
)
},
ValueArray::Bit12Right(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12r(Self::IDX).as_ptr() as *mut u16,
tx_options,
)
},
};
tx_f.await;
T::regs().cr().modify(|w| {
w.set_en(Self::IDX, false);
w.set_dmaen(Self::IDX, false);
});
}
}
};
}
impl_dma_methods!(1, DacDma1);
impl_dma_methods!(2, DacDma2);
impl<'d, T: Instance, const N: u8, DMA> Drop for DacChannel<'d, T, N, DMA> {
fn drop(&mut self) {
T::disable();
}
}
/// DAC driver.
///
/// Use this struct when you want to use both channels, either together or independently.
///
/// # Example
///
/// ```ignore
/// // Pins may need to be changed for your specific device.
/// let (dac_ch1, dac_ch2) = embassy_stm32::dac::Dac::new(p.DAC, NoDma, NoDma, p.PA4, p.PA5).split();
/// ```
pub struct Dac<'d, T: Instance, DMACh1 = NoDma, DMACh2 = NoDma> {
ch1: DacChannel<'d, T, 1, DMACh1>,
ch2: DacChannel<'d, T, 2, DMACh2>,
}
impl<'d, T: Instance, DMACh1, DMACh2> Dac<'d, T, DMACh1, DMACh2> {
/// Create a new `Dac` instance, consuming the underlying DAC peripheral.
///
/// This struct allows you to access both channels of the DAC, where available. You can either
/// call `split()` to obtain separate `DacChannel`s, or use methods on `Dac` to use
/// the two channels together.
///
/// The channels are enabled on creation and begins to drive their output pins.
/// Note that some methods, such as `set_trigger()` and `set_mode()`, will
/// disable the channel; you must re-enable them with `enable()`.
///
/// By default, triggering is disabled, but it can be enabled using the `set_trigger()`
/// method on the underlying channels.
pub fn new(
_peri: impl Peripheral<P = T> + 'd,
dma_ch1: impl Peripheral<P = DMACh1> + 'd,
dma_ch2: impl Peripheral<P = DMACh2> + 'd,
pin_ch1: impl Peripheral<P = impl DacPin<T, 1> + crate::gpio::sealed::Pin> + 'd,
pin_ch2: impl Peripheral<P = impl DacPin<T, 2> + crate::gpio::sealed::Pin> + 'd,
) -> Self {
into_ref!(dma_ch1, dma_ch2, pin_ch1, pin_ch2);
pin_ch1.set_as_analog();
pin_ch2.set_as_analog();
// Enable twice to increment the DAC refcount for each channel.
T::enable_and_reset();
T::enable_and_reset();
Self {
ch1: DacCh1 {
phantom: PhantomData,
dma: dma_ch1,
},
ch2: DacCh2 {
phantom: PhantomData,
dma: dma_ch2,
},
}
}
/// Create a new `Dac` instance where the external output pins are not used,
/// so the DAC can only be used to generate internal signals but the GPIO
/// pins remain available for other functions.
///
/// This struct allows you to access both channels of the DAC, where available. You can either
/// call `split()` to obtain separate `DacChannel`s, or use methods on `Dac` to use the two
/// channels together.
///
/// The channels are set to [`Mode::NormalInternalUnbuffered`] and enabled on creation.
/// Note that some methods, such as `set_trigger()` and `set_mode()`, will disable the
/// channel; you must re-enable them with `enable()`.
///
/// By default, triggering is disabled, but it can be enabled using the `set_trigger()`
/// method on the underlying channels.
#[cfg(all(any(dac_v3, dac_v4, dac_v5, dac_v6, dac_v7), not(any(stm32h56x, stm32h57x))))]
pub fn new_internal(
_peri: impl Peripheral<P = T> + 'd,
dma_ch1: impl Peripheral<P = DMACh1> + 'd,
dma_ch2: impl Peripheral<P = DMACh2> + 'd,
) -> Self {
into_ref!(dma_ch1, dma_ch2);
// Enable twice to increment the DAC refcount for each channel.
T::enable_and_reset();
T::enable_and_reset();
Self {
ch1: DacCh1 {
phantom: PhantomData,
dma: dma_ch1,
},
ch2: DacCh2 {
phantom: PhantomData,
dma: dma_ch2,
},
}
}
/// Split this `Dac` into separate channels.
///
/// You can access and move the channels around separately after splitting.
pub fn split(self) -> (DacCh1<'d, T, DMACh1>, DacCh2<'d, T, DMACh2>) {
(self.ch1, self.ch2)
}
/// Get mutable reference to CH1
pub fn ch1_mut(&mut self) -> &mut DacCh1<'d, T, TxCh1> {
/// Temporarily access channel 1.
pub fn ch1(&mut self) -> &mut DacCh1<'d, T, DMACh1> {
&mut self.ch1
}
/// Get mutable reference to CH2
pub fn ch2_mut(&mut self) -> &mut DacCh2<'d, T, TxCh2> {
/// Temporarily access channel 2.
pub fn ch2(&mut self) -> &mut DacCh2<'d, T, DMACh2> {
&mut self.ch2
}
/// Get reference to CH1
pub fn ch1(&mut self) -> &DacCh1<'d, T, TxCh1> {
&self.ch1
/// Simultaneously update channels 1 and 2 with a new value.
///
/// If triggering is not enabled, the new values are immediately output;
/// otherwise, they will be output after the next trigger.
pub fn set(&mut self, values: DualValue) {
match values {
DualValue::Bit8(v1, v2) => T::regs().dhr8rd().write(|reg| {
reg.set_dhr(0, v1);
reg.set_dhr(1, v2);
}),
DualValue::Bit12Left(v1, v2) => T::regs().dhr12ld().write(|reg| {
reg.set_dhr(0, v1);
reg.set_dhr(1, v2);
}),
DualValue::Bit12Right(v1, v2) => T::regs().dhr12rd().write(|reg| {
reg.set_dhr(0, v1);
reg.set_dhr(1, v2);
}),
}
}
/// Get reference to CH2
pub fn ch2(&mut self) -> &DacCh2<'d, T, TxCh2> {
&self.ch2
}
}
impl<'d, T: Instance, Tx> DacChannel<T, Tx> for DacCh1<'d, T, Tx> {
const CHANNEL: Channel = Channel::Ch1;
}
impl<'d, T: Instance, Tx> DacChannel<T, Tx> for DacCh2<'d, T, Tx> {
const CHANNEL: Channel = Channel::Ch2;
}
pub(crate) mod sealed {
@ -552,34 +493,36 @@ pub(crate) mod sealed {
}
pub trait Instance: sealed::Instance + RccPeripheral + 'static {}
dma_trait!(DmaCh1, Instance);
dma_trait!(DmaCh2, Instance);
dma_trait!(DacDma1, Instance);
dma_trait!(DacDma2, Instance);
/// Marks a pin that can be used with the DAC
pub trait DacPin<T: Instance, const C: u8>: crate::gpio::Pin + 'static {}
foreach_peripheral!(
(dac, $inst:ident) => {
// H7 uses single bit for both DAC1 and DAC2, this is a hack until a proper fix is implemented
#[cfg(any(rcc_h7, rcc_h7rm0433))]
impl crate::rcc::sealed::RccPeripheral for peripherals::$inst {
fn frequency() -> crate::time::Hertz {
critical_section::with(|_| unsafe { crate::rcc::get_freqs().pclk1 })
}
// H7 uses single bit for both DAC1 and DAC2, this is a hack until a proper fix is implemented
#[cfg(any(rcc_h7, rcc_h7rm0433))]
impl crate::rcc::sealed::RccPeripheral for peripherals::$inst {
fn frequency() -> crate::time::Hertz {
critical_section::with(|_| unsafe { crate::rcc::get_freqs().pclk1 })
}
fn enable_and_reset_with_cs(_cs: critical_section::CriticalSection) {
crate::pac::RCC.apb1lrstr().modify(|w| w.set_dac12rst(true));
crate::pac::RCC.apb1lrstr().modify(|w| w.set_dac12rst(false));
crate::pac::RCC.apb1lenr().modify(|w| w.set_dac12en(true));
}
fn enable_and_reset_with_cs(_cs: critical_section::CriticalSection) {
// TODO: Increment refcount?
crate::pac::RCC.apb1lrstr().modify(|w| w.set_dac12rst(true));
crate::pac::RCC.apb1lrstr().modify(|w| w.set_dac12rst(false));
crate::pac::RCC.apb1lenr().modify(|w| w.set_dac12en(true));
}
fn disable_with_cs(_cs: critical_section::CriticalSection) {
crate::pac::RCC.apb1lenr().modify(|w| w.set_dac12en(false))
}
}
fn disable_with_cs(_cs: critical_section::CriticalSection) {
// TODO: Decrement refcount?
crate::pac::RCC.apb1lenr().modify(|w| w.set_dac12en(false))
}
}
#[cfg(any(rcc_h7, rcc_h7rm0433))]
impl crate::rcc::RccPeripheral for peripherals::$inst {}
#[cfg(any(rcc_h7, rcc_h7rm0433))]
impl crate::rcc::RccPeripheral for peripherals::$inst {}
impl crate::dac::sealed::Instance for peripherals::$inst {
fn regs() -> &'static crate::pac::dac::Dac {

View File

@ -0,0 +1,282 @@
/// Trigger selection for STM32F0.
#[cfg(stm32f0)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
Tim3 = 1,
Tim7 = 2,
Tim15 = 3,
Tim2 = 4,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for STM32F1.
#[cfg(stm32f1)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
#[cfg(any(stm32f100, stm32f105, stm32f107))]
Tim3 = 1,
#[cfg(any(stm32f101, stm32f103))]
Tim8 = 1,
Tim7 = 2,
#[cfg(any(stm32f101, stm32f103, stm32f105, stm32f107))]
Tim5 = 3,
#[cfg(all(stm32f100, any(flashsize_4, flashsize_6, flashsize_8, flashsize_b)))]
Tim15 = 3,
#[cfg(all(stm32f100, any(flashsize_c, flashsize_d, flashsize_e)))]
/// Can be remapped to TIM15 with MISC_REMAP in AFIO_MAPR2.
Tim5Or15 = 3,
Tim2 = 4,
Tim4 = 5,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for STM32F2/F4/F7/L4, except F410 or L4+.
#[cfg(all(any(stm32f2, stm32f4, stm32f7, stm32l4_nonplus), not(stm32f410)))]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
Tim8 = 1,
#[cfg(not(any(stm32l45x, stm32l46x)))]
Tim7 = 2,
Tim5 = 3,
Tim2 = 4,
Tim4 = 5,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for STM32F410.
#[cfg(stm32f410)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim5 = 3,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for STM32F301/2 and 318.
#[cfg(any(stm32f301, stm32f302, stm32f318))]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
#[cfg(stm32f302)]
/// Requires DAC_TRIG_RMP set in SYSCFG_CFGR1.
Tim3 = 1,
Tim15 = 3,
Tim2 = 4,
#[cfg(all(stm32f302, any(flashsize_6, flashsize_8)))]
Tim4 = 5,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for STM32F303/3x8 (excluding 318 which is like 301, and 378 which is 37x).
#[cfg(any(stm32f303, stm32f328, stm32f358, stm32f398))]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
/// * DAC1: defaults to TIM8 but can be remapped to TIM3 with DAC_TRIG_RMP in SYSCFG_CFGR1
/// * DAC2: always TIM3
Tim8Or3 = 1,
Tim7 = 2,
Tim15 = 3,
Tim2 = 4,
Tim4 = 5,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for STM32F37x.
#[cfg(any(stm32f373, stm32f378))]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
Tim3 = 1,
Tim7 = 2,
/// TIM5 on DAC1, TIM18 on DAC2
Dac1Tim5Dac2Tim18 = 3,
Tim2 = 4,
Tim4 = 5,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for STM32F334.
#[cfg(stm32f334)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
/// Requires DAC_TRIG_RMP set in SYSCFG_CFGR1.
Tim3 = 1,
Tim7 = 2,
/// Can be remapped to HRTIM_DACTRG1 using DAC1_TRIG3_RMP in SYSCFG_CFGR3.
Tim15OrHrtimDacTrg1 = 3,
Tim2 = 4,
/// Requires DAC_TRIG5_RMP set in SYSCFG_CFGR3.
HrtimDacTrg2 = 5,
}
/// Trigger selection for STM32L0.
#[cfg(stm32l0)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
Tim3 = 1,
Tim3Ch3 = 2,
Tim21 = 3,
Tim2 = 4,
Tim7 = 5,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for STM32L1.
#[cfg(stm32l1)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
Tim7 = 2,
Tim9 = 3,
Tim2 = 4,
Tim4 = 5,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for L4+, L5, U5, H7.
#[cfg(any(stm32l4_plus, stm32l5, stm32u5, stm32h7))]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Software = 0,
Tim1 = 1,
Tim2 = 2,
Tim4 = 3,
Tim5 = 4,
Tim6 = 5,
Tim7 = 6,
Tim8 = 7,
Tim15 = 8,
#[cfg(all(stm32h7, hrtim))]
Hrtim1DacTrg1 = 9,
#[cfg(all(stm32h7, hrtim))]
Hrtim1DacTrg2 = 10,
Lptim1 = 11,
#[cfg(not(stm32u5))]
Lptim2 = 12,
#[cfg(stm32u5)]
Lptim3 = 12,
Exti9 = 13,
#[cfg(any(stm32h7ax, stm32h7bx))]
/// RM0455 suggests this might be LPTIM2 on DAC1 and LPTIM3 on DAC2,
/// but it's probably wrong. Please let us know if you find out.
Lptim3 = 14,
#[cfg(any(stm32h72x, stm32h73x))]
Tim23 = 14,
#[cfg(any(stm32h72x, stm32h73x))]
Tim24 = 15,
}
/// Trigger selection for H5.
#[cfg(stm32h5)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Software = 0,
Tim1 = 1,
Tim2 = 2,
#[cfg(any(stm32h56x, stm32h57x))]
Tim4 = 3,
#[cfg(stm32h503)]
Tim3 = 3,
#[cfg(any(stm32h56x, stm32h57x))]
Tim5 = 4,
Tim6 = 5,
Tim7 = 6,
#[cfg(any(stm32h56x, stm32h57x))]
Tim8 = 7,
#[cfg(any(stm32h56x, stm32h57x))]
Tim15 = 8,
Lptim1 = 11,
Lptim2 = 12,
Exti9 = 13,
}
/// Trigger selection for G0.
#[cfg(stm32g0)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Software = 0,
Tim1 = 1,
Tim2 = 2,
Tim3 = 3,
Tim6 = 5,
Tim7 = 6,
Tim15 = 8,
Lptim1 = 11,
Lptim2 = 12,
Exti9 = 13,
}
/// Trigger selection for G4.
#[cfg(stm32g4)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Software = 0,
/// * DAC1, DAC2, DAC4: TIM8
/// * DAC3: TIM1
Dac124Tim8Dac3Tim1 = 1,
Tim7 = 2,
Tim15 = 3,
Tim2 = 4,
Tim4 = 5,
Exti9 = 6,
Tim6 = 7,
Tim3 = 8,
HrtimDacRstTrg1 = 9,
HrtimDacRstTrg2 = 10,
HrtimDacRstTrg3 = 11,
HrtimDacRstTrg4 = 12,
HrtimDacRstTrg5 = 13,
HrtimDacRstTrg6 = 14,
/// * DAC1, DAC4: HRTIM_DAC_TRG1
/// * DAC2: HRTIM_DAC_TRG2
/// * DAC3: HRTIM_DAC_TRG3
HrtimDacTrg123 = 15,
}
/// Trigger selection for WL.
#[cfg(stm32wl)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Software = 0,
Tim1 = 1,
Tim2 = 2,
Lptim1 = 11,
Lptim2 = 12,
Lptim3 = 13,
Exti9 = 14,
}
impl TriggerSel {
pub fn tsel(&self) -> u8 {
*self as u8
}
}

View File

@ -299,19 +299,15 @@ impl<'a, C: Channel> Transfer<'a, C> {
pub fn request_stop(&mut self) {
let ch = self.channel.regs().ch(self.channel.num());
// Disable the channel. Keep the IEs enabled so the irqs still fire.
ch.cr().write(|w| {
w.set_tcie(true);
w.set_useie(true);
w.set_dteie(true);
w.set_suspie(true);
ch.cr().modify(|w| {
w.set_susp(true);
})
}
pub fn is_running(&mut self) -> bool {
let ch = self.channel.regs().ch(self.channel.num());
!ch.sr().read().tcf()
let sr = ch.sr().read();
!sr.tcf() && !sr.suspf()
}
/// Gets the total remaining transfers for the channel

View File

@ -1,11 +1,14 @@
#![macro_use]
use core::marker::PhantomData;
use crate::interrupt;
#[cfg_attr(i2c_v1, path = "v1.rs")]
#[cfg_attr(i2c_v2, path = "v2.rs")]
mod _version;
pub use _version::*;
use embassy_sync::waitqueue::AtomicWaker;
use crate::peripherals;
@ -23,6 +26,20 @@ pub enum Error {
pub(crate) mod sealed {
use super::*;
pub struct State {
#[allow(unused)]
pub waker: AtomicWaker,
}
impl State {
pub const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
}
}
}
pub trait Instance: crate::rcc::RccPeripheral {
fn regs() -> crate::pac::i2c::I2c;
fn state() -> &'static State;
@ -30,7 +47,8 @@ pub(crate) mod sealed {
}
pub trait Instance: sealed::Instance + 'static {
type Interrupt: interrupt::typelevel::Interrupt;
type EventInterrupt: interrupt::typelevel::Interrupt;
type ErrorInterrupt: interrupt::typelevel::Interrupt;
}
pin_trait!(SclPin, Instance);
@ -38,21 +56,148 @@ pin_trait!(SdaPin, Instance);
dma_trait!(RxDma, Instance);
dma_trait!(TxDma, Instance);
foreach_interrupt!(
($inst:ident, i2c, $block:ident, EV, $irq:ident) => {
/// Interrupt handler.
pub struct EventInterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::EventInterrupt> for EventInterruptHandler<T> {
unsafe fn on_interrupt() {
_version::on_interrupt::<T>()
}
}
pub struct ErrorInterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::ErrorInterrupt> for ErrorInterruptHandler<T> {
unsafe fn on_interrupt() {
_version::on_interrupt::<T>()
}
}
foreach_peripheral!(
(i2c, $inst:ident) => {
impl sealed::Instance for peripherals::$inst {
fn regs() -> crate::pac::i2c::I2c {
crate::pac::$inst
}
fn state() -> &'static State {
static STATE: State = State::new();
fn state() -> &'static sealed::State {
static STATE: sealed::State = sealed::State::new();
&STATE
}
}
impl Instance for peripherals::$inst {
type Interrupt = crate::interrupt::typelevel::$irq;
type EventInterrupt = crate::_generated::peripheral_interrupts::$inst::EV;
type ErrorInterrupt = crate::_generated::peripheral_interrupts::$inst::ER;
}
};
);
mod eh02 {
use super::*;
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T> {
type Error = Error;
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> {
type Error = Error;
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> {
type Error = Error;
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
use crate::dma::NoDma;
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::Bus => embedded_hal_1::i2c::ErrorKind::Bus,
Self::Arbitration => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
Self::Nack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Unknown)
}
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
Self::Crc => embedded_hal_1::i2c::ErrorKind::Other,
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
Self::ZeroLengthTransfer => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_1::i2c::ErrorType for I2c<'d, T, TXDMA, RXDMA> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T, NoDma, NoDma> {
fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, read)
}
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
fn transaction(
&mut self,
_address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
todo!();
}
}
}
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
mod eha {
use super::*;
impl<'d, T: Instance, TXDMA: TxDma<T>, RXDMA: RxDma<T>> embedded_hal_async::i2c::I2c for I2c<'d, T, TXDMA, RXDMA> {
async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.read(address, read).await
}
async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.write(address, write).await
}
async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.write_read(address, write, read).await
}
async fn transaction(
&mut self,
address: u8,
operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
let _ = address;
let _ = operations;
todo!()
}
}
}

View File

@ -1,23 +1,33 @@
use core::future::poll_fn;
use core::marker::PhantomData;
use core::task::Poll;
use embassy_embedded_hal::SetConfig;
use embassy_futures::select::{select, Either};
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use crate::dma::NoDma;
use super::*;
use crate::dma::{NoDma, Transfer};
use crate::gpio::sealed::AFType;
use crate::gpio::Pull;
use crate::i2c::{Error, Instance, SclPin, SdaPin};
use crate::interrupt::typelevel::Interrupt;
use crate::pac::i2c;
use crate::time::Hertz;
use crate::{interrupt, Peripheral};
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {}
pub unsafe fn on_interrupt<T: Instance>() {
let regs = T::regs();
// i2c v2 only woke the task on transfer complete interrupts. v1 uses interrupts for a bunch of
// other stuff, so we wake the task on every interrupt.
T::state().waker.wake();
critical_section::with(|_| {
// Clear event interrupt flag.
regs.cr2().modify(|w| {
w.set_itevten(false);
w.set_iterren(false);
});
});
}
#[non_exhaustive]
@ -27,14 +37,6 @@ pub struct Config {
pub scl_pullup: bool,
}
pub struct State {}
impl State {
pub(crate) const fn new() -> Self {
Self {}
}
}
pub struct I2c<'d, T: Instance, TXDMA = NoDma, RXDMA = NoDma> {
phantom: PhantomData<&'d mut T>,
#[allow(dead_code)]
@ -48,7 +50,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
_peri: impl Peripheral<P = T> + 'd,
scl: impl Peripheral<P = impl SclPin<T>> + 'd,
sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::EventInterrupt, EventInterruptHandler<T>>
+ interrupt::typelevel::Binding<T::ErrorInterrupt, ErrorInterruptHandler<T>>
+ 'd,
tx_dma: impl Peripheral<P = TXDMA> + 'd,
rx_dma: impl Peripheral<P = RXDMA> + 'd,
freq: Hertz,
@ -98,6 +102,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
reg.set_pe(true);
});
unsafe { T::EventInterrupt::enable() };
unsafe { T::ErrorInterrupt::enable() };
Self {
phantom: PhantomData,
tx_dma,
@ -105,40 +112,58 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
}
}
fn check_and_clear_error_flags(&self) -> Result<i2c::regs::Sr1, Error> {
fn check_and_clear_error_flags() -> Result<i2c::regs::Sr1, Error> {
// Note that flags should only be cleared once they have been registered. If flags are
// cleared otherwise, there may be an inherent race condition and flags may be missed.
let sr1 = T::regs().sr1().read();
if sr1.timeout() {
T::regs().sr1().modify(|reg| reg.set_timeout(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_timeout(false);
});
return Err(Error::Timeout);
}
if sr1.pecerr() {
T::regs().sr1().modify(|reg| reg.set_pecerr(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_pecerr(false);
});
return Err(Error::Crc);
}
if sr1.ovr() {
T::regs().sr1().modify(|reg| reg.set_ovr(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_ovr(false);
});
return Err(Error::Overrun);
}
if sr1.af() {
T::regs().sr1().modify(|reg| reg.set_af(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_af(false);
});
return Err(Error::Nack);
}
if sr1.arlo() {
T::regs().sr1().modify(|reg| reg.set_arlo(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_arlo(false);
});
return Err(Error::Arbitration);
}
// The errata indicates that BERR may be incorrectly detected. It recommends ignoring and
// clearing the BERR bit instead.
if sr1.berr() {
T::regs().sr1().modify(|reg| reg.set_berr(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_berr(false);
});
}
Ok(sr1)
@ -157,13 +182,13 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
});
// Wait until START condition was generated
while !self.check_and_clear_error_flags()?.start() {
while !Self::check_and_clear_error_flags()?.start() {
check_timeout()?;
}
// Also wait until signalled we're master and everything is waiting for us
while {
self.check_and_clear_error_flags()?;
Self::check_and_clear_error_flags()?;
let sr2 = T::regs().sr2().read();
!sr2.msl() && !sr2.busy()
@ -177,7 +202,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until address was sent
// Wait for the address to be acknowledged
// Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set.
while !self.check_and_clear_error_flags()?.addr() {
while !Self::check_and_clear_error_flags()?.addr() {
check_timeout()?;
}
@ -197,7 +222,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until we're ready for sending
while {
// Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set.
!self.check_and_clear_error_flags()?.txe()
!Self::check_and_clear_error_flags()?.txe()
} {
check_timeout()?;
}
@ -208,7 +233,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until byte is transferred
while {
// Check for any potential error conditions.
!self.check_and_clear_error_flags()?.btf()
!Self::check_and_clear_error_flags()?.btf()
} {
check_timeout()?;
}
@ -219,7 +244,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
fn recv_byte(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<u8, Error> {
while {
// Check for any potential error conditions.
self.check_and_clear_error_flags()?;
Self::check_and_clear_error_flags()?;
!T::regs().sr1().read().rxne()
} {
@ -244,7 +269,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
});
// Wait until START condition was generated
while !self.check_and_clear_error_flags()?.start() {
while !Self::check_and_clear_error_flags()?.start() {
check_timeout()?;
}
@ -261,7 +286,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until address was sent
// Wait for the address to be acknowledged
while !self.check_and_clear_error_flags()?.addr() {
while !Self::check_and_clear_error_flags()?.addr() {
check_timeout()?;
}
@ -336,6 +361,356 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
pub fn blocking_write_read(&mut self, addr: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> {
self.blocking_write_read_timeout(addr, write, read, || Ok(()))
}
// Async
#[inline] // pretty sure this should always be inlined
fn enable_interrupts() -> () {
T::regs().cr2().modify(|w| {
w.set_iterren(true);
w.set_itevten(true);
});
}
async fn write_with_stop(&mut self, address: u8, write: &[u8], send_stop: bool) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
let dma_transfer = unsafe {
let regs = T::regs();
regs.cr2().modify(|w| {
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register.
w.set_dmaen(true);
w.set_itbufen(false);
});
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event.
let dst = regs.dr().as_ptr() as *mut u8;
let ch = &mut self.tx_dma;
let request = ch.request();
Transfer::new_write(ch, request, write, dst, Default::default())
};
let on_drop = OnDrop::new(|| {
let regs = T::regs();
regs.cr2().modify(|w| {
w.set_dmaen(false);
w.set_iterren(false);
w.set_itevten(false);
})
});
Self::enable_interrupts();
// Send a START condition
T::regs().cr1().modify(|reg| {
reg.set_start(true);
});
let state = T::state();
// Wait until START condition was generated
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.start() {
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
// Also wait until signalled we're master and everything is waiting for us
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(_) => {
let sr2 = T::regs().sr2().read();
if !sr2.msl() && !sr2.busy() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
}
}
})
.await?;
// Set up current address, we're trying to talk to
Self::enable_interrupts();
T::regs().dr().write(|reg| reg.set_dr(address << 1));
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.addr() {
// Clear the ADDR condition by reading SR2.
T::regs().sr2().read();
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
Self::enable_interrupts();
let poll_error = poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
// Unclear why the Err turbofish is necessary here? The compiler didnt require it in the other
// identical poll_fn check_and_clear matches.
Err(e) => Poll::Ready(Err::<T, Error>(e)),
Ok(_) => Poll::Pending,
}
});
// Wait for either the DMA transfer to successfully finish, or an I2C error to occur.
match select(dma_transfer, poll_error).await {
Either::Second(Err(e)) => Err(e),
_ => Ok(()),
}?;
// The I2C transfer itself will take longer than the DMA transfer, so wait for that to finish too.
// 18.3.8 “Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
// requests then wait for a BTF event before programming the Stop condition.”
// TODO: If this has to be done “in the interrupt routine after the EOT interrupt”, where to put it?
T::regs().cr2().modify(|w| {
w.set_dmaen(false);
});
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.btf() {
if send_stop {
T::regs().cr1().modify(|w| {
w.set_stop(true);
});
}
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
drop(on_drop);
// Fallthrough is success
Ok(())
}
pub async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
self.write_with_stop(address, write, true).await?;
// Wait for STOP condition to transmit.
Self::enable_interrupts();
poll_fn(|cx| {
T::state().waker.register(cx.waker());
// TODO: error interrupts are enabled here, should we additional check for and return errors?
if T::regs().cr1().read().stop() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
})
.await?;
Ok(())
}
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
{
let state = T::state();
let buffer_len = buffer.len();
let dma_transfer = unsafe {
let regs = T::regs();
regs.cr2().modify(|w| {
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register.
w.set_itbufen(false);
w.set_dmaen(true);
});
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event.
let src = regs.dr().as_ptr() as *mut u8;
let ch = &mut self.rx_dma;
let request = ch.request();
Transfer::new_read(ch, request, src, buffer, Default::default())
};
let on_drop = OnDrop::new(|| {
let regs = T::regs();
regs.cr2().modify(|w| {
w.set_dmaen(false);
w.set_iterren(false);
w.set_itevten(false);
})
});
Self::enable_interrupts();
// Send a START condition and set ACK bit
T::regs().cr1().modify(|reg| {
reg.set_start(true);
reg.set_ack(true);
});
// Wait until START condition was generated
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.start() {
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
// Also wait until signalled we're master and everything is waiting for us
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
// blocking read didnt have a check_and_clear call here, but blocking write did so
// Im adding it here in case that was an oversight.
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(_) => {
let sr2 = T::regs().sr2().read();
if !sr2.msl() && !sr2.busy() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
}
}
})
.await?;
// Set up current address, we're trying to talk to
T::regs().dr().write(|reg| reg.set_dr((address << 1) + 1));
// Wait for the address to be acknowledged
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.addr() {
// 18.3.8: When a single byte must be received: the NACK must be programmed during EV6
// event, i.e. program ACK=0 when ADDR=1, before clearing ADDR flag.
if buffer_len == 1 {
T::regs().cr1().modify(|w| {
w.set_ack(false);
});
}
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
// Clear ADDR condition by reading SR2
T::regs().sr2().read();
// 18.3.8: When a single byte must be received: [snip] Then the
// user can program the STOP condition either after clearing ADDR flag, or in the
// DMA Transfer Complete interrupt routine.
if buffer_len == 1 {
T::regs().cr1().modify(|w| {
w.set_stop(true);
});
} else {
// If, in the I2C_CR2 register, the LAST bit is set, I2C
// automatically sends a NACK after the next byte following EOT_1. The user can
// generate a Stop condition in the DMA Transfer Complete interrupt routine if enabled.
T::regs().cr2().modify(|w| {
w.set_last(true);
})
}
// Wait for bytes to be received, or an error to occur.
Self::enable_interrupts();
let poll_error = poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err::<T, Error>(e)),
_ => Poll::Pending,
}
});
match select(dma_transfer, poll_error).await {
Either::Second(Err(e)) => Err(e),
_ => Ok(()),
}?;
// Wait for the STOP to be sent (STOP bit cleared).
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
// TODO: error interrupts are enabled here, should we additional check for and return errors?
if T::regs().cr1().read().stop() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
})
.await?;
drop(on_drop);
// Fallthrough is success
Ok(())
}
pub async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
TXDMA: crate::i2c::TxDma<T>,
{
self.write_with_stop(address, write, false).await?;
self.read(address, read).await
}
}
impl<'d, T: Instance, TXDMA, RXDMA> Drop for I2c<'d, T, TXDMA, RXDMA> {
@ -344,77 +719,6 @@ impl<'d, T: Instance, TXDMA, RXDMA> Drop for I2c<'d, T, TXDMA, RXDMA> {
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T> {
type Error = Error;
fn read(&mut self, addr: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(addr, read)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> {
type Error = Error;
fn write(&mut self, addr: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(addr, write)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> {
type Error = Error;
fn write_read(&mut self, addr: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(addr, write, read)
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::Bus => embedded_hal_1::i2c::ErrorKind::Bus,
Self::Arbitration => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
Self::Nack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Unknown)
}
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
Self::Crc => embedded_hal_1::i2c::ErrorKind::Other,
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
Self::ZeroLengthTransfer => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, T: Instance> embedded_hal_1::i2c::ErrorType for I2c<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T> {
fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, read)
}
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
fn transaction(
&mut self,
_address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
todo!();
}
}
}
enum Mode {
Fast,
Standard,

View File

@ -1,48 +1,51 @@
use core::cmp;
#[cfg(feature = "time")]
use core::future::poll_fn;
use core::marker::PhantomData;
#[cfg(feature = "time")]
use core::task::Poll;
use embassy_embedded_hal::SetConfig;
#[cfg(feature = "time")]
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
#[cfg(feature = "time")]
use embassy_time::{Duration, Instant};
use crate::dma::NoDma;
#[cfg(feature = "time")]
use crate::dma::Transfer;
use super::*;
use crate::dma::{NoDma, Transfer};
use crate::gpio::sealed::AFType;
use crate::gpio::Pull;
use crate::i2c::{Error, Instance, SclPin, SdaPin};
use crate::interrupt::typelevel::Interrupt;
use crate::pac::i2c;
use crate::time::Hertz;
use crate::{interrupt, Peripheral};
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
#[cfg(feature = "time")]
fn timeout_fn(timeout: Duration) -> impl Fn() -> Result<(), Error> {
let deadline = Instant::now() + timeout;
move || {
if Instant::now() > deadline {
Err(Error::Timeout)
} else {
Ok(())
}
}
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let regs = T::regs();
let isr = regs.isr().read();
#[cfg(not(feature = "time"))]
pub fn no_timeout_fn() -> impl Fn() -> Result<(), Error> {
move || Ok(())
}
if isr.tcr() || isr.tc() {
T::state().waker.wake();
}
// The flag can only be cleared by writting to nbytes, we won't do that here, so disable
// the interrupt
critical_section::with(|_| {
regs.cr1().modify(|w| w.set_tcie(false));
});
pub unsafe fn on_interrupt<T: Instance>() {
let regs = T::regs();
let isr = regs.isr().read();
if isr.tcr() || isr.tc() {
T::state().waker.wake();
}
// The flag can only be cleared by writting to nbytes, we won't do that here, so disable
// the interrupt
critical_section::with(|_| {
regs.cr1().modify(|w| w.set_tcie(false));
});
}
#[non_exhaustive]
@ -65,18 +68,6 @@ impl Default for Config {
}
}
pub struct State {
waker: AtomicWaker,
}
impl State {
pub(crate) const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
}
}
}
pub struct I2c<'d, T: Instance, TXDMA = NoDma, RXDMA = NoDma> {
_peri: PeripheralRef<'d, T>,
#[allow(dead_code)]
@ -92,7 +83,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
peri: impl Peripheral<P = T> + 'd,
scl: impl Peripheral<P = impl SclPin<T>> + 'd,
sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::EventInterrupt, EventInterruptHandler<T>>
+ interrupt::typelevel::Binding<T::ErrorInterrupt, ErrorInterruptHandler<T>>
+ 'd,
tx_dma: impl Peripheral<P = TXDMA> + 'd,
rx_dma: impl Peripheral<P = RXDMA> + 'd,
freq: Hertz,
@ -138,8 +131,8 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
reg.set_pe(true);
});
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
unsafe { T::EventInterrupt::enable() };
unsafe { T::ErrorInterrupt::enable() };
Self {
_peri: peri,
@ -260,21 +253,12 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
}
fn flush_txdr(&self) {
//if $i2c.isr.read().txis().bit_is_set() {
//$i2c.txdr.write(|w| w.txdata().bits(0));
//}
if T::regs().isr().read().txis() {
T::regs().txdr().write(|w| w.set_txdata(0));
}
if !T::regs().isr().read().txe() {
T::regs().isr().modify(|w| w.set_txe(true))
}
// If TXDR is not flagged as empty, write 1 to flush it
//if $i2c.isr.read().txe().is_not_empty() {
//$i2c.isr.write(|w| w.txe().set_bit());
//}
}
fn wait_txe(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<(), Error> {
@ -437,7 +421,6 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
result
}
#[cfg(feature = "time")]
async fn write_dma_internal(
&mut self,
address: u8,
@ -528,7 +511,6 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(())
}
#[cfg(feature = "time")]
async fn read_dma_internal(
&mut self,
address: u8,
@ -610,42 +592,38 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// =========================
// Async public API
#[cfg(feature = "time")]
pub async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
self.write_timeout(address, write, self.timeout).await
}
#[cfg(feature = "time")]
pub async fn write_timeout(&mut self, address: u8, write: &[u8], timeout: Duration) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
if write.is_empty() {
self.write_internal(address, write, true, timeout_fn(timeout))
self.write_internal(address, write, true, timeout_fn(self.timeout))
} else {
embassy_time::with_timeout(
timeout,
self.write_dma_internal(address, write, true, true, timeout_fn(timeout)),
self.timeout,
self.write_dma_internal(address, write, true, true, timeout_fn(self.timeout)),
)
.await
.unwrap_or(Err(Error::Timeout))
}
}
#[cfg(feature = "time")]
pub async fn write_vectored(&mut self, address: u8, write: &[&[u8]]) -> Result<(), Error>
#[cfg(not(feature = "time"))]
pub async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
self.write_vectored_timeout(address, write, self.timeout).await
if write.is_empty() {
self.write_internal(address, write, true, no_timeout_fn())
} else {
self.write_dma_internal(address, write, true, true, no_timeout_fn())
.await
}
}
#[cfg(feature = "time")]
pub async fn write_vectored_timeout(&mut self, address: u8, write: &[&[u8]], timeout: Duration) -> Result<(), Error>
pub async fn write_vectored(&mut self, address: u8, write: &[&[u8]]) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
@ -661,8 +639,8 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
let is_last = next.is_none();
embassy_time::with_timeout(
timeout,
self.write_dma_internal(address, c, first, is_last, timeout_fn(timeout)),
self.timeout,
self.write_dma_internal(address, c, first, is_last, timeout_fn(self.timeout)),
)
.await
.unwrap_or(Err(Error::Timeout))?;
@ -672,66 +650,79 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(())
}
#[cfg(not(feature = "time"))]
pub async fn write_vectored(&mut self, address: u8, write: &[&[u8]]) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
if write.is_empty() {
return Err(Error::ZeroLengthTransfer);
}
let mut iter = write.iter();
let mut first = true;
let mut current = iter.next();
while let Some(c) = current {
let next = iter.next();
let is_last = next.is_none();
self.write_dma_internal(address, c, first, is_last, no_timeout_fn())
.await?;
first = false;
current = next;
}
Ok(())
}
#[cfg(feature = "time")]
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
{
self.read_timeout(address, buffer, self.timeout).await
if buffer.is_empty() {
self.read_internal(address, buffer, false, timeout_fn(self.timeout))
} else {
embassy_time::with_timeout(
self.timeout,
self.read_dma_internal(address, buffer, false, timeout_fn(self.timeout)),
)
.await
.unwrap_or(Err(Error::Timeout))
}
}
#[cfg(feature = "time")]
pub async fn read_timeout(&mut self, address: u8, buffer: &mut [u8], timeout: Duration) -> Result<(), Error>
#[cfg(not(feature = "time"))]
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
{
if buffer.is_empty() {
self.read_internal(address, buffer, false, timeout_fn(timeout))
self.read_internal(address, buffer, false, no_timeout_fn())
} else {
embassy_time::with_timeout(
timeout,
self.read_dma_internal(address, buffer, false, timeout_fn(timeout)),
)
.await
.unwrap_or(Err(Error::Timeout))
self.read_dma_internal(address, buffer, false, no_timeout_fn()).await
}
}
#[cfg(feature = "time")]
pub async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error>
where
TXDMA: super::TxDma<T>,
RXDMA: super::RxDma<T>,
{
self.write_read_timeout(address, write, read, self.timeout).await
}
#[cfg(feature = "time")]
pub async fn write_read_timeout(
&mut self,
address: u8,
write: &[u8],
read: &mut [u8],
timeout: Duration,
) -> Result<(), Error>
where
TXDMA: super::TxDma<T>,
RXDMA: super::RxDma<T>,
{
let start_instant = Instant::now();
let check_timeout = timeout_fn(timeout);
let check_timeout = timeout_fn(self.timeout);
if write.is_empty() {
self.write_internal(address, write, false, &check_timeout)?;
} else {
embassy_time::with_timeout(
timeout,
self.timeout,
self.write_dma_internal(address, write, true, true, &check_timeout),
)
.await
.unwrap_or(Err(Error::Timeout))?;
}
let time_left_until_timeout = timeout - Instant::now().duration_since(start_instant);
let time_left_until_timeout = self.timeout - Instant::now().duration_since(start_instant);
if read.is_empty() {
self.read_internal(address, read, true, &check_timeout)?;
@ -747,6 +738,28 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
Ok(())
}
#[cfg(not(feature = "time"))]
pub async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error>
where
TXDMA: super::TxDma<T>,
RXDMA: super::RxDma<T>,
{
let no_timeout = no_timeout_fn();
if write.is_empty() {
self.write_internal(address, write, false, &no_timeout)?;
} else {
self.write_dma_internal(address, write, true, true, &no_timeout).await?;
}
if read.is_empty() {
self.read_internal(address, read, true, &no_timeout)?;
} else {
self.read_dma_internal(address, read, true, &no_timeout).await?;
}
Ok(())
}
// =========================
// Blocking public API
@ -955,35 +968,6 @@ impl<'d, T: Instance, TXDMA, RXDMA> Drop for I2c<'d, T, TXDMA, RXDMA> {
}
}
#[cfg(feature = "time")]
mod eh02 {
use super::*;
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T> {
type Error = Error;
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> {
type Error = Error;
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> {
type Error = Error;
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
}
}
/// I2C Stop Configuration
///
/// Peripheral options for generating the STOP condition
@ -1108,83 +1092,6 @@ impl Timings {
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::Bus => embedded_hal_1::i2c::ErrorKind::Bus,
Self::Arbitration => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
Self::Nack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Unknown)
}
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
Self::Crc => embedded_hal_1::i2c::ErrorKind::Other,
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
Self::ZeroLengthTransfer => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_1::i2c::ErrorType for I2c<'d, T, TXDMA, RXDMA> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T, NoDma, NoDma> {
fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, read)
}
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
fn transaction(
&mut self,
_address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
todo!();
}
}
}
#[cfg(all(feature = "unstable-traits", feature = "nightly", feature = "time"))]
mod eha {
use super::super::{RxDma, TxDma};
use super::*;
impl<'d, T: Instance, TXDMA: TxDma<T>, RXDMA: RxDma<T>> embedded_hal_async::i2c::I2c for I2c<'d, T, TXDMA, RXDMA> {
async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.read(address, read).await
}
async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.write(address, write).await
}
async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.write_read(address, write, read).await
}
async fn transaction(
&mut self,
address: u8,
operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
let _ = address;
let _ = operations;
todo!()
}
}
}
impl<'d, T: Instance> SetConfig for I2c<'d, T> {
type Config = Hertz;
type ConfigError = ();
@ -1201,15 +1108,3 @@ impl<'d, T: Instance> SetConfig for I2c<'d, T> {
Ok(())
}
}
#[cfg(feature = "time")]
fn timeout_fn(timeout: Duration) -> impl Fn() -> Result<(), Error> {
let deadline = Instant::now() + timeout;
move || {
if Instant::now() > deadline {
Err(Error::Timeout)
} else {
Ok(())
}
}
}

View File

@ -31,12 +31,9 @@ impl From<OpAmpSpeed> for crate::pac::opamp::vals::OpampCsrOpahsm {
/// OpAmp external outputs, wired to a GPIO pad.
///
/// The GPIO output pad is held by this struct to ensure it cannot be used elsewhere.
///
/// This struct can also be used as an ADC input.
pub struct OpAmpOutput<'d, 'p, T: Instance, P: OutputPin<T>> {
pub struct OpAmpOutput<'d, T: Instance> {
_inner: &'d OpAmp<'d, T>,
_output: &'p mut P,
}
/// OpAmp internal outputs, wired directly to ADC inputs.
@ -54,19 +51,12 @@ pub struct OpAmp<'d, T: Instance> {
impl<'d, T: Instance> OpAmp<'d, T> {
/// Create a new driver instance.
///
/// Enables the OpAmp and configures the speed, but
/// does not set any other configuration.
/// Does not enable the opamp, but does set the speed mode on some families.
pub fn new(opamp: impl Peripheral<P = T> + 'd, #[cfg(opamp_g4)] speed: OpAmpSpeed) -> Self {
into_ref!(opamp);
#[cfg(opamp_f3)]
T::regs().opampcsr().modify(|w| {
w.set_opampen(true);
});
#[cfg(opamp_g4)]
T::regs().opamp_csr().modify(|w| {
w.set_opaen(true);
w.set_opahsm(speed.into());
});
@ -74,24 +64,23 @@ impl<'d, T: Instance> OpAmp<'d, T> {
}
/// Configure the OpAmp as a buffer for the provided input pin,
/// outputting to the provided output pin.
/// outputting to the provided output pin, and enable the opamp.
///
/// The input pin is configured for analogue mode but not consumed,
/// so it may subsequently be used for ADC or comparator inputs.
///
/// The output pin is held within the returned [`OpAmpOutput`] struct,
/// preventing it being used elsewhere. The `OpAmpOutput` can then be
/// directly used as an ADC input.
pub fn buffer_ext<'a, 'b, IP, OP>(
&'a mut self,
in_pin: &IP,
out_pin: &'b mut OP,
/// directly used as an ADC input. The opamp will be disabled when the
/// [`OpAmpOutput`] is dropped.
pub fn buffer_ext(
&'d mut self,
in_pin: impl Peripheral<P = impl NonInvertingPin<T> + crate::gpio::sealed::Pin>,
out_pin: impl Peripheral<P = impl OutputPin<T> + crate::gpio::sealed::Pin> + 'd,
gain: OpAmpGain,
) -> OpAmpOutput<'a, 'b, T, OP>
where
IP: NonInvertingPin<T> + crate::gpio::sealed::Pin,
OP: OutputPin<T> + crate::gpio::sealed::Pin,
{
) -> OpAmpOutput<'d, T> {
into_ref!(in_pin);
into_ref!(out_pin);
in_pin.set_as_analog();
out_pin.set_as_analog();
@ -122,24 +111,24 @@ impl<'d, T: Instance> OpAmp<'d, T> {
w.set_opaen(true);
});
OpAmpOutput {
_inner: self,
_output: out_pin,
}
OpAmpOutput { _inner: self }
}
/// Configure the OpAmp as a buffer for the provided input pin,
/// with the output only used internally.
/// with the output only used internally, and enable the opamp.
///
/// The input pin is configured for analogue mode but not consumed,
/// so it may be subsequently used for ADC or comparator inputs.
///
/// The returned `OpAmpInternalOutput` struct may be used as an ADC input.
/// The opamp output will be disabled when it is dropped.
#[cfg(opamp_g4)]
pub fn buffer_int<'a, P>(&'a mut self, pin: &P, gain: OpAmpGain) -> OpAmpInternalOutput<'a, T>
where
P: NonInvertingPin<T> + crate::gpio::sealed::Pin,
{
pub fn buffer_int(
&'d mut self,
pin: impl Peripheral<P = impl NonInvertingPin<T> + crate::gpio::sealed::Pin>,
gain: OpAmpGain,
) -> OpAmpInternalOutput<'d, T> {
into_ref!(pin);
pin.set_as_analog();
let (vm_sel, pga_gain) = match gain {
@ -163,7 +152,21 @@ impl<'d, T: Instance> OpAmp<'d, T> {
}
}
impl<'d, T: Instance> Drop for OpAmp<'d, T> {
impl<'d, T: Instance> Drop for OpAmpOutput<'d, T> {
fn drop(&mut self) {
#[cfg(opamp_f3)]
T::regs().opampcsr().modify(|w| {
w.set_opampen(false);
});
#[cfg(opamp_g4)]
T::regs().opamp_csr().modify(|w| {
w.set_opaen(false);
});
}
}
impl<'d, T: Instance> Drop for OpAmpInternalOutput<'d, T> {
fn drop(&mut self) {
#[cfg(opamp_f3)]
T::regs().opampcsr().modify(|w| {
@ -203,16 +206,16 @@ macro_rules! impl_opamp_external_output {
($inst:ident, $adc:ident, $ch:expr) => {
foreach_adc!(
($adc, $common_inst:ident, $adc_clock:ident) => {
impl<'d, 'p, P: OutputPin<crate::peripherals::$inst>> crate::adc::sealed::AdcPin<crate::peripherals::$adc>
for OpAmpOutput<'d, 'p, crate::peripherals::$inst, P>
impl<'d> crate::adc::sealed::AdcPin<crate::peripherals::$adc>
for OpAmpOutput<'d, crate::peripherals::$inst>
{
fn channel(&self) -> u8 {
$ch
}
}
impl<'d, 'p, P: OutputPin<crate::peripherals::$inst>> crate::adc::AdcPin<crate::peripherals::$adc>
for OpAmpOutput<'d, 'p, crate::peripherals::$inst, P>
impl<'d> crate::adc::AdcPin<crate::peripherals::$adc>
for OpAmpOutput<'d, crate::peripherals::$inst>
{
}
};

View File

@ -1,9 +1,12 @@
use crate::pac::pwr::vals::Vos;
use stm32_metapac::flash::vals::Latency;
pub use crate::pac::rcc::vals::{
Hpre as AHBPrescaler, Pllm as PllPreDiv, Plln as PllMul, Pllp, Pllq, Pllr, Pllsrc as PllSource,
Ppre as APBPrescaler, Sw as Sysclk,
Hpre as AHBPrescaler, Pllm as PllPreDiv, Plln as PllMul, Pllp as PllPDiv, Pllq as PllQDiv, Pllr as PllRDiv,
Pllsrc as PllSource, Ppre as APBPrescaler, Sw as Sysclk,
};
use crate::pac::{FLASH, PWR, RCC};
#[cfg(any(stm32f4, stm32f7))]
use crate::pac::PWR;
use crate::pac::{FLASH, RCC};
use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz;
@ -49,11 +52,27 @@ pub struct Pll {
pub mul: PllMul,
/// PLL P division factor. If None, PLL P output is disabled.
pub divp: Option<Pllp>,
pub divp: Option<PllPDiv>,
/// PLL Q division factor. If None, PLL Q output is disabled.
pub divq: Option<Pllq>,
pub divq: Option<PllQDiv>,
/// PLL R division factor. If None, PLL R output is disabled.
pub divr: Option<Pllr>,
pub divr: Option<PllRDiv>,
}
/// Voltage range of the power supply used.
///
/// Used to calculate flash waitstates. See
/// RM0033 - Table 3. Number of wait states according to Cortex®-M3 clock frequency
#[cfg(stm32f2)]
pub enum VoltageScale {
/// 2.7 to 3.6 V
Range0,
/// 2.4 to 2.7 V
Range1,
/// 2.1 to 2.4 V
Range2,
/// 1.8 to 2.1 V
Range3,
}
/// Configuration of the core clocks
@ -66,7 +85,7 @@ pub struct Config {
pub pll_src: PllSource,
pub pll: Option<Pll>,
#[cfg(any(all(stm32f4, not(stm32f410)), stm32f7))]
#[cfg(any(stm32f2, all(stm32f4, not(stm32f410)), stm32f7))]
pub plli2s: Option<Pll>,
#[cfg(any(stm32f446, stm32f427, stm32f437, stm32f4x9, stm32f7))]
pub pllsai: Option<Pll>,
@ -76,6 +95,9 @@ pub struct Config {
pub apb2_pre: APBPrescaler,
pub ls: super::LsConfig,
#[cfg(stm32f2)]
pub voltage: VoltageScale,
}
impl Default for Config {
@ -86,7 +108,7 @@ impl Default for Config {
sys: Sysclk::HSI,
pll_src: PllSource::HSI,
pll: None,
#[cfg(any(all(stm32f4, not(stm32f410)), stm32f7))]
#[cfg(any(stm32f2, all(stm32f4, not(stm32f410)), stm32f7))]
plli2s: None,
#[cfg(any(stm32f446, stm32f427, stm32f437, stm32f4x9, stm32f7))]
pllsai: None,
@ -96,6 +118,9 @@ impl Default for Config {
apb2_pre: APBPrescaler::DIV1,
ls: Default::default(),
#[cfg(stm32f2)]
voltage: VoltageScale::Range3,
}
}
}
@ -103,14 +128,13 @@ impl Default for Config {
pub(crate) unsafe fn init(config: Config) {
// set VOS to SCALE1, if use PLL
// TODO: check real clock speed before set VOS
#[cfg(any(stm32f4, stm32f7))]
if config.pll.is_some() {
PWR.cr1().modify(|w| w.set_vos(Vos::SCALE1));
PWR.cr1().modify(|w| w.set_vos(crate::pac::pwr::vals::Vos::SCALE1));
}
// always enable overdrive for now. Make it configurable in the future.
#[cfg(not(any(
stm32f401, stm32f410, stm32f411, stm32f412, stm32f413, stm32f423, stm32f405, stm32f407, stm32f415, stm32f417
)))]
#[cfg(any(stm32f446, stm32f4x9, stm32f427, stm32f437, stm32f7))]
{
PWR.cr1().modify(|w| w.set_oden(true));
while !PWR.csr1().read().odrdy() {}
@ -158,7 +182,7 @@ pub(crate) unsafe fn init(config: Config) {
source: config.pll_src,
};
let pll = init_pll(PllInstance::Pll, config.pll, &pll_input);
#[cfg(any(all(stm32f4, not(stm32f410)), stm32f7))]
#[cfg(any(stm32f2, all(stm32f4, not(stm32f410)), stm32f7))]
let _plli2s = init_pll(PllInstance::Plli2s, config.plli2s, &pll_input);
#[cfg(any(stm32f446, stm32f427, stm32f437, stm32f4x9, stm32f7))]
let _pllsai = init_pll(PllInstance::Pllsai, config.pllsai, &pll_input);
@ -182,7 +206,48 @@ pub(crate) unsafe fn init(config: Config) {
let rtc = config.ls.init();
flash_setup(hclk);
#[cfg(stm32f2)]
let latency = match (config.voltage, hclk.0) {
(VoltageScale::Range3, ..=16_000_000) => Latency::WS0,
(VoltageScale::Range3, ..=32_000_000) => Latency::WS1,
(VoltageScale::Range3, ..=48_000_000) => Latency::WS2,
(VoltageScale::Range3, ..=64_000_000) => Latency::WS3,
(VoltageScale::Range3, ..=80_000_000) => Latency::WS4,
(VoltageScale::Range3, ..=96_000_000) => Latency::WS5,
(VoltageScale::Range3, ..=112_000_000) => Latency::WS6,
(VoltageScale::Range3, ..=120_000_000) => Latency::WS7,
(VoltageScale::Range2, ..=18_000_000) => Latency::WS0,
(VoltageScale::Range2, ..=36_000_000) => Latency::WS1,
(VoltageScale::Range2, ..=54_000_000) => Latency::WS2,
(VoltageScale::Range2, ..=72_000_000) => Latency::WS3,
(VoltageScale::Range2, ..=90_000_000) => Latency::WS4,
(VoltageScale::Range2, ..=108_000_000) => Latency::WS5,
(VoltageScale::Range2, ..=120_000_000) => Latency::WS6,
(VoltageScale::Range1, ..=24_000_000) => Latency::WS0,
(VoltageScale::Range1, ..=48_000_000) => Latency::WS1,
(VoltageScale::Range1, ..=72_000_000) => Latency::WS2,
(VoltageScale::Range1, ..=96_000_000) => Latency::WS3,
(VoltageScale::Range1, ..=120_000_000) => Latency::WS4,
(VoltageScale::Range0, ..=30_000_000) => Latency::WS0,
(VoltageScale::Range0, ..=60_000_000) => Latency::WS1,
(VoltageScale::Range0, ..=90_000_000) => Latency::WS2,
(VoltageScale::Range0, ..=120_000_000) => Latency::WS3,
_ => unreachable!(),
};
#[cfg(any(stm32f4, stm32f7))]
let latency = {
// Be conservative with voltage ranges
const FLASH_LATENCY_STEP: u32 = 30_000_000;
let latency = (hclk.0 - 1) / FLASH_LATENCY_STEP;
debug!("flash: latency={}", latency);
Latency::from_bits(latency as u8)
};
FLASH.acr().write(|w| w.set_latency(latency));
while FLASH.acr().read().latency() != latency {}
RCC.cfgr().modify(|w| {
w.set_sw(config.sys);
@ -232,7 +297,7 @@ struct PllOutput {
#[derive(PartialEq, Eq, Clone, Copy)]
enum PllInstance {
Pll,
#[cfg(any(all(stm32f4, not(stm32f410)), stm32f7))]
#[cfg(any(stm32f2, all(stm32f4, not(stm32f410)), stm32f7))]
Plli2s,
#[cfg(any(stm32f446, stm32f427, stm32f437, stm32f4x9, stm32f7))]
Pllsai,
@ -244,7 +309,7 @@ fn pll_enable(instance: PllInstance, enabled: bool) {
RCC.cr().modify(|w| w.set_pllon(enabled));
while RCC.cr().read().pllrdy() != enabled {}
}
#[cfg(any(all(stm32f4, not(stm32f410)), stm32f7))]
#[cfg(any(stm32f2, all(stm32f4, not(stm32f410)), stm32f7))]
PllInstance::Plli2s => {
RCC.cr().modify(|w| w.set_plli2son(enabled));
while RCC.cr().read().plli2srdy() != enabled {}
@ -275,6 +340,18 @@ fn init_pll(instance: PllInstance, config: Option<Pll>, input: &PllInput) -> Pll
let vco_freq = in_freq * pll.mul;
assert!(max::PLL_VCO.contains(&vco_freq));
// stm32f2 plls are like swiss cheese
#[cfg(stm32f2)]
match instance {
PllInstance::Pll => {
assert!(pll.divr.is_none());
}
PllInstance::Plli2s => {
assert!(pll.divp.is_none());
assert!(pll.divq.is_none());
}
}
let p = pll.divp.map(|div| vco_freq / div);
let q = pll.divq.map(|div| vco_freq / div);
let r = pll.divr.map(|div| vco_freq / div);
@ -288,6 +365,7 @@ fn init_pll(instance: PllInstance, config: Option<Pll>, input: &PllInput) -> Pll
if let Some(divq) = pll.divq {
$w.set_pllq(divq);
}
#[cfg(any(stm32f4, stm32f7))]
if let Some(divr) = pll.divr {
$w.set_pllr(divr);
}
@ -304,6 +382,12 @@ fn init_pll(instance: PllInstance, config: Option<Pll>, input: &PllInput) -> Pll
PllInstance::Plli2s => RCC.plli2scfgr().write(|w| {
write_fields!(w);
}),
#[cfg(stm32f2)]
PllInstance::Plli2s => RCC.plli2scfgr().write(|w| {
if let Some(divr) = pll.divr {
w.set_pllr(divr);
}
}),
#[cfg(any(stm32f446, stm32f427, stm32f437, stm32f4x9, stm32f7))]
PllInstance::Pllsai => RCC.pllsaicfgr().write(|w| {
write_fields!(w);
@ -316,22 +400,6 @@ fn init_pll(instance: PllInstance, config: Option<Pll>, input: &PllInput) -> Pll
PllOutput { p, q, r }
}
fn flash_setup(clk: Hertz) {
use crate::pac::flash::vals::Latency;
// Be conservative with voltage ranges
const FLASH_LATENCY_STEP: u32 = 30_000_000;
let latency = (clk.0 - 1) / FLASH_LATENCY_STEP;
debug!("flash: latency={}", latency);
let latency = Latency::from_bits(latency as u8);
FLASH.acr().write(|w| {
w.set_latency(latency);
});
while FLASH.acr().read().latency() != latency {}
}
#[cfg(stm32f7)]
mod max {
use core::ops::RangeInclusive;
@ -380,3 +448,22 @@ mod max {
pub(crate) const PLL_IN: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(2_100_000);
pub(crate) const PLL_VCO: RangeInclusive<Hertz> = Hertz(100_000_000)..=Hertz(432_000_000);
}
#[cfg(stm32f2)]
mod max {
use core::ops::RangeInclusive;
use crate::time::Hertz;
pub(crate) const HSE_OSC: RangeInclusive<Hertz> = Hertz(4_000_000)..=Hertz(26_000_000);
pub(crate) const HSE_BYP: RangeInclusive<Hertz> = Hertz(1_000_000)..=Hertz(26_000_000);
pub(crate) const SYSCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(120_000_000);
pub(crate) const HCLK: RangeInclusive<Hertz> = Hertz(0)..=Hertz(SYSCLK.end().0);
pub(crate) const PCLK1: RangeInclusive<Hertz> = Hertz(0)..=Hertz(SYSCLK.end().0 / 4);
pub(crate) const PCLK2: RangeInclusive<Hertz> = Hertz(0)..=Hertz(SYSCLK.end().0 / 2);
pub(crate) const PLL_IN: RangeInclusive<Hertz> = Hertz(0_950_000)..=Hertz(2_100_000);
pub(crate) const PLL_VCO: RangeInclusive<Hertz> = Hertz(192_000_000)..=Hertz(432_000_000);
}

View File

@ -1,320 +0,0 @@
use crate::pac::flash::vals::Latency;
use crate::pac::rcc::vals::Sw;
pub use crate::pac::rcc::vals::{
Hpre as AHBPrescaler, Pllm as PLLPreDiv, Plln as PLLMul, Pllp as PLLPDiv, Pllq as PLLQDiv, Pllsrc as PLLSrc,
Ppre as APBPrescaler,
};
use crate::pac::{FLASH, RCC};
use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz;
/// HSI speed
pub const HSI_FREQ: Hertz = Hertz(16_000_000);
#[derive(Clone, Copy)]
pub struct HSEConfig {
pub frequency: Hertz,
pub source: HSESrc,
}
/// System clock mux source
#[derive(Clone, Copy)]
pub enum ClockSrc {
HSE,
HSI,
PLL,
}
/// HSE clock source
#[derive(Clone, Copy)]
pub enum HSESrc {
/// Crystal/ceramic resonator
Crystal,
/// External clock source, HSE bypassed
Bypass,
}
#[derive(Clone, Copy)]
pub struct PLLConfig {
pub pre_div: PLLPreDiv,
pub mul: PLLMul,
pub p_div: PLLPDiv,
pub q_div: PLLQDiv,
}
impl Default for PLLConfig {
fn default() -> Self {
PLLConfig {
pre_div: PLLPreDiv::DIV16,
mul: PLLMul::MUL192,
p_div: PLLPDiv::DIV2,
q_div: PLLQDiv::DIV4,
}
}
}
impl PLLConfig {
pub fn clocks(&self, src_freq: Hertz) -> PLLClocks {
let in_freq = src_freq / self.pre_div;
let vco_freq = src_freq / self.pre_div * self.mul;
let main_freq = vco_freq / self.p_div;
let pll48_freq = vco_freq / self.q_div;
PLLClocks {
in_freq,
vco_freq,
main_freq,
pll48_freq,
}
}
}
#[derive(Clone, Copy, PartialEq)]
pub struct PLLClocks {
pub in_freq: Hertz,
pub vco_freq: Hertz,
pub main_freq: Hertz,
pub pll48_freq: Hertz,
}
/// Voltage range of the power supply used.
///
/// Used to calculate flash waitstates. See
/// RM0033 - Table 3. Number of wait states according to Cortex®-M3 clock frequency
pub enum VoltageScale {
/// 2.7 to 3.6 V
Range0,
/// 2.4 to 2.7 V
Range1,
/// 2.1 to 2.4 V
Range2,
/// 1.8 to 2.1 V
Range3,
}
impl VoltageScale {
const fn wait_states(&self, ahb_freq: Hertz) -> Option<Latency> {
let ahb_freq = ahb_freq.0;
// Reference: RM0033 - Table 3. Number of wait states according to Cortex®-M3 clock
// frequency
match self {
VoltageScale::Range3 => {
if ahb_freq <= 16_000_000 {
Some(Latency::WS0)
} else if ahb_freq <= 32_000_000 {
Some(Latency::WS1)
} else if ahb_freq <= 48_000_000 {
Some(Latency::WS2)
} else if ahb_freq <= 64_000_000 {
Some(Latency::WS3)
} else if ahb_freq <= 80_000_000 {
Some(Latency::WS4)
} else if ahb_freq <= 96_000_000 {
Some(Latency::WS5)
} else if ahb_freq <= 112_000_000 {
Some(Latency::WS6)
} else if ahb_freq <= 120_000_000 {
Some(Latency::WS7)
} else {
None
}
}
VoltageScale::Range2 => {
if ahb_freq <= 18_000_000 {
Some(Latency::WS0)
} else if ahb_freq <= 36_000_000 {
Some(Latency::WS1)
} else if ahb_freq <= 54_000_000 {
Some(Latency::WS2)
} else if ahb_freq <= 72_000_000 {
Some(Latency::WS3)
} else if ahb_freq <= 90_000_000 {
Some(Latency::WS4)
} else if ahb_freq <= 108_000_000 {
Some(Latency::WS5)
} else if ahb_freq <= 120_000_000 {
Some(Latency::WS6)
} else {
None
}
}
VoltageScale::Range1 => {
if ahb_freq <= 24_000_000 {
Some(Latency::WS0)
} else if ahb_freq <= 48_000_000 {
Some(Latency::WS1)
} else if ahb_freq <= 72_000_000 {
Some(Latency::WS2)
} else if ahb_freq <= 96_000_000 {
Some(Latency::WS3)
} else if ahb_freq <= 120_000_000 {
Some(Latency::WS4)
} else {
None
}
}
VoltageScale::Range0 => {
if ahb_freq <= 30_000_000 {
Some(Latency::WS0)
} else if ahb_freq <= 60_000_000 {
Some(Latency::WS1)
} else if ahb_freq <= 90_000_000 {
Some(Latency::WS2)
} else if ahb_freq <= 120_000_000 {
Some(Latency::WS3)
} else {
None
}
}
}
}
}
/// Clocks configuration
pub struct Config {
pub hse: Option<HSEConfig>,
pub hsi: bool,
pub pll_mux: PLLSrc,
pub pll: PLLConfig,
pub mux: ClockSrc,
pub voltage: VoltageScale,
pub ahb_pre: AHBPrescaler,
pub apb1_pre: APBPrescaler,
pub apb2_pre: APBPrescaler,
pub ls: super::LsConfig,
}
impl Default for Config {
#[inline]
fn default() -> Config {
Config {
hse: None,
hsi: true,
pll_mux: PLLSrc::HSI,
pll: PLLConfig::default(),
voltage: VoltageScale::Range3,
mux: ClockSrc::HSI,
ahb_pre: AHBPrescaler::DIV1,
apb1_pre: APBPrescaler::DIV1,
apb2_pre: APBPrescaler::DIV1,
ls: Default::default(),
}
}
}
pub(crate) unsafe fn init(config: Config) {
// Make sure HSI is enabled
RCC.cr().write(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
if let Some(hse_config) = config.hse {
RCC.cr().modify(|w| {
w.set_hsebyp(match hse_config.source {
HSESrc::Bypass => true,
HSESrc::Crystal => false,
});
w.set_hseon(true)
});
while !RCC.cr().read().hserdy() {}
}
let pll_src_freq = match config.pll_mux {
PLLSrc::HSE => {
let hse_config = config
.hse
.unwrap_or_else(|| panic!("HSE must be configured to be used as PLL input"));
hse_config.frequency
}
PLLSrc::HSI => HSI_FREQ,
};
// Reference: STM32F215xx/217xx datasheet Table 33. Main PLL characteristics
let pll_clocks = config.pll.clocks(pll_src_freq);
assert!(Hertz(950_000) <= pll_clocks.in_freq && pll_clocks.in_freq <= Hertz(2_100_000));
assert!(Hertz(192_000_000) <= pll_clocks.vco_freq && pll_clocks.vco_freq <= Hertz(432_000_000));
assert!(Hertz(24_000_000) <= pll_clocks.main_freq && pll_clocks.main_freq <= Hertz(120_000_000));
// USB actually requires == 48 MHz, but other PLL48 peripherals are fine with <= 48MHz
assert!(pll_clocks.pll48_freq <= Hertz(48_000_000));
RCC.pllcfgr().write(|w| {
w.set_pllsrc(config.pll_mux);
w.set_pllm(config.pll.pre_div);
w.set_plln(config.pll.mul);
w.set_pllp(config.pll.p_div);
w.set_pllq(config.pll.q_div);
});
let (sys_clk, sw) = match config.mux {
ClockSrc::HSI => {
assert!(config.hsi, "HSI must be enabled to be used as system clock");
(HSI_FREQ, Sw::HSI)
}
ClockSrc::HSE => {
let hse_config = config
.hse
.unwrap_or_else(|| panic!("HSE must be configured to be used as PLL input"));
(hse_config.frequency, Sw::HSE)
}
ClockSrc::PLL => {
RCC.cr().modify(|w| w.set_pllon(true));
while !RCC.cr().read().pllrdy() {}
(pll_clocks.main_freq, Sw::PLL1_P)
}
};
// RM0033 Figure 9. Clock tree suggests max SYSCLK/HCLK is 168 MHz, but datasheet specifies PLL
// max output to be 120 MHz, so there's no way to get higher frequencies
assert!(sys_clk <= Hertz(120_000_000));
let ahb_freq = sys_clk / config.ahb_pre;
// Reference: STM32F215xx/217xx datasheet Table 13. General operating conditions
assert!(ahb_freq <= Hertz(120_000_000));
let (apb1_freq, apb1_tim_freq) = match config.apb1_pre {
APBPrescaler::DIV1 => (ahb_freq, ahb_freq),
pre => {
let freq = ahb_freq / pre;
(freq, Hertz(freq.0 * 2))
}
};
// Reference: STM32F215xx/217xx datasheet Table 13. General operating conditions
assert!(apb1_freq <= Hertz(30_000_000));
let (apb2_freq, apb2_tim_freq) = match config.apb2_pre {
APBPrescaler::DIV1 => (ahb_freq, ahb_freq),
pre => {
let freq = ahb_freq / pre;
(freq, Hertz(freq.0 * 2))
}
};
// Reference: STM32F215xx/217xx datasheet Table 13. General operating conditions
assert!(apb2_freq <= Hertz(60_000_000));
let flash_ws = unwrap!(config.voltage.wait_states(ahb_freq));
FLASH.acr().modify(|w| w.set_latency(flash_ws));
RCC.cfgr().modify(|w| {
w.set_sw(sw.into());
w.set_hpre(config.ahb_pre);
w.set_ppre1(config.apb1_pre);
w.set_ppre2(config.apb2_pre);
});
while RCC.cfgr().read().sws().to_bits() != sw.to_bits() {}
// Turn off HSI to save power if we don't need it
if !config.hsi {
RCC.cr().modify(|w| w.set_hsion(false));
}
let rtc = config.ls.init();
set_freqs(Clocks {
sys: sys_clk,
hclk1: ahb_freq,
hclk2: ahb_freq,
hclk3: ahb_freq,
pclk1: apb1_freq,
pclk1_tim: apb1_tim_freq,
pclk2: apb2_freq,
pclk2_tim: apb2_tim_freq,
pll1_q: Some(pll_clocks.pll48_freq),
rtc,
});
}

View File

@ -346,10 +346,7 @@ fn calc_pll(config: &Config, Hertz(sysclk): Hertz) -> (Hertz, PllConfig) {
None => {
cfg_if::cfg_if! {
// For some chips PREDIV is always two, and cannot be changed
if #[cfg(any(
stm32f302xd, stm32f302xe, stm32f303xd,
stm32f303xe, stm32f398xe
))] {
if #[cfg(any(flashsize_d, flashsize_e))] {
let (multiplier, divisor) = get_mul_div(sysclk, HSI_FREQ.0);
(
Hertz((HSI_FREQ.0 / divisor) * multiplier),

View File

@ -28,7 +28,7 @@ pub enum ClockSrc {
#[derive(Clone, Copy)]
pub struct PllConfig {
/// The source from which the PLL receives a clock signal
pub source: PllSrc,
pub source: PllSource,
/// The initial divisor of that clock signal
pub m: Pllm,
/// The PLL VCO multiplier, which must be in the range `8..=86`.
@ -48,7 +48,7 @@ impl Default for PllConfig {
fn default() -> PllConfig {
// HSI / 1 * 8 / 2 = 64 MHz
PllConfig {
source: PllSrc::HSI,
source: PllSource::HSI,
m: Pllm::DIV1,
n: Plln::MUL8,
r: Pllr::DIV2,
@ -59,7 +59,7 @@ impl Default for PllConfig {
}
#[derive(Clone, Copy, Eq, PartialEq)]
pub enum PllSrc {
pub enum PllSource {
HSI,
HSE(Hertz),
}
@ -89,8 +89,8 @@ impl Default for Config {
impl PllConfig {
pub(crate) fn init(self) -> Hertz {
let (src, input_freq) = match self.source {
PllSrc::HSI => (vals::Pllsrc::HSI, HSI_FREQ),
PllSrc::HSE(freq) => (vals::Pllsrc::HSE, freq),
PllSource::HSI => (vals::Pllsrc::HSI, HSI_FREQ),
PllSource::HSE(freq) => (vals::Pllsrc::HSE, freq),
};
let m_freq = input_freq / self.m;
@ -121,11 +121,11 @@ impl PllConfig {
// > 3. Change the desired parameter.
// Enable whichever clock source we're using, and wait for it to become ready
match self.source {
PllSrc::HSI => {
PllSource::HSI => {
RCC.cr().write(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
}
PllSrc::HSE(_) => {
PllSource::HSE(_) => {
RCC.cr().write(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
}

View File

@ -23,16 +23,16 @@ pub enum ClockSrc {
/// PLL clock input source
#[derive(Clone, Copy, Debug)]
pub enum PllSrc {
pub enum PllSource {
HSI,
HSE(Hertz),
}
impl Into<Pllsrc> for PllSrc {
impl Into<Pllsrc> for PllSource {
fn into(self) -> Pllsrc {
match self {
PllSrc::HSE(..) => Pllsrc::HSE,
PllSrc::HSI => Pllsrc::HSI,
PllSource::HSE(..) => Pllsrc::HSE,
PllSource::HSI => Pllsrc::HSI,
}
}
}
@ -44,7 +44,7 @@ impl Into<Pllsrc> for PllSrc {
/// frequency ranges for each of these settings.
pub struct Pll {
/// PLL Source clock selection.
pub source: PllSrc,
pub source: PllSource,
/// PLL pre-divider
pub prediv_m: PllM,
@ -118,13 +118,13 @@ pub struct PllFreq {
pub(crate) unsafe fn init(config: Config) {
let pll_freq = config.pll.map(|pll_config| {
let src_freq = match pll_config.source {
PllSrc::HSI => {
PllSource::HSI => {
RCC.cr().write(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
HSI_FREQ
}
PllSrc::HSE(freq) => {
PllSource::HSE(freq) => {
RCC.cr().write(|w| w.set_hseon(true));
while !RCC.cr().read().hserdy() {}
freq

View File

@ -168,7 +168,12 @@ impl Default for Config {
apb4_pre: APBPrescaler::DIV1,
per_clock_source: PerClockSource::HSI,
adc_clock_source: AdcClockSource::from_bits(0), // PLL2_P on H7, HCLK on H5
#[cfg(stm32h5)]
adc_clock_source: AdcClockSource::HCLK1,
#[cfg(stm32h7)]
adc_clock_source: AdcClockSource::PER,
timer_prescaler: TimerPrescaler::DefaultX2,
voltage_scale: VoltageScale::Scale0,
ls: Default::default(),

View File

@ -1,12 +1,13 @@
#[cfg(any(stm32l0, stm32l1))]
pub use crate::pac::pwr::vals::Vos as VoltageScale;
use crate::pac::rcc::regs::Cfgr;
#[cfg(any(stm32l4, stm32l5, stm32wb))]
#[cfg(any(stm32l4, stm32l5, stm32wb, stm32wl))]
pub use crate::pac::rcc::vals::Adcsel as AdcClockSource;
#[cfg(any(rcc_l0_v2, stm32l4, stm32l5, stm32wb))]
pub use crate::pac::rcc::vals::Clk48sel as Clk48Src;
#[cfg(any(stm32wb, stm32wl))]
pub use crate::pac::rcc::vals::Hsepre as HsePrescaler;
pub use crate::pac::rcc::vals::{
Adcsel as AdcClockSource, Hpre as AHBPrescaler, Msirange as MSIRange, Pllm as PllPreDiv, Plln as PllMul,
Pllp as PllPDiv, Pllq as PllQDiv, Pllr as PllRDiv, Pllsrc as PLLSource, Ppre as APBPrescaler, Sw as ClockSrc,
};
pub use crate::pac::rcc::vals::{Hpre as AHBPrescaler, Msirange as MSIRange, Ppre as APBPrescaler, Sw as ClockSrc};
use crate::pac::{FLASH, RCC};
use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz;
@ -33,25 +34,6 @@ pub struct Hse {
pub prescaler: HsePrescaler,
}
#[derive(Clone, Copy)]
pub struct Pll {
/// PLL source
pub source: PLLSource,
/// PLL pre-divider (DIVM).
pub prediv: PllPreDiv,
/// PLL multiplication factor.
pub mul: PllMul,
/// PLL P division factor. If None, PLL P output is disabled.
pub divp: Option<PllPDiv>,
/// PLL Q division factor. If None, PLL Q output is disabled.
pub divq: Option<PllQDiv>,
/// PLL R division factor. If None, PLL R output is disabled.
pub divr: Option<PllRDiv>,
}
/// Clocks configuration
pub struct Config {
// base clock sources
@ -79,13 +61,17 @@ pub struct Config {
pub shared_ahb_pre: AHBPrescaler,
// muxes
#[cfg(any(stm32l4, stm32l5, stm32wb))]
#[cfg(any(rcc_l0_v2, stm32l4, stm32l5, stm32wb))]
pub clk48_src: Clk48Src,
// low speed LSI/LSE/RTC
pub ls: super::LsConfig,
#[cfg(any(stm32l4, stm32l5, stm32wb, stm32wl))]
pub adc_clock_source: AdcClockSource,
#[cfg(any(stm32l0, stm32l1))]
pub voltage_scale: VoltageScale,
}
impl Default for Config {
@ -110,10 +96,13 @@ impl Default for Config {
pllsai2: None,
#[cfg(crs)]
hsi48: Some(Default::default()),
#[cfg(any(stm32l4, stm32l5, stm32wb))]
#[cfg(any(rcc_l0_v2, stm32l4, stm32l5, stm32wb))]
clk48_src: Clk48Src::HSI48,
ls: Default::default(),
#[cfg(any(stm32l4, stm32l5, stm32wb, stm32wl))]
adc_clock_source: AdcClockSource::SYS,
#[cfg(any(stm32l0, stm32l1))]
voltage_scale: VoltageScale::RANGE1,
}
}
}
@ -135,7 +124,7 @@ pub const WPAN_DEFAULT: Config = Config {
ls: super::LsConfig::default_lse(),
pll: Some(Pll {
source: PLLSource::HSE,
source: PllSource::HSE,
prediv: PllPreDiv::DIV2,
mul: PllMul::MUL12,
divp: Some(PllPDiv::DIV3), // 32 / 2 * 12 / 3 = 64Mhz
@ -152,20 +141,26 @@ pub const WPAN_DEFAULT: Config = Config {
adc_clock_source: AdcClockSource::SYS,
};
fn msi_enable(range: MSIRange) {
#[cfg(any(stm32l4, stm32l5, stm32wb, stm32wl))]
RCC.cr().modify(|w| {
#[cfg(not(stm32wb))]
w.set_msirgsel(crate::pac::rcc::vals::Msirgsel::CR);
w.set_msirange(range);
w.set_msipllen(false);
});
#[cfg(any(stm32l0, stm32l1))]
RCC.icscr().modify(|w| w.set_msirange(range));
RCC.cr().modify(|w| w.set_msion(true));
while !RCC.cr().read().msirdy() {}
}
pub(crate) unsafe fn init(config: Config) {
// Switch to MSI to prevent problems with PLL configuration.
if !RCC.cr().read().msion() {
// Turn on MSI and configure it to 4MHz.
RCC.cr().modify(|w| {
#[cfg(not(stm32wb))]
w.set_msirgsel(crate::pac::rcc::vals::Msirgsel::CR);
w.set_msirange(MSIRange::RANGE4M);
w.set_msipllen(false);
w.set_msion(true)
});
// Wait until MSI is running
while !RCC.cr().read().msirdy() {}
msi_enable(MSIRange::RANGE4M)
}
if RCC.cfgr().read().sws() != ClockSrc::MSI {
// Set MSI as a clock source, reset prescalers.
@ -174,6 +169,14 @@ pub(crate) unsafe fn init(config: Config) {
while RCC.cfgr().read().sws() != ClockSrc::MSI {}
}
// Set voltage scale
#[cfg(any(stm32l0, stm32l1))]
{
while crate::pac::PWR.csr().read().vosf() {}
crate::pac::PWR.cr().write(|w| w.set_vos(config.voltage_scale));
while crate::pac::PWR.csr().read().vosf() {}
}
#[cfg(stm32l5)]
crate::pac::PWR.cr1().modify(|w| {
w.set_vos(crate::pac::pwr::vals::Vos::RANGE0);
@ -182,21 +185,16 @@ pub(crate) unsafe fn init(config: Config) {
let rtc = config.ls.init();
let msi = config.msi.map(|range| {
// Enable MSI
RCC.cr().modify(|w| {
#[cfg(not(stm32wb))]
w.set_msirgsel(crate::pac::rcc::vals::Msirgsel::CR);
w.set_msirange(range);
w.set_msion(true);
// If LSE is enabled, enable calibration of MSI
w.set_msipllen(config.ls.lse.is_some());
});
while !RCC.cr().read().msirdy() {}
msi_enable(range);
msirange_to_hertz(range)
});
// If LSE is enabled and the right freq, enable calibration of MSI
#[cfg(any(stm32l4, stm32l5, stm32wb, stm32wl))]
if config.ls.lse.map(|x| x.frequency) == Some(Hertz(32_768)) {
RCC.cr().modify(|w| w.set_msipllen(true));
}
let hsi = config.hsi.then(|| {
RCC.cr().modify(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
@ -218,7 +216,10 @@ pub(crate) unsafe fn init(config: Config) {
});
#[cfg(crs)]
let _hsi48 = config.hsi48.map(super::init_hsi48);
let _hsi48 = config.hsi48.map(|config| {
//
super::init_hsi48(config)
});
#[cfg(not(crs))]
let _hsi48: Option<Hertz> = None;
@ -251,7 +252,12 @@ pub(crate) unsafe fn init(config: Config) {
}),
};
let pll_input = PllInput { hse, hsi, msi };
let pll_input = PllInput {
hse,
hsi,
#[cfg(any(stm32l4, stm32l5, stm32wb, stm32wl))]
msi,
};
let pll = init_pll(PllInstance::Pll, config.pll, &pll_input);
#[cfg(any(stm32l4, stm32l5, stm32wb))]
let pllsai1 = init_pll(PllInstance::Pllsai1, config.pllsai1, &pll_input);
@ -265,10 +271,13 @@ pub(crate) unsafe fn init(config: Config) {
ClockSrc::PLL1_R => pll.r.unwrap(),
};
#[cfg(stm32l4)]
#[cfg(any(rcc_l0_v2, stm32l4, stm32l5, stm32wb))]
RCC.ccipr().modify(|w| w.set_clk48sel(config.clk48_src));
#[cfg(stm32l5)]
RCC.ccipr1().modify(|w| w.set_clk48sel(config.clk48_src));
#[cfg(any(rcc_l0_v2))]
let _clk48 = match config.clk48_src {
Clk48Src::HSI48 => _hsi48,
Clk48Src::PLL1_VCO_DIV_2 => pll.clk48,
};
#[cfg(any(stm32l4, stm32l5, stm32wb))]
let _clk48 = match config.clk48_src {
Clk48Src::HSI48 => _hsi48,
@ -285,16 +294,23 @@ pub(crate) unsafe fn init(config: Config) {
let hclk1 = sys_clk / config.ahb_pre;
let (pclk1, pclk1_tim) = super::util::calc_pclk(hclk1, config.apb1_pre);
let (pclk2, pclk2_tim) = super::util::calc_pclk(hclk1, config.apb2_pre);
#[cfg(not(any(stm32wl5x, stm32wb)))]
#[cfg(any(stm32l4, stm32l5, stm32wlex))]
let hclk2 = hclk1;
#[cfg(any(stm32wl5x, stm32wb))]
let hclk2 = sys_clk / config.core2_ahb_pre;
#[cfg(not(any(stm32wl, stm32wb)))]
#[cfg(any(stm32l4, stm32l5, stm32wlex))]
let hclk3 = hclk1;
#[cfg(any(stm32wl, stm32wb))]
#[cfg(any(stm32wl5x, stm32wb))]
let hclk3 = sys_clk / config.shared_ahb_pre;
// Set flash wait states
#[cfg(any(stm32l0, stm32l1))]
let latency = match (config.voltage_scale, sys_clk.0) {
(VoltageScale::RANGE1, ..=16_000_000) => false,
(VoltageScale::RANGE2, ..=8_000_000) => false,
(VoltageScale::RANGE3, ..=4_200_000) => false,
_ => true,
};
#[cfg(stm32l4)]
let latency = match hclk1.0 {
0..=16_000_000 => 0,
@ -330,6 +346,10 @@ pub(crate) unsafe fn init(config: Config) {
_ => 4,
};
#[cfg(stm32l1)]
FLASH.acr().write(|w| w.set_acc64(true));
#[cfg(not(stm32l5))]
FLASH.acr().modify(|w| w.set_prften(true));
FLASH.acr().modify(|w| w.set_latency(latency));
while FLASH.acr().read().latency() != latency {}
@ -341,9 +361,7 @@ pub(crate) unsafe fn init(config: Config) {
});
while RCC.cfgr().read().sws() != config.mux {}
#[cfg(stm32l5)]
RCC.ccipr1().modify(|w| w.set_adcsel(config.adc_clock_source));
#[cfg(not(stm32l5))]
#[cfg(any(stm32l4, stm32l5, stm32wb, stm32wl))]
RCC.ccipr().modify(|w| w.set_adcsel(config.adc_clock_source));
#[cfg(any(stm32wl, stm32wb))]
@ -361,7 +379,9 @@ pub(crate) unsafe fn init(config: Config) {
set_freqs(Clocks {
sys: sys_clk,
hclk1,
#[cfg(any(stm32l4, stm32l5, stm32wb, stm32wl))]
hclk2,
#[cfg(any(stm32l4, stm32l5, stm32wb, stm32wl))]
hclk3,
pclk1,
pclk2,
@ -389,6 +409,12 @@ pub(crate) unsafe fn init(config: Config) {
});
}
#[cfg(any(stm32l0, stm32l1))]
fn msirange_to_hertz(range: MSIRange) -> Hertz {
Hertz(32_768 * (1 << (range as u8 + 1)))
}
#[cfg(any(stm32l4, stm32l5, stm32wb, stm32wl))]
fn msirange_to_hertz(range: MSIRange) -> Hertz {
match range {
MSIRange::RANGE100K => Hertz(100_000),
@ -407,20 +433,6 @@ fn msirange_to_hertz(range: MSIRange) -> Hertz {
}
}
struct PllInput {
hsi: Option<Hertz>,
hse: Option<Hertz>,
msi: Option<Hertz>,
}
#[allow(unused)]
#[derive(Default)]
struct PllOutput {
p: Option<Hertz>,
q: Option<Hertz>,
r: Option<Hertz>,
}
#[derive(PartialEq, Eq, Clone, Copy)]
enum PllInstance {
Pll,
@ -449,77 +461,182 @@ fn pll_enable(instance: PllInstance, enabled: bool) {
}
}
fn init_pll(instance: PllInstance, config: Option<Pll>, input: &PllInput) -> PllOutput {
// Disable PLL
pll_enable(instance, false);
pub use pll::*;
let Some(pll) = config else { return PllOutput::default() };
#[cfg(any(stm32l0, stm32l1))]
mod pll {
use super::{pll_enable, PllInstance};
pub use crate::pac::rcc::vals::{Plldiv as PllDiv, Pllmul as PllMul, Pllsrc as PllSource};
use crate::pac::RCC;
use crate::time::Hertz;
let pll_src = match pll.source {
PLLSource::DISABLE => panic!("must not select PLL source as DISABLE"),
PLLSource::HSE => input.hse,
PLLSource::HSI => input.hsi,
PLLSource::MSI => input.msi,
};
#[derive(Clone, Copy)]
pub struct Pll {
/// PLL source
pub source: PllSource,
let pll_src = pll_src.unwrap();
/// PLL multiplication factor.
pub mul: PllMul,
let vco_freq = pll_src / pll.prediv * pll.mul;
let p = pll.divp.map(|div| vco_freq / div);
let q = pll.divq.map(|div| vco_freq / div);
let r = pll.divr.map(|div| vco_freq / div);
#[cfg(stm32l5)]
if instance == PllInstance::Pllsai2 {
assert!(q.is_none(), "PLLSAI2_Q is not available on L5");
assert!(r.is_none(), "PLLSAI2_R is not available on L5");
/// PLL main output division factor.
pub div: PllDiv,
}
macro_rules! write_fields {
($w:ident) => {
$w.set_plln(pll.mul);
if let Some(divp) = pll.divp {
$w.set_pllp(divp);
$w.set_pllpen(true);
}
if let Some(divq) = pll.divq {
$w.set_pllq(divq);
$w.set_pllqen(true);
}
if let Some(divr) = pll.divr {
$w.set_pllr(divr);
$w.set_pllren(true);
}
pub(super) struct PllInput {
pub hsi: Option<Hertz>,
pub hse: Option<Hertz>,
}
#[allow(unused)]
#[derive(Default)]
pub(super) struct PllOutput {
pub r: Option<Hertz>,
pub clk48: Option<Hertz>,
}
pub(super) fn init_pll(instance: PllInstance, config: Option<Pll>, input: &PllInput) -> PllOutput {
// Disable PLL
pll_enable(instance, false);
let Some(pll) = config else { return PllOutput::default() };
let pll_src = match pll.source {
PllSource::HSE => unwrap!(input.hse),
PllSource::HSI => unwrap!(input.hsi),
};
let vco_freq = pll_src * pll.mul;
let r = vco_freq / pll.div;
let clk48 = (vco_freq == Hertz(96_000_000)).then_some(Hertz(48_000_000));
assert!(r <= Hertz(32_000_000));
RCC.cfgr().write(move |w| {
w.set_pllmul(pll.mul);
w.set_plldiv(pll.div);
w.set_pllsrc(pll.source);
});
// Enable PLL
pll_enable(instance, true);
PllOutput { r: Some(r), clk48 }
}
}
#[cfg(any(stm32l4, stm32l5, stm32wb, stm32wl))]
mod pll {
use super::{pll_enable, PllInstance};
pub use crate::pac::rcc::vals::{
Pllm as PllPreDiv, Plln as PllMul, Pllp as PllPDiv, Pllq as PllQDiv, Pllr as PllRDiv, Pllsrc as PllSource,
};
use crate::pac::RCC;
use crate::time::Hertz;
#[derive(Clone, Copy)]
pub struct Pll {
/// PLL source
pub source: PllSource,
/// PLL pre-divider (DIVM).
pub prediv: PllPreDiv,
/// PLL multiplication factor.
pub mul: PllMul,
/// PLL P division factor. If None, PLL P output is disabled.
pub divp: Option<PllPDiv>,
/// PLL Q division factor. If None, PLL Q output is disabled.
pub divq: Option<PllQDiv>,
/// PLL R division factor. If None, PLL R output is disabled.
pub divr: Option<PllRDiv>,
}
pub(super) struct PllInput {
pub hsi: Option<Hertz>,
pub hse: Option<Hertz>,
pub msi: Option<Hertz>,
}
#[allow(unused)]
#[derive(Default)]
pub(super) struct PllOutput {
pub p: Option<Hertz>,
pub q: Option<Hertz>,
pub r: Option<Hertz>,
}
pub(super) fn init_pll(instance: PllInstance, config: Option<Pll>, input: &PllInput) -> PllOutput {
// Disable PLL
pll_enable(instance, false);
let Some(pll) = config else { return PllOutput::default() };
let pll_src = match pll.source {
PllSource::DISABLE => panic!("must not select PLL source as DISABLE"),
PllSource::HSE => unwrap!(input.hse),
PllSource::HSI => unwrap!(input.hsi),
PllSource::MSI => unwrap!(input.msi),
};
let vco_freq = pll_src / pll.prediv * pll.mul;
let p = pll.divp.map(|div| vco_freq / div);
let q = pll.divq.map(|div| vco_freq / div);
let r = pll.divr.map(|div| vco_freq / div);
#[cfg(stm32l5)]
if instance == PllInstance::Pllsai2 {
assert!(q.is_none(), "PLLSAI2_Q is not available on L5");
assert!(r.is_none(), "PLLSAI2_R is not available on L5");
}
macro_rules! write_fields {
($w:ident) => {
$w.set_plln(pll.mul);
if let Some(divp) = pll.divp {
$w.set_pllp(divp);
$w.set_pllpen(true);
}
if let Some(divq) = pll.divq {
$w.set_pllq(divq);
$w.set_pllqen(true);
}
if let Some(divr) = pll.divr {
$w.set_pllr(divr);
$w.set_pllren(true);
}
};
}
match instance {
PllInstance::Pll => RCC.pllcfgr().write(|w| {
w.set_pllm(pll.prediv);
w.set_pllsrc(pll.source);
write_fields!(w);
}),
#[cfg(any(stm32l4, stm32l5, stm32wb))]
PllInstance::Pllsai1 => RCC.pllsai1cfgr().write(|w| {
#[cfg(any(rcc_l4plus, stm32l5))]
w.set_pllm(pll.prediv);
#[cfg(stm32l5)]
w.set_pllsrc(pll.source);
write_fields!(w);
}),
#[cfg(any(stm32l47x, stm32l48x, stm32l49x, stm32l4ax, rcc_l4plus, stm32l5))]
PllInstance::Pllsai2 => RCC.pllsai2cfgr().write(|w| {
#[cfg(any(rcc_l4plus, stm32l5))]
w.set_pllm(pll.prediv);
#[cfg(stm32l5)]
w.set_pllsrc(pll.source);
write_fields!(w);
}),
}
// Enable PLL
pll_enable(instance, true);
PllOutput { p, q, r }
}
match instance {
PllInstance::Pll => RCC.pllcfgr().write(|w| {
w.set_pllm(pll.prediv);
w.set_pllsrc(pll.source);
write_fields!(w);
}),
#[cfg(any(stm32l4, stm32l5, stm32wb))]
PllInstance::Pllsai1 => RCC.pllsai1cfgr().write(|w| {
#[cfg(any(rcc_l4plus, stm32l5))]
w.set_pllm(pll.prediv);
#[cfg(stm32l5)]
w.set_pllsrc(pll.source);
write_fields!(w);
}),
#[cfg(any(stm32l47x, stm32l48x, stm32l49x, stm32l4ax, rcc_l4plus, stm32l5))]
PllInstance::Pllsai2 => RCC.pllsai2cfgr().write(|w| {
#[cfg(any(rcc_l4plus, stm32l5))]
w.set_pllm(pll.prediv);
#[cfg(stm32l5)]
w.set_pllsrc(pll.source);
write_fields!(w);
}),
}
// Enable PLL
pll_enable(instance, true);
PllOutput { p, q, r }
}

View File

@ -1,190 +0,0 @@
pub use crate::pac::pwr::vals::Vos as VoltageScale;
pub use crate::pac::rcc::vals::{
Hpre as AHBPrescaler, Msirange as MSIRange, Plldiv as PLLDiv, Plldiv as PllDiv, Pllmul as PLLMul, Pllmul as PllMul,
Pllsrc as PLLSource, Ppre as APBPrescaler, Sw as ClockSrc,
};
use crate::pac::{FLASH, PWR, RCC};
use crate::rcc::{set_freqs, Clocks};
use crate::time::Hertz;
/// HSI speed
pub const HSI_FREQ: Hertz = Hertz(16_000_000);
#[derive(Clone, Copy, Eq, PartialEq)]
pub enum HseMode {
/// crystal/ceramic oscillator (HSEBYP=0)
Oscillator,
/// external analog clock (low swing) (HSEBYP=1)
Bypass,
}
#[derive(Clone, Copy, Eq, PartialEq)]
pub struct Hse {
/// HSE frequency.
pub freq: Hertz,
/// HSE mode.
pub mode: HseMode,
}
#[derive(Clone, Copy)]
pub struct Pll {
/// PLL source
pub source: PLLSource,
/// PLL multiplication factor.
pub mul: PllMul,
/// PLL main output division factor.
pub div: PllDiv,
}
/// Clocks configutation
pub struct Config {
// base clock sources
pub msi: Option<MSIRange>,
pub hsi: bool,
pub hse: Option<Hse>,
#[cfg(crs)]
pub hsi48: Option<super::Hsi48Config>,
pub pll: Option<Pll>,
pub mux: ClockSrc,
pub ahb_pre: AHBPrescaler,
pub apb1_pre: APBPrescaler,
pub apb2_pre: APBPrescaler,
pub ls: super::LsConfig,
pub voltage_scale: VoltageScale,
}
impl Default for Config {
#[inline]
fn default() -> Config {
Config {
msi: Some(MSIRange::RANGE5),
hse: None,
hsi: false,
#[cfg(crs)]
hsi48: Some(Default::default()),
pll: None,
mux: ClockSrc::MSI,
ahb_pre: AHBPrescaler::DIV1,
apb1_pre: APBPrescaler::DIV1,
apb2_pre: APBPrescaler::DIV1,
voltage_scale: VoltageScale::RANGE1,
ls: Default::default(),
}
}
}
pub(crate) unsafe fn init(config: Config) {
// Set voltage scale
while PWR.csr().read().vosf() {}
PWR.cr().write(|w| w.set_vos(config.voltage_scale));
while PWR.csr().read().vosf() {}
let rtc = config.ls.init();
let msi = config.msi.map(|range| {
RCC.icscr().modify(|w| w.set_msirange(range));
RCC.cr().modify(|w| w.set_msion(true));
while !RCC.cr().read().msirdy() {}
Hertz(32_768 * (1 << (range as u8 + 1)))
});
let hsi = config.hsi.then(|| {
RCC.cr().modify(|w| w.set_hsion(true));
while !RCC.cr().read().hsirdy() {}
HSI_FREQ
});
let hse = config.hse.map(|hse| {
RCC.cr().modify(|w| {
w.set_hsebyp(hse.mode == HseMode::Bypass);
w.set_hseon(true);
});
while !RCC.cr().read().hserdy() {}
hse.freq
});
let pll = config.pll.map(|pll| {
let freq = match pll.source {
PLLSource::HSE => hse.unwrap(),
PLLSource::HSI => hsi.unwrap(),
};
// Disable PLL
RCC.cr().modify(|w| w.set_pllon(false));
while RCC.cr().read().pllrdy() {}
let freq = freq * pll.mul / pll.div;
assert!(freq <= Hertz(32_000_000));
RCC.cfgr().write(move |w| {
w.set_pllmul(pll.mul);
w.set_plldiv(pll.div);
w.set_pllsrc(pll.source);
});
// Enable PLL
RCC.cr().modify(|w| w.set_pllon(true));
while !RCC.cr().read().pllrdy() {}
freq
});
let sys_clk = match config.mux {
ClockSrc::HSE => hse.unwrap(),
ClockSrc::HSI => hsi.unwrap(),
ClockSrc::MSI => msi.unwrap(),
ClockSrc::PLL1_P => pll.unwrap(),
};
let wait_states = match (config.voltage_scale, sys_clk.0) {
(VoltageScale::RANGE1, ..=16_000_000) => 0,
(VoltageScale::RANGE2, ..=8_000_000) => 0,
(VoltageScale::RANGE3, ..=4_200_000) => 0,
_ => 1,
};
#[cfg(stm32l1)]
FLASH.acr().write(|w| w.set_acc64(true));
FLASH.acr().modify(|w| w.set_prften(true));
FLASH.acr().modify(|w| w.set_latency(wait_states != 0));
RCC.cfgr().modify(|w| {
w.set_sw(config.mux);
w.set_hpre(config.ahb_pre);
w.set_ppre1(config.apb1_pre);
w.set_ppre2(config.apb2_pre);
});
let hclk1 = sys_clk / config.ahb_pre;
let (pclk1, pclk1_tim) = super::util::calc_pclk(hclk1, config.apb1_pre);
let (pclk2, pclk2_tim) = super::util::calc_pclk(hclk1, config.apb2_pre);
#[cfg(crs)]
let _hsi48 = config.hsi48.map(|config| {
// Select HSI48 as USB clock
RCC.ccipr().modify(|w| w.set_hsi48msel(true));
super::init_hsi48(config)
});
set_freqs(Clocks {
sys: sys_clk,
hclk1,
pclk1,
pclk2,
pclk1_tim,
pclk2_tim,
rtc,
});
}

View File

@ -15,16 +15,14 @@ mod hsi48;
pub use hsi48::*;
#[cfg_attr(rcc_f0, path = "f0.rs")]
#[cfg_attr(any(rcc_f1, rcc_f100, rcc_f1cl), path = "f1.rs")]
#[cfg_attr(rcc_f2, path = "f2.rs")]
#[cfg_attr(any(rcc_f3, rcc_f3_v2), path = "f3.rs")]
#[cfg_attr(any(rcc_f4, rcc_f410, rcc_f7), path = "f4f7.rs")]
#[cfg_attr(any(stm32f1), path = "f1.rs")]
#[cfg_attr(any(stm32f3), path = "f3.rs")]
#[cfg_attr(any(stm32f2, stm32f4, stm32f7), path = "f.rs")]
#[cfg_attr(rcc_c0, path = "c0.rs")]
#[cfg_attr(rcc_g0, path = "g0.rs")]
#[cfg_attr(rcc_g4, path = "g4.rs")]
#[cfg_attr(any(rcc_h5, rcc_h50, rcc_h7, rcc_h7rm0433, rcc_h7ab), path = "h.rs")]
#[cfg_attr(any(rcc_l0, rcc_l0_v2, rcc_l1), path = "l0l1.rs")]
#[cfg_attr(any(rcc_l4, rcc_l4plus, rcc_l5, rcc_wl5, rcc_wle, rcc_wb), path = "l4l5.rs")]
#[cfg_attr(any(stm32h5, stm32h7), path = "h.rs")]
#[cfg_attr(any(stm32l0, stm32l1, stm32l4, stm32l5, stm32wb, stm32wl), path = "l.rs")]
#[cfg_attr(rcc_u5, path = "u5.rs")]
#[cfg_attr(rcc_wba, path = "wba.rs")]
mod _version;

View File

@ -35,7 +35,7 @@ impl Default for ClockSrc {
#[derive(Clone, Copy)]
pub struct PllConfig {
/// The clock source for the PLL.
pub source: PllSrc,
pub source: PllSource,
/// The PLL prescaler.
///
/// The clock speed of the `source` divided by `m` must be between 4 and 16 MHz.
@ -57,7 +57,7 @@ impl PllConfig {
/// A configuration for HSI / 1 * 10 / 1 = 160 MHz
pub const fn hsi_160mhz() -> Self {
PllConfig {
source: PllSrc::HSI,
source: PllSource::HSI,
m: Pllm::DIV1,
n: Plln::MUL10,
r: Plldiv::DIV1,
@ -67,7 +67,7 @@ impl PllConfig {
/// A configuration for MSIS @ 48 MHz / 3 * 10 / 1 = 160 MHz
pub const fn msis_160mhz() -> Self {
PllConfig {
source: PllSrc::MSIS(Msirange::RANGE_48MHZ),
source: PllSource::MSIS(Msirange::RANGE_48MHZ),
m: Pllm::DIV3,
n: Plln::MUL10,
r: Plldiv::DIV1,
@ -76,7 +76,7 @@ impl PllConfig {
}
#[derive(Clone, Copy)]
pub enum PllSrc {
pub enum PllSource {
/// Use an internal medium speed oscillator as the PLL source.
MSIS(Msirange),
/// Use the external high speed clock as the system PLL source.
@ -88,12 +88,12 @@ pub enum PllSrc {
HSI,
}
impl Into<Pllsrc> for PllSrc {
impl Into<Pllsrc> for PllSource {
fn into(self) -> Pllsrc {
match self {
PllSrc::MSIS(..) => Pllsrc::MSIS,
PllSrc::HSE(..) => Pllsrc::HSE,
PllSrc::HSI => Pllsrc::HSI,
PllSource::MSIS(..) => Pllsrc::MSIS,
PllSource::HSE(..) => Pllsrc::HSE,
PllSource::HSI => Pllsrc::HSI,
}
}
}
@ -216,9 +216,9 @@ pub(crate) unsafe fn init(config: Config) {
ClockSrc::PLL1_R(pll) => {
// Configure the PLL source
let source_clk = match pll.source {
PllSrc::MSIS(range) => config.init_msis(range),
PllSrc::HSE(hertz) => config.init_hse(hertz),
PllSrc::HSI => config.init_hsi(),
PllSource::MSIS(range) => config.init_msis(range),
PllSource::HSE(hertz) => config.init_hse(hertz),
PllSource::HSI => config.init_hsi(),
};
// Calculate the reference clock, which is the source divided by m

View File

@ -17,16 +17,16 @@ pub enum ClockSrc {
}
#[derive(Clone, Copy, Debug)]
pub enum PllSrc {
pub enum PllSource {
HSE(Hertz),
HSI,
}
impl Into<Pllsrc> for PllSrc {
impl Into<Pllsrc> for PllSource {
fn into(self) -> Pllsrc {
match self {
PllSrc::HSE(..) => Pllsrc::HSE,
PllSrc::HSI => Pllsrc::HSI,
PllSource::HSE(..) => Pllsrc::HSE,
PllSource::HSI => Pllsrc::HSI,
}
}
}

View File

@ -33,6 +33,61 @@ use embassy_hal_internal::Peripheral;
use crate::peripherals::RTC;
use crate::rtc::sealed::Instance;
#[allow(dead_code)]
#[repr(u8)]
#[derive(Clone, Copy, Debug)]
pub(crate) enum WakeupPrescaler {
Div2 = 2,
Div4 = 4,
Div8 = 8,
Div16 = 16,
}
#[cfg(any(stm32wb, stm32f4, stm32l0, stm32g4))]
impl From<WakeupPrescaler> for crate::pac::rtc::vals::Wucksel {
fn from(val: WakeupPrescaler) -> Self {
use crate::pac::rtc::vals::Wucksel;
match val {
WakeupPrescaler::Div2 => Wucksel::DIV2,
WakeupPrescaler::Div4 => Wucksel::DIV4,
WakeupPrescaler::Div8 => Wucksel::DIV8,
WakeupPrescaler::Div16 => Wucksel::DIV16,
}
}
}
#[cfg(any(stm32wb, stm32f4, stm32l0, stm32g4))]
impl From<crate::pac::rtc::vals::Wucksel> for WakeupPrescaler {
fn from(val: crate::pac::rtc::vals::Wucksel) -> Self {
use crate::pac::rtc::vals::Wucksel;
match val {
Wucksel::DIV2 => WakeupPrescaler::Div2,
Wucksel::DIV4 => WakeupPrescaler::Div4,
Wucksel::DIV8 => WakeupPrescaler::Div8,
Wucksel::DIV16 => WakeupPrescaler::Div16,
_ => unreachable!(),
}
}
}
#[cfg(feature = "low-power")]
impl WakeupPrescaler {
pub fn compute_min(val: u32) -> Self {
*[
WakeupPrescaler::Div2,
WakeupPrescaler::Div4,
WakeupPrescaler::Div8,
WakeupPrescaler::Div16,
]
.iter()
.skip_while(|psc| **psc as u32 <= val)
.next()
.unwrap_or(&WakeupPrescaler::Div16)
}
}
/// Errors that can occur on methods on [RtcClock]
#[non_exhaustive]
#[derive(Clone, Debug, PartialEq, Eq)]
@ -277,6 +332,114 @@ impl Rtc {
pub fn write_backup_register(&self, register: usize, value: u32) {
RTC::write_backup_register(&RTC::regs(), register, value)
}
#[cfg(feature = "low-power")]
/// start the wakeup alarm and wtih a duration that is as close to but less than
/// the requested duration, and record the instant the wakeup alarm was started
pub(crate) fn start_wakeup_alarm(
&self,
requested_duration: embassy_time::Duration,
cs: critical_section::CriticalSection,
) {
use embassy_time::{Duration, TICK_HZ};
#[cfg(any(rtc_v3, rtc_v3u5))]
use crate::pac::rtc::vals::Calrf;
// Panic if the rcc mod knows we're not using low-power rtc
#[cfg(any(rcc_wb, rcc_f4, rcc_f410))]
unsafe { crate::rcc::get_freqs() }.rtc.unwrap();
let requested_duration = requested_duration.as_ticks().clamp(0, u32::MAX as u64);
let rtc_hz = Self::frequency().0 as u64;
let rtc_ticks = requested_duration * rtc_hz / TICK_HZ;
let prescaler = WakeupPrescaler::compute_min((rtc_ticks / u16::MAX as u64) as u32);
// adjust the rtc ticks to the prescaler and subtract one rtc tick
let rtc_ticks = rtc_ticks / prescaler as u64;
let rtc_ticks = rtc_ticks.clamp(0, (u16::MAX - 1) as u64).saturating_sub(1) as u16;
self.write(false, |regs| {
regs.cr().modify(|w| w.set_wute(false));
#[cfg(any(
rtc_v2f0, rtc_v2f2, rtc_v2f3, rtc_v2f4, rtc_v2f7, rtc_v2h7, rtc_v2l0, rtc_v2l1, rtc_v2l4, rtc_v2wb
))]
{
regs.isr().modify(|w| w.set_wutf(false));
while !regs.isr().read().wutwf() {}
}
#[cfg(any(rtc_v3, rtc_v3u5))]
{
regs.scr().write(|w| w.set_cwutf(Calrf::CLEAR));
while !regs.icsr().read().wutwf() {}
}
regs.cr().modify(|w| w.set_wucksel(prescaler.into()));
regs.wutr().write(|w| w.set_wut(rtc_ticks));
regs.cr().modify(|w| w.set_wute(true));
regs.cr().modify(|w| w.set_wutie(true));
});
let instant = self.instant().unwrap();
trace!(
"rtc: start wakeup alarm for {} ms (psc: {}, ticks: {}) at {}",
Duration::from_ticks(rtc_ticks as u64 * TICK_HZ * prescaler as u64 / rtc_hz).as_millis(),
prescaler as u32,
rtc_ticks,
instant,
);
assert!(self.stop_time.borrow(cs).replace(Some(instant)).is_none())
}
#[cfg(feature = "low-power")]
/// stop the wakeup alarm and return the time elapsed since `start_wakeup_alarm`
/// was called, otherwise none
pub(crate) fn stop_wakeup_alarm(&self, cs: critical_section::CriticalSection) -> Option<embassy_time::Duration> {
use crate::interrupt::typelevel::Interrupt;
#[cfg(any(rtc_v3, rtc_v3u5))]
use crate::pac::rtc::vals::Calrf;
let instant = self.instant().unwrap();
if RTC::regs().cr().read().wute() {
trace!("rtc: stop wakeup alarm at {}", instant);
self.write(false, |regs| {
regs.cr().modify(|w| w.set_wutie(false));
regs.cr().modify(|w| w.set_wute(false));
#[cfg(any(
rtc_v2f0, rtc_v2f2, rtc_v2f3, rtc_v2f4, rtc_v2f7, rtc_v2h7, rtc_v2l0, rtc_v2l1, rtc_v2l4, rtc_v2wb
))]
regs.isr().modify(|w| w.set_wutf(false));
#[cfg(any(rtc_v3, rtc_v3u5))]
regs.scr().write(|w| w.set_cwutf(Calrf::CLEAR));
crate::pac::EXTI
.pr(0)
.modify(|w| w.set_line(RTC::EXTI_WAKEUP_LINE, true));
<RTC as crate::rtc::sealed::Instance>::WakeupInterrupt::unpend();
});
}
self.stop_time.borrow(cs).take().map(|stop_time| instant - stop_time)
}
#[cfg(feature = "low-power")]
pub(crate) fn enable_wakeup_line(&self) {
use crate::interrupt::typelevel::Interrupt;
use crate::pac::EXTI;
<RTC as crate::rtc::sealed::Instance>::WakeupInterrupt::unpend();
unsafe { <RTC as crate::rtc::sealed::Instance>::WakeupInterrupt::enable() };
EXTI.rtsr(0).modify(|w| w.set_line(RTC::EXTI_WAKEUP_LINE, true));
EXTI.imr(0).modify(|w| w.set_line(RTC::EXTI_WAKEUP_LINE, true));
}
}
pub(crate) fn byte_to_bcd2(byte: u8) -> (u8, u8) {

View File

@ -6,145 +6,7 @@ use crate::peripherals::RTC;
use crate::rtc::sealed::Instance;
#[allow(dead_code)]
#[repr(u8)]
#[derive(Clone, Copy, Debug)]
pub(crate) enum WakeupPrescaler {
Div2 = 2,
Div4 = 4,
Div8 = 8,
Div16 = 16,
}
#[cfg(any(stm32wb, stm32f4, stm32l0))]
impl From<WakeupPrescaler> for crate::pac::rtc::vals::Wucksel {
fn from(val: WakeupPrescaler) -> Self {
use crate::pac::rtc::vals::Wucksel;
match val {
WakeupPrescaler::Div2 => Wucksel::DIV2,
WakeupPrescaler::Div4 => Wucksel::DIV4,
WakeupPrescaler::Div8 => Wucksel::DIV8,
WakeupPrescaler::Div16 => Wucksel::DIV16,
}
}
}
#[cfg(any(stm32wb, stm32f4, stm32l0))]
impl From<crate::pac::rtc::vals::Wucksel> for WakeupPrescaler {
fn from(val: crate::pac::rtc::vals::Wucksel) -> Self {
use crate::pac::rtc::vals::Wucksel;
match val {
Wucksel::DIV2 => WakeupPrescaler::Div2,
Wucksel::DIV4 => WakeupPrescaler::Div4,
Wucksel::DIV8 => WakeupPrescaler::Div8,
Wucksel::DIV16 => WakeupPrescaler::Div16,
_ => unreachable!(),
}
}
}
#[allow(dead_code)]
impl WakeupPrescaler {
pub fn compute_min(val: u32) -> Self {
*[
WakeupPrescaler::Div2,
WakeupPrescaler::Div4,
WakeupPrescaler::Div8,
WakeupPrescaler::Div16,
]
.iter()
.skip_while(|psc| **psc as u32 <= val)
.next()
.unwrap_or(&WakeupPrescaler::Div16)
}
}
impl super::Rtc {
#[cfg(feature = "low-power")]
/// start the wakeup alarm and wtih a duration that is as close to but less than
/// the requested duration, and record the instant the wakeup alarm was started
pub(crate) fn start_wakeup_alarm(
&self,
requested_duration: embassy_time::Duration,
cs: critical_section::CriticalSection,
) {
use embassy_time::{Duration, TICK_HZ};
// Panic if the rcc mod knows we're not using low-power rtc
#[cfg(any(rcc_wb, rcc_f4, rcc_f410))]
unsafe { crate::rcc::get_freqs() }.rtc.unwrap();
let requested_duration = requested_duration.as_ticks().clamp(0, u32::MAX as u64);
let rtc_hz = Self::frequency().0 as u64;
let rtc_ticks = requested_duration * rtc_hz / TICK_HZ;
let prescaler = WakeupPrescaler::compute_min((rtc_ticks / u16::MAX as u64) as u32);
// adjust the rtc ticks to the prescaler and subtract one rtc tick
let rtc_ticks = rtc_ticks / prescaler as u64;
let rtc_ticks = rtc_ticks.clamp(0, (u16::MAX - 1) as u64).saturating_sub(1) as u16;
self.write(false, |regs| {
regs.cr().modify(|w| w.set_wute(false));
regs.isr().modify(|w| w.set_wutf(false));
while !regs.isr().read().wutwf() {}
regs.cr().modify(|w| w.set_wucksel(prescaler.into()));
regs.wutr().write(|w| w.set_wut(rtc_ticks));
regs.cr().modify(|w| w.set_wute(true));
regs.cr().modify(|w| w.set_wutie(true));
});
let instant = self.instant().unwrap();
trace!(
"rtc: start wakeup alarm for {} ms (psc: {}, ticks: {}) at {}",
Duration::from_ticks(rtc_ticks as u64 * TICK_HZ * prescaler as u64 / rtc_hz).as_millis(),
prescaler as u32,
rtc_ticks,
instant,
);
assert!(self.stop_time.borrow(cs).replace(Some(instant)).is_none())
}
#[cfg(feature = "low-power")]
/// stop the wakeup alarm and return the time elapsed since `start_wakeup_alarm`
/// was called, otherwise none
pub(crate) fn stop_wakeup_alarm(&self, cs: critical_section::CriticalSection) -> Option<embassy_time::Duration> {
use crate::interrupt::typelevel::Interrupt;
let instant = self.instant().unwrap();
if RTC::regs().cr().read().wute() {
trace!("rtc: stop wakeup alarm at {}", instant);
self.write(false, |regs| {
regs.cr().modify(|w| w.set_wutie(false));
regs.cr().modify(|w| w.set_wute(false));
regs.isr().modify(|w| w.set_wutf(false));
crate::pac::EXTI
.pr(0)
.modify(|w| w.set_line(RTC::EXTI_WAKEUP_LINE, true));
<RTC as crate::rtc::sealed::Instance>::WakeupInterrupt::unpend();
});
}
self.stop_time.borrow(cs).take().map(|stop_time| instant - stop_time)
}
#[cfg(feature = "low-power")]
pub(crate) fn enable_wakeup_line(&self) {
use crate::interrupt::typelevel::Interrupt;
use crate::pac::EXTI;
<RTC as crate::rtc::sealed::Instance>::WakeupInterrupt::unpend();
unsafe { <RTC as crate::rtc::sealed::Instance>::WakeupInterrupt::enable() };
EXTI.rtsr(0).modify(|w| w.set_line(RTC::EXTI_WAKEUP_LINE, true));
EXTI.imr(0).modify(|w| w.set_line(RTC::EXTI_WAKEUP_LINE, true));
}
/// Applies the RTC config
/// It this changes the RTC clock source the time will be reset
pub(super) fn configure(&mut self, async_psc: u8, sync_psc: u16) {

View File

@ -95,7 +95,7 @@ impl super::Rtc {
})
}
pub(super) fn write<F, R>(&mut self, init_mode: bool, f: F) -> R
pub(super) fn write<F, R>(&self, init_mode: bool, f: F) -> R
where
F: FnOnce(&crate::pac::rtc::Rtc) -> R,
{
@ -129,6 +129,12 @@ impl super::Rtc {
impl sealed::Instance for crate::peripherals::RTC {
const BACKUP_REGISTER_COUNT: usize = 32;
#[cfg(all(feature = "low-power", stm32g4))]
const EXTI_WAKEUP_LINE: usize = 20;
#[cfg(all(feature = "low-power", stm32g4))]
type WakeupInterrupt = crate::interrupt::typelevel::RTC_WKUP;
fn read_backup_register(_rtc: &Rtc, register: usize) -> Option<u32> {
#[allow(clippy::if_same_then_else)]
if register < Self::BACKUP_REGISTER_COUNT {

View File

@ -207,27 +207,40 @@ impl Protocol {
}
#[derive(Copy, Clone, PartialEq)]
pub enum SyncEnable {
Asynchronous,
pub enum SyncInput {
/// Not synced to any other SAI unit.
None,
/// Syncs with the other A/B sub-block within the SAI unit
Internal,
/// Syncs with a sub-block in the other SAI unit - use set_sync_output() and set_sync_input()
#[cfg(any(sai_v4))]
External,
/// Syncs with a sub-block in the other SAI unit
#[cfg(sai_v4)]
External(SyncInputInstance),
}
impl SyncEnable {
#[cfg(any(sai_v1, sai_v2, sai_v3, sai_v4))]
impl SyncInput {
pub const fn syncen(&self) -> vals::Syncen {
match self {
SyncEnable::Asynchronous => vals::Syncen::ASYNCHRONOUS,
SyncEnable::Internal => vals::Syncen::INTERNAL,
SyncInput::None => vals::Syncen::ASYNCHRONOUS,
SyncInput::Internal => vals::Syncen::INTERNAL,
#[cfg(any(sai_v4))]
SyncEnable::External => vals::Syncen::EXTERNAL,
SyncInput::External(_) => vals::Syncen::EXTERNAL,
}
}
}
#[cfg(sai_v4)]
#[derive(Copy, Clone, PartialEq)]
pub enum SyncInputInstance {
#[cfg(peri_sai1)]
Sai1 = 0,
#[cfg(peri_sai2)]
Sai2 = 1,
#[cfg(peri_sai3)]
Sai3 = 2,
#[cfg(peri_sai4)]
Sai4 = 3,
}
#[derive(Copy, Clone, PartialEq)]
pub enum StereoMono {
Stereo,
@ -428,8 +441,8 @@ impl MasterClockDivider {
pub struct Config {
pub mode: Mode,
pub tx_rx: TxRx,
pub sync_enable: SyncEnable,
pub is_sync_output: bool,
pub sync_input: SyncInput,
pub sync_output: bool,
pub protocol: Protocol,
pub slot_size: SlotSize,
pub slot_count: word::U4,
@ -459,8 +472,8 @@ impl Default for Config {
Self {
mode: Mode::Master,
tx_rx: TxRx::Transmitter,
is_sync_output: false,
sync_enable: SyncEnable::Asynchronous,
sync_output: false,
sync_input: SyncInput::None,
protocol: Protocol::Free,
slot_size: SlotSize::DataSize,
slot_count: word::U4(2),
@ -608,18 +621,18 @@ impl<'d, T: Instance> Sai<'d, T> {
fn update_synchronous_config(config: &mut Config) {
config.mode = Mode::Slave;
config.is_sync_output = false;
config.sync_output = false;
#[cfg(any(sai_v1, sai_v2, sai_v3))]
{
config.sync_enable = SyncEnable::Internal;
config.sync_input = SyncInput::Internal;
}
#[cfg(any(sai_v4))]
{
//this must either be Internal or External
//The asynchronous sub-block on the same SAI needs to enable is_sync_output
assert!(config.sync_enable != SyncEnable::Asynchronous);
//The asynchronous sub-block on the same SAI needs to enable sync_output
assert!(config.sync_input != SyncInput::None);
}
}
@ -866,20 +879,13 @@ impl<'d, T: Instance, C: Channel, W: word::Word> SubBlock<'d, T, C, W> {
#[cfg(any(sai_v4))]
{
// Not totally clear from the datasheet if this is right
// This is only used if using SyncEnable::External on the other SAI unit
// Syncing from SAIX subblock A to subblock B does not require this
// Only syncing from SAI1 subblock A/B to SAI2 subblock A/B
let value: u8 = if T::REGS.as_ptr() == stm32_metapac::SAI1.as_ptr() {
1 //this is SAI1, so sync with SAI2
} else {
0 //this is SAI2, so sync with SAI1
};
T::REGS.gcr().modify(|w| {
w.set_syncin(value);
});
if let SyncInput::External(i) = config.sync_input {
T::REGS.gcr().modify(|w| {
w.set_syncin(i as u8);
});
}
if config.is_sync_output {
if config.sync_output {
let syncout: u8 = match sub_block {
WhichSubBlock::A => 0b01,
WhichSubBlock::B => 0b10,
@ -903,7 +909,7 @@ impl<'d, T: Instance, C: Channel, W: word::Word> SubBlock<'d, T, C, W> {
w.set_ds(config.data_size.ds());
w.set_lsbfirst(config.bit_order.lsbfirst());
w.set_ckstr(config.clock_strobe.ckstr());
w.set_syncen(config.sync_enable.syncen());
w.set_syncen(config.sync_input.syncen());
w.set_mono(config.stereo_mono.mono());
w.set_outdriv(config.output_drive.outdriv());
w.set_mckdiv(config.master_clock_divider.mckdiv());

View File

@ -1457,8 +1457,8 @@ cfg_if::cfg_if! {
macro_rules! kernel_clk {
($inst:ident) => {
critical_section::with(|_| unsafe {
crate::rcc::get_freqs().pll1_q
}).expect("PLL48 is required for SDIO")
unwrap!(crate::rcc::get_freqs().pll1_q)
})
}
}
} else if #[cfg(stm32f7)] {
@ -1469,7 +1469,7 @@ cfg_if::cfg_if! {
if sdmmcsel == crate::pac::rcc::vals::Sdmmcsel::SYS {
crate::rcc::get_freqs().sys
} else {
crate::rcc::get_freqs().pll1_q.expect("PLL48 is required for SDMMC")
unwrap!(crate::rcc::get_freqs().pll1_q)
}
})
};
@ -1479,7 +1479,7 @@ cfg_if::cfg_if! {
if sdmmcsel == crate::pac::rcc::vals::Sdmmcsel::SYS {
crate::rcc::get_freqs().sys
} else {
crate::rcc::get_freqs().pll1_q.expect("PLL48 is required for SDMMC")
unwrap!(crate::rcc::get_freqs().pll1_q)
}
})
};

View File

@ -33,7 +33,7 @@ log = { version = "0.4.14", optional = true }
futures-util = { version = "0.3.17", default-features = false }
critical-section = "1.1"
heapless = "0.7.5"
heapless = "0.8"
cfg-if = "1.0.0"
embedded-io-async = { version = "0.6.0", optional = true }

View File

@ -5,6 +5,7 @@ An [Embassy](https://embassy.dev) project.
Synchronization primitives and data structures with async support:
- [`Channel`](channel::Channel) - A Multiple Producer Multiple Consumer (MPMC) channel. Each message is only received by a single consumer.
- [`PriorityChannel`](channel::priority::PriorityChannel) - A Multiple Producer Multiple Consumer (MPMC) channel. Each message is only received by a single consumer. Higher priority items are sifted to the front of the channel.
- [`PubSubChannel`](pubsub::PubSubChannel) - A broadcast channel (publish-subscribe) channel. Each message is received by all consumers.
- [`Signal`](signal::Signal) - Signalling latest value to a single consumer.
- [`Mutex`](mutex::Mutex) - Mutex for synchronizing state between asynchronous tasks.

View File

@ -76,7 +76,7 @@ where
/// Send-only access to a [`Channel`] without knowing channel size.
pub struct DynamicSender<'ch, T> {
channel: &'ch dyn DynamicChannel<T>,
pub(crate) channel: &'ch dyn DynamicChannel<T>,
}
impl<'ch, T> Clone for DynamicSender<'ch, T> {
@ -176,7 +176,7 @@ where
/// Receive-only access to a [`Channel`] without knowing channel size.
pub struct DynamicReceiver<'ch, T> {
channel: &'ch dyn DynamicChannel<T>,
pub(crate) channel: &'ch dyn DynamicChannel<T>,
}
impl<'ch, T> Clone for DynamicReceiver<'ch, T> {
@ -321,7 +321,7 @@ impl<'ch, T> Future for DynamicSendFuture<'ch, T> {
impl<'ch, T> Unpin for DynamicSendFuture<'ch, T> {}
trait DynamicChannel<T> {
pub(crate) trait DynamicChannel<T> {
fn try_send_with_context(&self, message: T, cx: Option<&mut Context<'_>>) -> Result<(), TrySendError<T>>;
fn try_receive_with_context(&self, cx: Option<&mut Context<'_>>) -> Result<T, TryReceiveError>;

View File

@ -15,6 +15,7 @@ pub mod blocking_mutex;
pub mod channel;
pub mod mutex;
pub mod pipe;
pub mod priority_channel;
pub mod pubsub;
pub mod signal;
pub mod waitqueue;

View File

@ -0,0 +1,613 @@
//! A queue for sending values between asynchronous tasks.
//!
//! Similar to a [`Channel`](crate::channel::Channel), however [`PriorityChannel`] sifts higher priority items to the front of the queue.
//! Priority is determined by the `Ord` trait. Priority behavior is determined by the [`Kind`](heapless::binary_heap::Kind) parameter of the channel.
use core::cell::RefCell;
use core::future::Future;
use core::pin::Pin;
use core::task::{Context, Poll};
pub use heapless::binary_heap::{Kind, Max, Min};
use heapless::BinaryHeap;
use crate::blocking_mutex::raw::RawMutex;
use crate::blocking_mutex::Mutex;
use crate::channel::{DynamicChannel, DynamicReceiver, DynamicSender, TryReceiveError, TrySendError};
use crate::waitqueue::WakerRegistration;
/// Send-only access to a [`PriorityChannel`].
pub struct Sender<'ch, M, T, K, const N: usize>
where
T: Ord,
K: Kind,
M: RawMutex,
{
channel: &'ch PriorityChannel<M, T, K, N>,
}
impl<'ch, M, T, K, const N: usize> Clone for Sender<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
fn clone(&self) -> Self {
Sender { channel: self.channel }
}
}
impl<'ch, M, T, K, const N: usize> Copy for Sender<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
}
impl<'ch, M, T, K, const N: usize> Sender<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
/// Sends a value.
///
/// See [`PriorityChannel::send()`]
pub fn send(&self, message: T) -> SendFuture<'ch, M, T, K, N> {
self.channel.send(message)
}
/// Attempt to immediately send a message.
///
/// See [`PriorityChannel::send()`]
pub fn try_send(&self, message: T) -> Result<(), TrySendError<T>> {
self.channel.try_send(message)
}
/// Allows a poll_fn to poll until the channel is ready to send
///
/// See [`PriorityChannel::poll_ready_to_send()`]
pub fn poll_ready_to_send(&self, cx: &mut Context<'_>) -> Poll<()> {
self.channel.poll_ready_to_send(cx)
}
}
impl<'ch, M, T, K, const N: usize> From<Sender<'ch, M, T, K, N>> for DynamicSender<'ch, T>
where
T: Ord,
K: Kind,
M: RawMutex,
{
fn from(s: Sender<'ch, M, T, K, N>) -> Self {
Self { channel: s.channel }
}
}
/// Receive-only access to a [`PriorityChannel`].
pub struct Receiver<'ch, M, T, K, const N: usize>
where
T: Ord,
K: Kind,
M: RawMutex,
{
channel: &'ch PriorityChannel<M, T, K, N>,
}
impl<'ch, M, T, K, const N: usize> Clone for Receiver<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
fn clone(&self) -> Self {
Receiver { channel: self.channel }
}
}
impl<'ch, M, T, K, const N: usize> Copy for Receiver<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
}
impl<'ch, M, T, K, const N: usize> Receiver<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
/// Receive the next value.
///
/// See [`PriorityChannel::receive()`].
pub fn receive(&self) -> ReceiveFuture<'_, M, T, K, N> {
self.channel.receive()
}
/// Attempt to immediately receive the next value.
///
/// See [`PriorityChannel::try_receive()`]
pub fn try_receive(&self) -> Result<T, TryReceiveError> {
self.channel.try_receive()
}
/// Allows a poll_fn to poll until the channel is ready to receive
///
/// See [`PriorityChannel::poll_ready_to_receive()`]
pub fn poll_ready_to_receive(&self, cx: &mut Context<'_>) -> Poll<()> {
self.channel.poll_ready_to_receive(cx)
}
/// Poll the channel for the next item
///
/// See [`PriorityChannel::poll_receive()`]
pub fn poll_receive(&self, cx: &mut Context<'_>) -> Poll<T> {
self.channel.poll_receive(cx)
}
}
impl<'ch, M, T, K, const N: usize> From<Receiver<'ch, M, T, K, N>> for DynamicReceiver<'ch, T>
where
T: Ord,
K: Kind,
M: RawMutex,
{
fn from(s: Receiver<'ch, M, T, K, N>) -> Self {
Self { channel: s.channel }
}
}
/// Future returned by [`PriorityChannel::receive`] and [`Receiver::receive`].
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct ReceiveFuture<'ch, M, T, K, const N: usize>
where
T: Ord,
K: Kind,
M: RawMutex,
{
channel: &'ch PriorityChannel<M, T, K, N>,
}
impl<'ch, M, T, K, const N: usize> Future for ReceiveFuture<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
type Output = T;
fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<T> {
self.channel.poll_receive(cx)
}
}
/// Future returned by [`PriorityChannel::send`] and [`Sender::send`].
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct SendFuture<'ch, M, T, K, const N: usize>
where
T: Ord,
K: Kind,
M: RawMutex,
{
channel: &'ch PriorityChannel<M, T, K, N>,
message: Option<T>,
}
impl<'ch, M, T, K, const N: usize> Future for SendFuture<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
type Output = ();
fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
match self.message.take() {
Some(m) => match self.channel.try_send_with_context(m, Some(cx)) {
Ok(..) => Poll::Ready(()),
Err(TrySendError::Full(m)) => {
self.message = Some(m);
Poll::Pending
}
},
None => panic!("Message cannot be None"),
}
}
}
impl<'ch, M, T, K, const N: usize> Unpin for SendFuture<'ch, M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
}
struct ChannelState<T, K, const N: usize> {
queue: BinaryHeap<T, K, N>,
receiver_waker: WakerRegistration,
senders_waker: WakerRegistration,
}
impl<T, K, const N: usize> ChannelState<T, K, N>
where
T: Ord,
K: Kind,
{
const fn new() -> Self {
ChannelState {
queue: BinaryHeap::new(),
receiver_waker: WakerRegistration::new(),
senders_waker: WakerRegistration::new(),
}
}
fn try_receive(&mut self) -> Result<T, TryReceiveError> {
self.try_receive_with_context(None)
}
fn try_receive_with_context(&mut self, cx: Option<&mut Context<'_>>) -> Result<T, TryReceiveError> {
if self.queue.len() == self.queue.capacity() {
self.senders_waker.wake();
}
if let Some(message) = self.queue.pop() {
Ok(message)
} else {
if let Some(cx) = cx {
self.receiver_waker.register(cx.waker());
}
Err(TryReceiveError::Empty)
}
}
fn poll_receive(&mut self, cx: &mut Context<'_>) -> Poll<T> {
if self.queue.len() == self.queue.capacity() {
self.senders_waker.wake();
}
if let Some(message) = self.queue.pop() {
Poll::Ready(message)
} else {
self.receiver_waker.register(cx.waker());
Poll::Pending
}
}
fn poll_ready_to_receive(&mut self, cx: &mut Context<'_>) -> Poll<()> {
self.receiver_waker.register(cx.waker());
if !self.queue.is_empty() {
Poll::Ready(())
} else {
Poll::Pending
}
}
fn try_send(&mut self, message: T) -> Result<(), TrySendError<T>> {
self.try_send_with_context(message, None)
}
fn try_send_with_context(&mut self, message: T, cx: Option<&mut Context<'_>>) -> Result<(), TrySendError<T>> {
match self.queue.push(message) {
Ok(()) => {
self.receiver_waker.wake();
Ok(())
}
Err(message) => {
if let Some(cx) = cx {
self.senders_waker.register(cx.waker());
}
Err(TrySendError::Full(message))
}
}
}
fn poll_ready_to_send(&mut self, cx: &mut Context<'_>) -> Poll<()> {
self.senders_waker.register(cx.waker());
if !self.queue.len() == self.queue.capacity() {
Poll::Ready(())
} else {
Poll::Pending
}
}
}
/// A bounded channel for communicating between asynchronous tasks
/// with backpressure.
///
/// The channel will buffer up to the provided number of messages. Once the
/// buffer is full, attempts to `send` new messages will wait until a message is
/// received from the channel.
///
/// Sent data may be reordered based on their priorty within the channel.
/// For example, in a [`Max`](heapless::binary_heap::Max) [`PriorityChannel`]
/// containing `u32`'s, data sent in the following order `[1, 2, 3]` will be recieved as `[3, 2, 1]`.
pub struct PriorityChannel<M, T, K, const N: usize>
where
T: Ord,
K: Kind,
M: RawMutex,
{
inner: Mutex<M, RefCell<ChannelState<T, K, N>>>,
}
impl<M, T, K, const N: usize> PriorityChannel<M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
/// Establish a new bounded channel. For example, to create one with a NoopMutex:
///
/// ```
/// use embassy_sync::priority_channel::{PriorityChannel, Max};
/// use embassy_sync::blocking_mutex::raw::NoopRawMutex;
///
/// // Declare a bounded channel of 3 u32s.
/// let mut channel = PriorityChannel::<NoopRawMutex, u32, Max, 3>::new();
/// ```
pub const fn new() -> Self {
Self {
inner: Mutex::new(RefCell::new(ChannelState::new())),
}
}
fn lock<R>(&self, f: impl FnOnce(&mut ChannelState<T, K, N>) -> R) -> R {
self.inner.lock(|rc| f(&mut *unwrap!(rc.try_borrow_mut())))
}
fn try_receive_with_context(&self, cx: Option<&mut Context<'_>>) -> Result<T, TryReceiveError> {
self.lock(|c| c.try_receive_with_context(cx))
}
/// Poll the channel for the next message
pub fn poll_receive(&self, cx: &mut Context<'_>) -> Poll<T> {
self.lock(|c| c.poll_receive(cx))
}
fn try_send_with_context(&self, m: T, cx: Option<&mut Context<'_>>) -> Result<(), TrySendError<T>> {
self.lock(|c| c.try_send_with_context(m, cx))
}
/// Allows a poll_fn to poll until the channel is ready to receive
pub fn poll_ready_to_receive(&self, cx: &mut Context<'_>) -> Poll<()> {
self.lock(|c| c.poll_ready_to_receive(cx))
}
/// Allows a poll_fn to poll until the channel is ready to send
pub fn poll_ready_to_send(&self, cx: &mut Context<'_>) -> Poll<()> {
self.lock(|c| c.poll_ready_to_send(cx))
}
/// Get a sender for this channel.
pub fn sender(&self) -> Sender<'_, M, T, K, N> {
Sender { channel: self }
}
/// Get a receiver for this channel.
pub fn receiver(&self) -> Receiver<'_, M, T, K, N> {
Receiver { channel: self }
}
/// Send a value, waiting until there is capacity.
///
/// Sending completes when the value has been pushed to the channel's queue.
/// This doesn't mean the value has been received yet.
pub fn send(&self, message: T) -> SendFuture<'_, M, T, K, N> {
SendFuture {
channel: self,
message: Some(message),
}
}
/// Attempt to immediately send a message.
///
/// This method differs from [`send`](PriorityChannel::send) by returning immediately if the channel's
/// buffer is full, instead of waiting.
///
/// # Errors
///
/// If the channel capacity has been reached, i.e., the channel has `n`
/// buffered values where `n` is the argument passed to [`PriorityChannel`], then an
/// error is returned.
pub fn try_send(&self, message: T) -> Result<(), TrySendError<T>> {
self.lock(|c| c.try_send(message))
}
/// Receive the next value.
///
/// If there are no messages in the channel's buffer, this method will
/// wait until a message is sent.
pub fn receive(&self) -> ReceiveFuture<'_, M, T, K, N> {
ReceiveFuture { channel: self }
}
/// Attempt to immediately receive a message.
///
/// This method will either receive a message from the channel immediately or return an error
/// if the channel is empty.
pub fn try_receive(&self) -> Result<T, TryReceiveError> {
self.lock(|c| c.try_receive())
}
}
/// Implements the DynamicChannel to allow creating types that are unaware of the queue size with the
/// tradeoff cost of dynamic dispatch.
impl<M, T, K, const N: usize> DynamicChannel<T> for PriorityChannel<M, T, K, N>
where
T: Ord,
K: Kind,
M: RawMutex,
{
fn try_send_with_context(&self, m: T, cx: Option<&mut Context<'_>>) -> Result<(), TrySendError<T>> {
PriorityChannel::try_send_with_context(self, m, cx)
}
fn try_receive_with_context(&self, cx: Option<&mut Context<'_>>) -> Result<T, TryReceiveError> {
PriorityChannel::try_receive_with_context(self, cx)
}
fn poll_ready_to_send(&self, cx: &mut Context<'_>) -> Poll<()> {
PriorityChannel::poll_ready_to_send(self, cx)
}
fn poll_ready_to_receive(&self, cx: &mut Context<'_>) -> Poll<()> {
PriorityChannel::poll_ready_to_receive(self, cx)
}
fn poll_receive(&self, cx: &mut Context<'_>) -> Poll<T> {
PriorityChannel::poll_receive(self, cx)
}
}
#[cfg(test)]
mod tests {
use core::time::Duration;
use futures_executor::ThreadPool;
use futures_timer::Delay;
use futures_util::task::SpawnExt;
use heapless::binary_heap::{Kind, Max};
use static_cell::StaticCell;
use super::*;
use crate::blocking_mutex::raw::{CriticalSectionRawMutex, NoopRawMutex};
fn capacity<T, K, const N: usize>(c: &ChannelState<T, K, N>) -> usize
where
T: Ord,
K: Kind,
{
c.queue.capacity() - c.queue.len()
}
#[test]
fn sending_once() {
let mut c = ChannelState::<u32, Max, 3>::new();
assert!(c.try_send(1).is_ok());
assert_eq!(capacity(&c), 2);
}
#[test]
fn sending_when_full() {
let mut c = ChannelState::<u32, Max, 3>::new();
let _ = c.try_send(1);
let _ = c.try_send(1);
let _ = c.try_send(1);
match c.try_send(2) {
Err(TrySendError::Full(2)) => assert!(true),
_ => assert!(false),
}
assert_eq!(capacity(&c), 0);
}
#[test]
fn send_priority() {
// Prio channel with kind `Max` sifts larger numbers to the front of the queue
let mut c = ChannelState::<u32, Max, 3>::new();
assert!(c.try_send(1).is_ok());
assert!(c.try_send(2).is_ok());
assert!(c.try_send(3).is_ok());
assert_eq!(c.try_receive().unwrap(), 3);
assert_eq!(c.try_receive().unwrap(), 2);
assert_eq!(c.try_receive().unwrap(), 1);
}
#[test]
fn receiving_once_with_one_send() {
let mut c = ChannelState::<u32, Max, 3>::new();
assert!(c.try_send(1).is_ok());
assert_eq!(c.try_receive().unwrap(), 1);
assert_eq!(capacity(&c), 3);
}
#[test]
fn receiving_when_empty() {
let mut c = ChannelState::<u32, Max, 3>::new();
match c.try_receive() {
Err(TryReceiveError::Empty) => assert!(true),
_ => assert!(false),
}
assert_eq!(capacity(&c), 3);
}
#[test]
fn simple_send_and_receive() {
let c = PriorityChannel::<NoopRawMutex, u32, Max, 3>::new();
assert!(c.try_send(1).is_ok());
assert_eq!(c.try_receive().unwrap(), 1);
}
#[test]
fn cloning() {
let c = PriorityChannel::<NoopRawMutex, u32, Max, 3>::new();
let r1 = c.receiver();
let s1 = c.sender();
let _ = r1.clone();
let _ = s1.clone();
}
#[test]
fn dynamic_dispatch() {
let c = PriorityChannel::<NoopRawMutex, u32, Max, 3>::new();
let s: DynamicSender<'_, u32> = c.sender().into();
let r: DynamicReceiver<'_, u32> = c.receiver().into();
assert!(s.try_send(1).is_ok());
assert_eq!(r.try_receive().unwrap(), 1);
}
#[futures_test::test]
async fn receiver_receives_given_try_send_async() {
let executor = ThreadPool::new().unwrap();
static CHANNEL: StaticCell<PriorityChannel<CriticalSectionRawMutex, u32, Max, 3>> = StaticCell::new();
let c = &*CHANNEL.init(PriorityChannel::new());
let c2 = c;
assert!(executor
.spawn(async move {
assert!(c2.try_send(1).is_ok());
})
.is_ok());
assert_eq!(c.receive().await, 1);
}
#[futures_test::test]
async fn sender_send_completes_if_capacity() {
let c = PriorityChannel::<CriticalSectionRawMutex, u32, Max, 1>::new();
c.send(1).await;
assert_eq!(c.receive().await, 1);
}
#[futures_test::test]
async fn senders_sends_wait_until_capacity() {
let executor = ThreadPool::new().unwrap();
static CHANNEL: StaticCell<PriorityChannel<CriticalSectionRawMutex, u32, Max, 1>> = StaticCell::new();
let c = &*CHANNEL.init(PriorityChannel::new());
assert!(c.try_send(1).is_ok());
let c2 = c;
let send_task_1 = executor.spawn_with_handle(async move { c2.send(2).await });
let c2 = c;
let send_task_2 = executor.spawn_with_handle(async move { c2.send(3).await });
// Wish I could think of a means of determining that the async send is waiting instead.
// However, I've used the debugger to observe that the send does indeed wait.
Delay::new(Duration::from_millis(500)).await;
assert_eq!(c.receive().await, 1);
assert!(executor
.spawn(async move {
loop {
c.receive().await;
}
})
.is_ok());
send_task_1.unwrap().await;
send_task_2.unwrap().await;
}
}

View File

@ -248,7 +248,7 @@ embedded-hal-async = { version = "=1.0.0-rc.1", optional = true}
futures-util = { version = "0.3.17", default-features = false }
critical-section = "1.1"
cfg-if = "1.0.0"
heapless = "0.7"
heapless = "0.8"
# WASM dependencies
wasm-bindgen = { version = "0.2.81", optional = true }
@ -258,4 +258,4 @@ wasm-timer = { version = "0.2.5", optional = true }
[dev-dependencies]
serial_test = "0.9"
critical-section = { version = "1.1", features = ["std"] }
embassy-executor = { version = "0.3.1", path = "../embassy-executor", features = ["nightly"] }
embassy-executor = { version = "0.3.3", path = "../embassy-executor", features = ["nightly"] }

View File

@ -4,7 +4,7 @@ This crate contains the driver traits for [`embassy-usb`]. HAL/BSP crates can im
traits to add support for using `embassy-usb` for a given chip/platform.
The traits are kept in a separate crate so that breaking changes in the higher-level [`embassy-usb`]
APIs don't cause a semver-major bump of thsi crate. This allows existing HALs/BSPs to be used
APIs don't cause a semver-major bump of this crate. This allows existing HALs/BSPs to be used
with the newer `embassy-usb` without needing updates.
If you're writing an application using USB, you should depend on the main [`embassy-usb`] crate

View File

@ -45,7 +45,7 @@ embassy-net-driver-channel = { version = "0.2.0", path = "../embassy-net-driver-
defmt = { version = "0.3", optional = true }
log = { version = "0.4.14", optional = true }
heapless = "0.7.10"
heapless = "0.8"
# for HID
usbd-hid = { version = "0.6.0", optional = true }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.4.0", path = "../../../../embassy-sync" }
embassy-executor = { version = "0.3.1", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers", "arch-cortex-m", "executor-thread"] }
embassy-executor = { version = "0.3.3", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers", "arch-cortex-m", "executor-thread"] }
embassy-time = { version = "0.1.5", path = "../../../../embassy-time", features = ["nightly"] }
embassy-nrf = { version = "0.1.0", path = "../../../../embassy-nrf", features = ["time-driver-rtc1", "gpiote", "nightly"] }
embassy-boot = { version = "0.1.0", path = "../../../../embassy-boot/boot", features = ["nightly"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.4.0", path = "../../../../embassy-sync" }
embassy-executor = { version = "0.3.1", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers", "arch-cortex-m", "executor-thread"] }
embassy-executor = { version = "0.3.3", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers", "arch-cortex-m", "executor-thread"] }
embassy-time = { version = "0.1.5", path = "../../../../embassy-time", features = ["nightly"] }
embassy-rp = { version = "0.1.0", path = "../../../../embassy-rp", features = ["time-driver", "unstable-traits", "nightly"] }
embassy-boot-rp = { version = "0.1.0", path = "../../../../embassy-boot/rp", features = ["nightly"] }

View File

@ -5,7 +5,19 @@ MEMORY
BOOTLOADER_STATE : ORIGIN = 0x10006000, LENGTH = 4K
FLASH : ORIGIN = 0x10007000, LENGTH = 512K
DFU : ORIGIN = 0x10087000, LENGTH = 516K
RAM : ORIGIN = 0x20000000, LENGTH = 256K
/* Pick one of the two options for RAM layout */
/* OPTION A: Use all RAM banks as one big block */
/* Reasonable, unless you are doing something */
/* really particular with DMA or other concurrent */
/* access that would benefit from striping */
RAM : ORIGIN = 0x20000000, LENGTH = 264K
/* OPTION B: Keep the unstriped sections separate */
/* RAM: ORIGIN = 0x20000000, LENGTH = 256K */
/* SCRATCH_A: ORIGIN = 0x20040000, LENGTH = 4K */
/* SCRATCH_B: ORIGIN = 0x20041000, LENGTH = 4K */
}
__bootloader_state_start = ORIGIN(BOOTLOADER_STATE) - ORIGIN(BOOT2);

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.4.0", path = "../../../../embassy-sync" }
embassy-executor = { version = "0.3.1", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-executor = { version = "0.3.3", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.5", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32f303re", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32", features = ["nightly"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.4.0", path = "../../../../embassy-sync" }
embassy-executor = { version = "0.3.1", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-executor = { version = "0.3.3", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.5", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32f767zi", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32", features = ["nightly"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.4.0", path = "../../../../embassy-sync" }
embassy-executor = { version = "0.3.1", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-executor = { version = "0.3.3", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.5", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32h743zi", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32", features = ["nightly"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.4.0", path = "../../../../embassy-sync" }
embassy-executor = { version = "0.3.1", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-executor = { version = "0.3.3", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.5", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32l072cz", "time-driver-any", "exti", "memory-x"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32", features = ["nightly"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.4.0", path = "../../../../embassy-sync" }
embassy-executor = { version = "0.3.1", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-executor = { version = "0.3.3", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.5", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32l151cb-a", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32", features = ["nightly"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.4.0", path = "../../../../embassy-sync" }
embassy-executor = { version = "0.3.1", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-executor = { version = "0.3.3", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.5", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32l475vg", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32", features = ["nightly"] }

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.4.0", path = "../../../../embassy-sync" }
embassy-executor = { version = "0.3.1", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-executor = { version = "0.3.3", path = "../../../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.5", path = "../../../../embassy-time", features = ["nightly", "tick-hz-32_768"] }
embassy-stm32 = { version = "0.1.0", path = "../../../../embassy-stm32", features = ["unstable-traits", "nightly", "stm32wl55jc-cm4", "time-driver-any", "exti"] }
embassy-boot-stm32 = { version = "0.1.0", path = "../../../../embassy-boot/stm32", features = ["nightly"] }

View File

@ -6,7 +6,19 @@ MEMORY
BOOTLOADER_STATE : ORIGIN = 0x10006000, LENGTH = 4K
ACTIVE : ORIGIN = 0x10007000, LENGTH = 512K
DFU : ORIGIN = 0x10087000, LENGTH = 516K
RAM : ORIGIN = 0x20000000, LENGTH = 256K
/* Pick one of the two options for RAM layout */
/* OPTION A: Use all RAM banks as one big block */
/* Reasonable, unless you are doing something */
/* really particular with DMA or other concurrent */
/* access that would benefit from striping */
RAM : ORIGIN = 0x20000000, LENGTH = 264K
/* OPTION B: Keep the unstriped sections separate */
/* RAM: ORIGIN = 0x20000000, LENGTH = 256K */
/* SCRATCH_A: ORIGIN = 0x20040000, LENGTH = 4K */
/* SCRATCH_B: ORIGIN = 0x20041000, LENGTH = 4K */
}
__bootloader_state_start = ORIGIN(BOOTLOADER_STATE) - ORIGIN(BOOT2);

View File

@ -17,7 +17,7 @@ log = [
[dependencies]
embassy-sync = { version = "0.4.0", path = "../../embassy-sync" }
embassy-executor = { version = "0.3.1", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "rtos-trace", "rtos-trace-interrupt", "integrated-timers"] }
embassy-executor = { version = "0.3.3", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "rtos-trace", "integrated-timers"] }
embassy-time = { version = "0.1.5", path = "../../embassy-time" }
embassy-nrf = { version = "0.1.0", path = "../../embassy-nrf", features = ["nrf52840", "time-driver-rtc1", "gpiote", "unstable-pac"] }

View File

@ -30,7 +30,7 @@ nightly = [
[dependencies]
embassy-futures = { version = "0.1.0", path = "../../embassy-futures" }
embassy-sync = { version = "0.4.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.3.1", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "executor-interrupt", "defmt", "integrated-timers"] }
embassy-executor = { version = "0.3.3", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread", "executor-interrupt", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.5", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime"] }
embassy-nrf = { version = "0.1.0", path = "../../embassy-nrf", features = ["defmt", "nrf52840", "time-driver-rtc1", "gpiote", "unstable-pac", "time"] }
embassy-net = { version = "0.2.0", path = "../../embassy-net", features = ["defmt", "tcp", "dhcpv4", "medium-ethernet"], optional = true }

View File

@ -9,7 +9,7 @@ embassy-futures = { version = "0.1.0", path = "../../embassy-futures" }
embassy-sync = { version = "0.4.0", path = "../../embassy-sync", features = [
"defmt",
] }
embassy-executor = { version = "0.3.1", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread",
embassy-executor = { version = "0.3.3", path = "../../embassy-executor", features = ["arch-cortex-m", "executor-thread",
"nightly",
"defmt",
"integrated-timers",

View File

@ -8,7 +8,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-embedded-hal = { version = "0.1.0", path = "../../embassy-embedded-hal", features = ["defmt"] }
embassy-sync = { version = "0.4.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.3.1", path = "../../embassy-executor", features = ["nightly", "arch-cortex-m", "executor-thread", "executor-interrupt", "defmt", "integrated-timers"] }
embassy-executor = { version = "0.3.3", path = "../../embassy-executor", features = ["nightly", "arch-cortex-m", "executor-thread", "executor-interrupt", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.5", path = "../../embassy-time", features = ["nightly", "unstable-traits", "defmt", "defmt-timestamp-uptime"] }
embassy-rp = { version = "0.1.0", path = "../../embassy-rp", features = ["defmt", "unstable-traits", "nightly", "unstable-pac", "time-driver", "critical-section-impl"] }
embassy-usb = { version = "0.1.0", path = "../../embassy-usb", features = ["defmt"] }
@ -39,7 +39,7 @@ st7789 = "0.6.1"
display-interface = "0.4.1"
byte-slice-cast = { version = "1.2.0", default-features = false }
smart-leds = "0.3.0"
heapless = "0.7.15"
heapless = "0.8"
usbd-hid = "0.6.1"
embedded-hal-1 = { package = "embedded-hal", version = "=1.0.0-rc.1" }

View File

@ -1,5 +1,17 @@
MEMORY {
BOOT2 : ORIGIN = 0x10000000, LENGTH = 0x100
FLASH : ORIGIN = 0x10000100, LENGTH = 2048K - 0x100
RAM : ORIGIN = 0x20000000, LENGTH = 256K
}
/* Pick one of the two options for RAM layout */
/* OPTION A: Use all RAM banks as one big block */
/* Reasonable, unless you are doing something */
/* really particular with DMA or other concurrent */
/* access that would benefit from striping */
RAM : ORIGIN = 0x20000000, LENGTH = 264K
/* OPTION B: Keep the unstriped sections separate */
/* RAM: ORIGIN = 0x20000000, LENGTH = 256K */
/* SCRATCH_A: ORIGIN = 0x20040000, LENGTH = 4K */
/* SCRATCH_B: ORIGIN = 0x20041000, LENGTH = 4K */
}

View File

@ -6,7 +6,7 @@ license = "MIT OR Apache-2.0"
[dependencies]
embassy-sync = { version = "0.4.0", path = "../../embassy-sync", features = ["log"] }
embassy-executor = { version = "0.3.1", path = "../../embassy-executor", features = ["arch-std", "executor-thread", "log", "nightly", "integrated-timers"] }
embassy-executor = { version = "0.3.3", path = "../../embassy-executor", features = ["arch-std", "executor-thread", "log", "nightly", "integrated-timers"] }
embassy-time = { version = "0.1.5", path = "../../embassy-time", features = ["log", "std", "nightly"] }
embassy-net = { version = "0.2.0", path = "../../embassy-net", features=[ "std", "nightly", "log", "medium-ethernet", "medium-ip", "tcp", "udp", "dns", "dhcpv4", "proto-ipv6"] }
embassy-net-tuntap = { version = "0.1.0", path = "../../embassy-net-tuntap" }
@ -14,7 +14,6 @@ embassy-net-ppp = { version = "0.1.0", path = "../../embassy-net-ppp", features
embedded-io-async = { version = "0.6.0" }
embedded-io-adapters = { version = "0.6.0", features = ["futures-03"] }
critical-section = { version = "1.1", features = ["std"] }
smoltcp = { version = "0.10.0", features = ["dns-max-server-count-4"] }
async-io = "1.6.0"
env_logger = "0.9.0"
@ -23,7 +22,7 @@ log = "0.4.14"
nix = "0.26.2"
clap = { version = "3.0.0-beta.5", features = ["derive"] }
rand_core = { version = "0.6.3", features = ["std"] }
heapless = { version = "0.7.5", default-features = false }
heapless = { version = "0.8", default-features = false }
static_cell = { version = "2", features = ["nightly"]}
[profile.release]

View File

@ -8,7 +8,7 @@ license = "MIT OR Apache-2.0"
# Change stm32c031c6 to your chip name, if necessary.
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "time-driver-any", "stm32c031c6", "memory-x", "unstable-pac", "exti"] }
embassy-sync = { version = "0.4.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.3.1", path = "../../embassy-executor", features = ["nightly", "arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-executor = { version = "0.3.3", path = "../../embassy-executor", features = ["nightly", "arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.5", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
defmt = "0.3"
@ -19,7 +19,7 @@ cortex-m-rt = "0.7.0"
embedded-hal = "0.2.6"
panic-probe = { version = "0.3", features = ["print-defmt"] }
futures = { version = "0.3.17", default-features = false, features = ["async-await"] }
heapless = { version = "0.7.5", default-features = false }
heapless = { version = "0.8", default-features = false }
[profile.release]
debug = 2

View File

@ -15,7 +15,7 @@ defmt = "0.3"
defmt-rtt = "0.4"
panic-probe = "0.3"
embassy-sync = { version = "0.4.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.3.1", path = "../../embassy-executor", features = ["nightly", "arch-cortex-m", "executor-thread", "executor-interrupt", "defmt", "integrated-timers"] }
embassy-executor = { version = "0.3.3", path = "../../embassy-executor", features = ["nightly", "arch-cortex-m", "executor-thread", "executor-interrupt", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.5", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
static_cell = { version = "2", features = ["nightly"]}
portable-atomic = { version = "1.5", features = ["unsafe-assume-single-core"] }

View File

@ -8,7 +8,7 @@ license = "MIT OR Apache-2.0"
# Change stm32f103c8 to your chip name, if necessary.
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "stm32f103c8", "unstable-pac", "memory-x", "time-driver-any", "unstable-traits" ] }
embassy-sync = { version = "0.4.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.3.1", path = "../../embassy-executor", features = ["nightly", "arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-executor = { version = "0.3.3", path = "../../embassy-executor", features = ["nightly", "arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.5", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
embassy-usb = { version = "0.1.0", path = "../../embassy-usb", features = ["defmt"] }
embassy-futures = { version = "0.1.0", path = "../../embassy-futures" }
@ -21,7 +21,7 @@ cortex-m-rt = "0.7.0"
embedded-hal = "0.2.6"
panic-probe = { version = "0.3", features = ["print-defmt"] }
futures = { version = "0.3.17", default-features = false, features = ["async-await"] }
heapless = { version = "0.7.5", default-features = false }
heapless = { version = "0.8", default-features = false }
nb = "1.0.0"
[profile.dev]

View File

@ -8,7 +8,7 @@ license = "MIT OR Apache-2.0"
# Change stm32f207zg to your chip name, if necessary.
embassy-stm32 = { version = "0.1.0", path = "../../embassy-stm32", features = ["nightly", "defmt", "stm32f207zg", "unstable-pac", "memory-x", "time-driver-any", "exti"] }
embassy-sync = { version = "0.4.0", path = "../../embassy-sync", features = ["defmt"] }
embassy-executor = { version = "0.3.1", path = "../../embassy-executor", features = ["nightly", "arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-executor = { version = "0.3.3", path = "../../embassy-executor", features = ["nightly", "arch-cortex-m", "executor-thread", "defmt", "integrated-timers"] }
embassy-time = { version = "0.1.5", path = "../../embassy-time", features = ["defmt", "defmt-timestamp-uptime", "tick-hz-32_768"] }
defmt = "0.3"
@ -19,7 +19,7 @@ cortex-m-rt = "0.7.0"
embedded-hal = "0.2.6"
panic-probe = { version = "0.3", features = ["print-defmt"] }
futures = { version = "0.3.17", default-features = false, features = ["async-await"] }
heapless = { version = "0.7.5", default-features = false }
heapless = { version = "0.8", default-features = false }
nb = "1.0.0"
[profile.release]

Some files were not shown because too many files have changed in this diff Show More