Compare commits

...

21 Commits

Author SHA1 Message Date
cf13f70ea9 stm32/test: add stm32f446 (board not in HIL rig yet) 2023-11-27 00:38:57 +01:00
6bdacb4f69 stm32/sdmmc: use unwrap to ensure panics get printed to defmt. 2023-11-27 00:35:41 +01:00
ff3baf1e90 Merge pull request #2220 from jamesmunns/patch-2
Minor readme typo
2023-11-25 22:13:34 +00:00
d5dcbadbbe Minor readme typo 2023-11-25 22:31:03 +01:00
0ad0d27150 Merge pull request #2219 from embassy-rs/no-concat-bytes
cyw43: remove feature(concat_bytes).
2023-11-25 00:09:02 +00:00
03d500f548 cyw43: remove feature(concat_bytes). 2023-11-25 01:06:43 +01:00
8b46343b34 Merge pull request #2199 from adamgreig/stm32-dac
STM32 DAC: update to new PAC, combine ch1/ch2, fix trigger selection
2023-11-24 23:51:07 +00:00
a3ea01473a stm32: fix dac trait 2023-11-25 00:30:30 +01:00
cf84c8bfd1 WIP: use generated metapac from corresponding PR for CI 2023-11-25 00:30:29 +01:00
09d7950313 STM32 DAC: Rework DAC driver, support all families. 2023-11-25 00:29:45 +01:00
267cbaebe6 STM32 DAC: Disable circular writes with GPDMA as it doesn't yet support circular transfers 2023-11-25 00:29:45 +01:00
31fc337e2f STM32 DAC: Swap to new TSEL enum entirely in-HAL 2023-11-25 00:29:45 +01:00
135f350020 STM32 DAC: Use new Mode enum for setting channel mode 2023-11-25 00:29:45 +01:00
897663e023 STM32: Add cfg to differentiate L4 and L4+ families 2023-11-25 00:29:45 +01:00
2218d30c80 STM32: Remove vestigal build.rs cfgs, add new flashsize_X and package_X cfgs, use in F3 RCC 2023-11-25 00:29:45 +01:00
f5c9e3baa6 Merge pull request #2200 from barnabywalters/asynci2cv1
Implemented async I2C for v1
2023-11-24 23:08:47 +00:00
47bac9df70 Merge pull request #2216 from embassy-rs/stable
executor: add support for main/task macros in stable Rust
2023-11-24 22:57:46 +00:00
3efc3eee57 stm32/i2c: implement async i2c v1. 2023-11-24 23:55:46 +01:00
bc65b8f7ec stm32/i2c: add async, dual interrupt scaffolding. 2023-11-24 23:55:45 +01:00
78f8e6112a Merge pull request #2217 from embassy-rs/no-try
embassy-embedded-hal: don't use feature(try_blocks).
2023-11-24 22:55:02 +00:00
5528c33649 embassy-embedded-hal: don't use feature(try_blocks). 2023-11-24 18:44:55 +01:00
36 changed files with 1726 additions and 929 deletions

3
ci.sh
View File

@ -190,6 +190,7 @@ cargo batch \
--- build --release --manifest-path examples/wasm/Cargo.toml --target wasm32-unknown-unknown --out-dir out/examples/wasm \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv7m-none-eabi --features stm32f103c8 --out-dir out/tests/stm32f103c8 \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv7em-none-eabi --features stm32f429zi --out-dir out/tests/stm32f429zi \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv7em-none-eabi --features stm32f446re --out-dir out/tests/stm32f446re \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv7em-none-eabi --features stm32g491re --out-dir out/tests/stm32g491re \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv6m-none-eabi --features stm32g071rb --out-dir out/tests/stm32g071rb \
--- build --release --manifest-path tests/stm32/Cargo.toml --target thumbv6m-none-eabi --features stm32c031c6 --out-dir out/tests/stm32c031c6 \
@ -220,6 +221,8 @@ cargo batch \
rm out/tests/stm32wb55rg/wpan_mac
rm out/tests/stm32wb55rg/wpan_ble
# not in CI yet.
rm -rf out/tests/stm32f446re
# unstable, I think it's running out of RAM?
rm out/tests/stm32f207zg/eth

View File

@ -1,6 +1,6 @@
#![no_std]
#![no_main]
#![feature(async_fn_in_trait, type_alias_impl_trait, concat_bytes)]
#![feature(async_fn_in_trait, type_alias_impl_trait)]
#![allow(stable_features, unknown_lints, async_fn_in_trait)]
#![deny(unused_must_use)]

View File

@ -1,54 +1,48 @@
macro_rules! nvram {
($($s:literal,)*) => {
concat_bytes!($($s, b"\x00",)* b"\x00\x00")
};
}
pub static NVRAM: &'static [u8] = &*nvram!(
b"NVRAMRev=$Rev$",
b"manfid=0x2d0",
b"prodid=0x0727",
b"vendid=0x14e4",
b"devid=0x43e2",
b"boardtype=0x0887",
b"boardrev=0x1100",
b"boardnum=22",
b"macaddr=00:A0:50:b5:59:5e",
b"sromrev=11",
b"boardflags=0x00404001",
b"boardflags3=0x04000000",
b"xtalfreq=37400",
b"nocrc=1",
b"ag0=255",
b"aa2g=1",
b"ccode=ALL",
b"pa0itssit=0x20",
b"extpagain2g=0",
b"pa2ga0=-168,6649,-778",
b"AvVmid_c0=0x0,0xc8",
b"cckpwroffset0=5",
b"maxp2ga0=84",
b"txpwrbckof=6",
b"cckbw202gpo=0",
b"legofdmbw202gpo=0x66111111",
b"mcsbw202gpo=0x77711111",
b"propbw202gpo=0xdd",
b"ofdmdigfilttype=18",
b"ofdmdigfilttypebe=18",
b"papdmode=1",
b"papdvalidtest=1",
b"pacalidx2g=45",
b"papdepsoffset=-30",
b"papdendidx=58",
b"ltecxmux=0",
b"ltecxpadnum=0x0102",
b"ltecxfnsel=0x44",
b"ltecxgcigpio=0x01",
b"il0macaddr=00:90:4c:c5:12:38",
b"wl0id=0x431b",
b"deadman_to=0xffffffff",
b"muxenab=0x100",
b"spurconfig=0x3",
b"glitch_based_crsmin=1",
b"btc_mode=1",
);
pub static NVRAM: &'static [u8] = b"
NVRAMRev=$Rev$\x00\
manfid=0x2d0\x00\
prodid=0x0727\x00\
vendid=0x14e4\x00\
devid=0x43e2\x00\
boardtype=0x0887\x00\
boardrev=0x1100\x00\
boardnum=22\x00\
macaddr=00:A0:50:b5:59:5e\x00\
sromrev=11\x00\
boardflags=0x00404001\x00\
boardflags3=0x04000000\x00\
xtalfreq=37400\x00\
nocrc=1\x00\
ag0=255\x00\
aa2g=1\x00\
ccode=ALL\x00\
pa0itssit=0x20\x00\
extpagain2g=0\x00\
pa2ga0=-168,6649,-778\x00\
AvVmid_c0=0x0,0xc8\x00\
cckpwroffset0=5\x00\
maxp2ga0=84\x00\
txpwrbckof=6\x00\
cckbw202gpo=0\x00\
legofdmbw202gpo=0x66111111\x00\
mcsbw202gpo=0x77711111\x00\
propbw202gpo=0xdd\x00\
ofdmdigfilttype=18\x00\
ofdmdigfilttypebe=18\x00\
papdmode=1\x00\
papdvalidtest=1\x00\
pacalidx2g=45\x00\
papdepsoffset=-30\x00\
papdendidx=58\x00\
ltecxmux=0\x00\
ltecxpadnum=0x0102\x00\
ltecxfnsel=0x44\x00\
ltecxgcigpio=0x01\x00\
il0macaddr=00:90:4c:c5:12:38\x00\
wl0id=0x431b\x00\
deadman_to=0xffffffff\x00\
muxenab=0x100\x00\
spurconfig=0x3\x00\
glitch_based_crsmin=1\x00\
btc_mode=1\x00\
\x00";

View File

@ -1,5 +1,5 @@
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(feature = "nightly", feature(async_fn_in_trait, impl_trait_projections, try_blocks))]
#![cfg_attr(feature = "nightly", feature(async_fn_in_trait, impl_trait_projections))]
#![cfg_attr(feature = "nightly", allow(stable_features, unknown_lints, async_fn_in_trait))]
#![warn(missing_docs)]

View File

@ -66,19 +66,29 @@ where
let mut bus = self.bus.lock().await;
self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let op_res: Result<(), BUS::Error> = try {
let op_res = 'ops: {
for op in operations {
match op {
Operation::Read(buf) => bus.read(buf).await?,
Operation::Write(buf) => bus.write(buf).await?,
Operation::Transfer(read, write) => bus.transfer(read, write).await?,
Operation::TransferInPlace(buf) => bus.transfer_in_place(buf).await?,
let res = match op {
Operation::Read(buf) => bus.read(buf).await,
Operation::Write(buf) => bus.write(buf).await,
Operation::Transfer(read, write) => bus.transfer(read, write).await,
Operation::TransferInPlace(buf) => bus.transfer_in_place(buf).await,
#[cfg(not(feature = "time"))]
Operation::DelayUs(_) => return Err(SpiDeviceError::DelayUsNotSupported),
Operation::DelayUs(us) => return Err(SpiDeviceError::DelayUsNotSupported),
#[cfg(feature = "time")]
Operation::DelayUs(us) => embassy_time::Timer::after_micros(*us as _).await,
Operation::DelayUs(us) => match bus.flush().await {
Err(e) => Err(e),
Ok(()) => {
embassy_time::Timer::after_micros(*us as _).await;
Ok(())
}
},
};
if let Err(e) = res {
break 'ops Err(e);
}
}
Ok(())
};
// On failure, it's important to still flush and deassert CS.
@ -131,19 +141,29 @@ where
bus.set_config(&self.config).map_err(|_| SpiDeviceError::Config)?;
self.cs.set_low().map_err(SpiDeviceError::Cs)?;
let op_res: Result<(), BUS::Error> = try {
let op_res = 'ops: {
for op in operations {
match op {
Operation::Read(buf) => bus.read(buf).await?,
Operation::Write(buf) => bus.write(buf).await?,
Operation::Transfer(read, write) => bus.transfer(read, write).await?,
Operation::TransferInPlace(buf) => bus.transfer_in_place(buf).await?,
let res = match op {
Operation::Read(buf) => bus.read(buf).await,
Operation::Write(buf) => bus.write(buf).await,
Operation::Transfer(read, write) => bus.transfer(read, write).await,
Operation::TransferInPlace(buf) => bus.transfer_in_place(buf).await,
#[cfg(not(feature = "time"))]
Operation::DelayUs(_) => return Err(SpiDeviceError::DelayUsNotSupported),
Operation::DelayUs(us) => return Err(SpiDeviceError::DelayUsNotSupported),
#[cfg(feature = "time")]
Operation::DelayUs(us) => embassy_time::Timer::after_micros(*us as _).await,
Operation::DelayUs(us) => match bus.flush().await {
Err(e) => Err(e),
Ok(()) => {
embassy_time::Timer::after_micros(*us as _).await;
Ok(())
}
},
};
if let Err(e) = res {
break 'ops Err(e);
}
}
Ok(())
};
// On failure, it's important to still flush and deassert CS.

View File

@ -4,7 +4,6 @@
any(feature = "ble", feature = "mac"),
allow(stable_features, unknown_lints, async_fn_in_trait)
)]
#![cfg_attr(feature = "mac", feature(type_alias_impl_trait, concat_bytes))]
// This must go FIRST so that all the other modules see its macros.
mod fmt;

View File

@ -58,7 +58,7 @@ rand_core = "0.6.3"
sdio-host = "0.5.0"
embedded-sdmmc = { git = "https://github.com/embassy-rs/embedded-sdmmc-rs", rev = "a4f293d3a6f72158385f79c98634cb8a14d0d2fc", optional = true }
critical-section = "1.1"
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-fbb8f77326dd066aa6c0d66b3b46e76a569dda8b" }
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-7117ad49c06fa00c388130a34977e029910083bd" }
vcell = "0.1.3"
bxcan = "0.7.0"
nb = "1.0.0"
@ -76,7 +76,7 @@ critical-section = { version = "1.1", features = ["std"] }
[build-dependencies]
proc-macro2 = "1.0.36"
quote = "1.0.15"
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-fbb8f77326dd066aa6c0d66b3b46e76a569dda8b", default-features = false, features = ["metadata"]}
stm32-metapac = { git = "https://github.com/embassy-rs/stm32-data-generated", tag = "stm32-data-7117ad49c06fa00c388130a34977e029910083bd", default-features = false, features = ["metadata"]}
[features]

View File

@ -65,7 +65,6 @@ fn main() {
match r.kind {
// Generate singletons per pin, not per port
"gpio" => {
println!("{}", p.name);
let port_letter = p.name.strip_prefix("GPIO").unwrap();
for pin_num in 0..16 {
singletons.push(format!("P{}{}", port_letter, pin_num));
@ -997,8 +996,8 @@ fn main() {
// SDMMCv1 uses the same channel for both directions, so just implement for RX
(("sdmmc", "RX"), quote!(crate::sdmmc::SdmmcDma)),
(("quadspi", "QUADSPI"), quote!(crate::qspi::QuadDma)),
(("dac", "CH1"), quote!(crate::dac::DmaCh1)),
(("dac", "CH2"), quote!(crate::dac::DmaCh2)),
(("dac", "CH1"), quote!(crate::dac::DacDma1)),
(("dac", "CH2"), quote!(crate::dac::DacDma2)),
]
.into();
@ -1138,6 +1137,23 @@ fn main() {
}
}
// ========
// Write peripheral_interrupts module.
let mut mt = TokenStream::new();
for p in METADATA.peripherals {
let mut pt = TokenStream::new();
for irq in p.interrupts {
let iname = format_ident!("{}", irq.interrupt);
let sname = format_ident!("{}", irq.signal);
pt.extend(quote!(pub type #sname = crate::interrupt::typelevel::#iname;));
}
let pname = format_ident!("{}", p.name);
mt.extend(quote!(pub mod #pname { #pt }));
}
g.extend(quote!(#[allow(non_camel_case_types)] pub mod peripheral_interrupts { #mt }));
// ========
// Write foreach_foo! macrotables
@ -1296,6 +1312,9 @@ fn main() {
let mut m = String::new();
// DO NOT ADD more macros like these.
// These turned to be a bad idea!
// Instead, make build.rs generate the final code.
make_table(&mut m, "foreach_flash_region", &flash_regions_table);
make_table(&mut m, "foreach_interrupt", &interrupts_table);
make_table(&mut m, "foreach_peripheral", &peripherals_table);
@ -1332,15 +1351,6 @@ fn main() {
if let Some(core) = core_name {
println!("cargo:rustc-cfg={}_{}", &chip_name[..chip_name.len() - 2], core);
} else {
println!("cargo:rustc-cfg={}", &chip_name[..chip_name.len() - 2]);
}
// ========
// stm32f3 wildcard features used in RCC
if chip_name.starts_with("stm32f3") {
println!("cargo:rustc-cfg={}x{}", &chip_name[..9], &chip_name[10..11]);
}
// =======
@ -1355,16 +1365,25 @@ fn main() {
if &chip_name[..8] == "stm32wba" {
println!("cargo:rustc-cfg={}", &chip_name[..8]); // stm32wba
println!("cargo:rustc-cfg={}", &chip_name[..10]); // stm32wba52
println!("cargo:rustc-cfg=package_{}", &chip_name[10..11]);
println!("cargo:rustc-cfg=flashsize_{}", &chip_name[11..12]);
} else {
println!("cargo:rustc-cfg={}", &chip_name[..7]); // stm32f4
println!("cargo:rustc-cfg={}", &chip_name[..9]); // stm32f429
println!("cargo:rustc-cfg={}x", &chip_name[..8]); // stm32f42x
println!("cargo:rustc-cfg={}x{}", &chip_name[..7], &chip_name[8..9]); // stm32f4x9
println!("cargo:rustc-cfg=package_{}", &chip_name[9..10]);
println!("cargo:rustc-cfg=flashsize_{}", &chip_name[10..11]);
}
// Handle time-driver-XXXX features.
if env::var("CARGO_FEATURE_TIME_DRIVER_ANY").is_ok() {}
println!("cargo:rustc-cfg={}", &chip_name[..chip_name.len() - 2]);
// Mark the L4+ chips as they have many differences to regular L4.
if &chip_name[..7] == "stm32l4" {
if "pqrs".contains(&chip_name[7..8]) {
println!("cargo:rustc-cfg=stm32l4_plus");
} else {
println!("cargo:rustc-cfg=stm32l4_nonplus");
}
}
println!("cargo:rerun-if-changed=build.rs");
}

View File

@ -1,136 +1,66 @@
//! Provide access to the STM32 digital-to-analog converter (DAC).
#![macro_use]
//! Provide access to the STM32 digital-to-analog converter (DAC).
use core::marker::PhantomData;
use embassy_hal_internal::{into_ref, PeripheralRef};
use crate::dma::NoDma;
#[cfg(any(dac_v3, dac_v4, dac_v5, dac_v6, dac_v7))]
use crate::pac::dac;
use crate::rcc::RccPeripheral;
use crate::{peripherals, Peripheral};
mod tsel;
pub use tsel::TriggerSel;
/// Operating mode for DAC channel
#[cfg(any(dac_v3, dac_v4, dac_v5, dac_v6, dac_v7))]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Custom Errors
pub enum Error {
UnconfiguredChannel,
InvalidValue,
pub enum Mode {
/// Normal mode, channel is connected to external pin with buffer enabled.
NormalExternalBuffered,
/// Normal mode, channel is connected to external pin and internal peripherals
/// with buffer enabled.
NormalBothBuffered,
/// Normal mode, channel is connected to external pin with buffer disabled.
NormalExternalUnbuffered,
/// Normal mode, channel is connected to internal peripherals with buffer disabled.
NormalInternalUnbuffered,
/// Sample-and-hold mode, channel is connected to external pin with buffer enabled.
SampleHoldExternalBuffered,
/// Sample-and-hold mode, channel is connected to external pin and internal peripherals
/// with buffer enabled.
SampleHoldBothBuffered,
/// Sample-and-hold mode, channel is connected to external pin and internal peripherals
/// with buffer disabled.
SampleHoldBothUnbuffered,
/// Sample-and-hold mode, channel is connected to internal peripherals with buffer disabled.
SampleHoldInternalUnbuffered,
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// DAC Channels
pub enum Channel {
Ch1,
Ch2,
}
impl Channel {
const fn index(&self) -> usize {
#[cfg(any(dac_v3, dac_v4, dac_v5, dac_v6, dac_v7))]
impl Mode {
fn mode(&self) -> dac::vals::Mode {
match self {
Channel::Ch1 => 0,
Channel::Ch2 => 1,
Mode::NormalExternalBuffered => dac::vals::Mode::NORMAL_EXT_BUFEN,
Mode::NormalBothBuffered => dac::vals::Mode::NORMAL_EXT_INT_BUFEN,
Mode::NormalExternalUnbuffered => dac::vals::Mode::NORMAL_EXT_BUFDIS,
Mode::NormalInternalUnbuffered => dac::vals::Mode::NORMAL_INT_BUFDIS,
Mode::SampleHoldExternalBuffered => dac::vals::Mode::SAMPHOLD_EXT_BUFEN,
Mode::SampleHoldBothBuffered => dac::vals::Mode::SAMPHOLD_EXT_INT_BUFEN,
Mode::SampleHoldBothUnbuffered => dac::vals::Mode::SAMPHOLD_EXT_INT_BUFDIS,
Mode::SampleHoldInternalUnbuffered => dac::vals::Mode::SAMPHOLD_INT_BUFDIS,
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Trigger sources for CH1
pub enum Ch1Trigger {
#[cfg(dac_v3)]
Tim1,
Tim2,
#[cfg(not(dac_v3))]
Tim3,
#[cfg(dac_v3)]
Tim4,
#[cfg(dac_v3)]
Tim5,
Tim6,
Tim7,
#[cfg(dac_v3)]
Tim8,
Tim15,
#[cfg(dac_v3)]
Hrtim1Dactrg1,
#[cfg(dac_v3)]
Hrtim1Dactrg2,
#[cfg(dac_v3)]
Lptim1,
#[cfg(dac_v3)]
Lptim2,
#[cfg(dac_v3)]
Lptim3,
Exti9,
Software,
}
impl Ch1Trigger {
fn tsel(&self) -> dac::vals::Tsel1 {
match self {
#[cfg(dac_v3)]
Ch1Trigger::Tim1 => dac::vals::Tsel1::TIM1_TRGO,
Ch1Trigger::Tim2 => dac::vals::Tsel1::TIM2_TRGO,
#[cfg(not(dac_v3))]
Ch1Trigger::Tim3 => dac::vals::Tsel1::TIM3_TRGO,
#[cfg(dac_v3)]
Ch1Trigger::Tim4 => dac::vals::Tsel1::TIM4_TRGO,
#[cfg(dac_v3)]
Ch1Trigger::Tim5 => dac::vals::Tsel1::TIM5_TRGO,
Ch1Trigger::Tim6 => dac::vals::Tsel1::TIM6_TRGO,
Ch1Trigger::Tim7 => dac::vals::Tsel1::TIM7_TRGO,
#[cfg(dac_v3)]
Ch1Trigger::Tim8 => dac::vals::Tsel1::TIM8_TRGO,
Ch1Trigger::Tim15 => dac::vals::Tsel1::TIM15_TRGO,
#[cfg(dac_v3)]
Ch1Trigger::Hrtim1Dactrg1 => dac::vals::Tsel1::HRTIM1_DACTRG1,
#[cfg(dac_v3)]
Ch1Trigger::Hrtim1Dactrg2 => dac::vals::Tsel1::HRTIM1_DACTRG2,
#[cfg(dac_v3)]
Ch1Trigger::Lptim1 => dac::vals::Tsel1::LPTIM1_OUT,
#[cfg(dac_v3)]
Ch1Trigger::Lptim2 => dac::vals::Tsel1::LPTIM2_OUT,
#[cfg(dac_v3)]
Ch1Trigger::Lptim3 => dac::vals::Tsel1::LPTIM3_OUT,
Ch1Trigger::Exti9 => dac::vals::Tsel1::EXTI9,
Ch1Trigger::Software => dac::vals::Tsel1::SOFTWARE,
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Trigger sources for CH2
pub enum Ch2Trigger {
Tim6,
Tim8,
Tim7,
Tim5,
Tim2,
Tim4,
Exti9,
Software,
}
impl Ch2Trigger {
fn tsel(&self) -> dac::vals::Tsel2 {
match self {
Ch2Trigger::Tim6 => dac::vals::Tsel2::TIM6_TRGO,
Ch2Trigger::Tim8 => dac::vals::Tsel2::TIM8_TRGO,
Ch2Trigger::Tim7 => dac::vals::Tsel2::TIM7_TRGO,
Ch2Trigger::Tim5 => dac::vals::Tsel2::TIM5_TRGO,
Ch2Trigger::Tim2 => dac::vals::Tsel2::TIM2_TRGO,
Ch2Trigger::Tim4 => dac::vals::Tsel2::TIM4_TRGO,
Ch2Trigger::Exti9 => dac::vals::Tsel2::EXTI9,
Ch2Trigger::Software => dac::vals::Tsel2::SOFTWARE,
}
}
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Single 8 or 12 bit value that can be output by the DAC
/// Single 8 or 12 bit value that can be output by the DAC.
///
/// 12-bit values outside the permitted range are silently truncated.
pub enum Value {
// 8 bit value
Bit8(u8),
@ -142,7 +72,21 @@ pub enum Value {
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Array variant of [`Value`]
/// Dual 8 or 12 bit values that can be output by the DAC channels 1 and 2 simultaneously.
///
/// 12-bit values outside the permitted range are silently truncated.
pub enum DualValue {
// 8 bit value
Bit8(u8, u8),
// 12 bit value stored in a u16, left-aligned
Bit12Left(u16, u16),
// 12 bit value stored in a u16, right-aligned
Bit12Right(u16, u16),
}
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
/// Array variant of [`Value`].
pub enum ValueArray<'a> {
// 8 bit values
Bit8(&'a [u8]),
@ -151,398 +95,395 @@ pub enum ValueArray<'a> {
// 12 bit values stored in a u16, right-aligned
Bit12Right(&'a [u16]),
}
/// Provide common functions for DAC channels
pub trait DacChannel<T: Instance, Tx> {
const CHANNEL: Channel;
/// Enable trigger of the given channel
fn set_trigger_enable(&mut self, on: bool) -> Result<(), Error> {
T::regs().cr().modify(|reg| {
reg.set_ten(Self::CHANNEL.index(), on);
});
Ok(())
}
/// Set mode register of the given channel
#[cfg(any(dac_v2, dac_v3))]
fn set_channel_mode(&mut self, val: u8) -> Result<(), Error> {
T::regs().mcr().modify(|reg| {
reg.set_mode(Self::CHANNEL.index(), val);
});
Ok(())
}
/// Set enable register of the given channel
fn set_channel_enable(&mut self, on: bool) -> Result<(), Error> {
T::regs().cr().modify(|reg| {
reg.set_en(Self::CHANNEL.index(), on);
});
Ok(())
}
/// Enable the DAC channel `ch`
fn enable_channel(&mut self) -> Result<(), Error> {
self.set_channel_enable(true)
}
/// Disable the DAC channel `ch`
fn disable_channel(&mut self) -> Result<(), Error> {
self.set_channel_enable(false)
}
/// Perform a software trigger on `ch`
fn trigger(&mut self) {
T::regs().swtrigr().write(|reg| {
reg.set_swtrig(Self::CHANNEL.index(), true);
});
}
/// Set a value to be output by the DAC on trigger.
///
/// The `value` is written to the corresponding "data holding register".
fn set(&mut self, value: Value) -> Result<(), Error> {
match value {
Value::Bit8(v) => T::regs().dhr8r(Self::CHANNEL.index()).write(|reg| reg.set_dhr(v)),
Value::Bit12Left(v) => T::regs().dhr12l(Self::CHANNEL.index()).write(|reg| reg.set_dhr(v)),
Value::Bit12Right(v) => T::regs().dhr12r(Self::CHANNEL.index()).write(|reg| reg.set_dhr(v)),
}
Ok(())
}
}
/// Hold two DAC channels
/// Driver for a single DAC channel.
///
/// Note: This consumes the DAC `Instance` only once, allowing to get both channels simultaneously.
///
/// # Example for obtaining both DAC channels
///
/// ```ignore
/// // DMA channels and pins may need to be changed for your controller
/// let (dac_ch1, dac_ch2) =
/// embassy_stm32::dac::Dac::new(p.DAC1, p.DMA1_CH3, p.DMA1_CH4, p.PA4, p.PA5).split();
/// ```
pub struct Dac<'d, T: Instance, TxCh1, TxCh2> {
ch1: DacCh1<'d, T, TxCh1>,
ch2: DacCh2<'d, T, TxCh2>,
}
/// DAC CH1
///
/// Note: This consumes the DAC `Instance`. Use [`Dac::new`] to get both channels simultaneously.
pub struct DacCh1<'d, T: Instance, Tx> {
/// To consume T
_peri: PeripheralRef<'d, T>,
#[allow(unused)] // For chips whose DMA is not (yet) supported
dma: PeripheralRef<'d, Tx>,
}
/// DAC CH2
///
/// Note: This consumes the DAC `Instance`. Use [`Dac::new`] to get both channels simultaneously.
pub struct DacCh2<'d, T: Instance, Tx> {
/// Instead of PeripheralRef to consume T
/// If you want to use both channels, either together or independently,
/// create a [`Dac`] first and use it to access each channel.
pub struct DacChannel<'d, T: Instance, const N: u8, DMA = NoDma> {
phantom: PhantomData<&'d mut T>,
#[allow(unused)] // For chips whose DMA is not (yet) supported
dma: PeripheralRef<'d, Tx>,
#[allow(unused)]
dma: PeripheralRef<'d, DMA>,
}
impl<'d, T: Instance, Tx> DacCh1<'d, T, Tx> {
/// Obtain DAC CH1
pub fn new(
peri: impl Peripheral<P = T> + 'd,
dma: impl Peripheral<P = Tx> + 'd,
pin: impl Peripheral<P = impl DacPin<T, 1>> + crate::gpio::sealed::Pin + 'd,
) -> Self {
pin.set_as_analog();
into_ref!(peri, dma);
T::enable_and_reset();
pub type DacCh1<'d, T, DMA = NoDma> = DacChannel<'d, T, 1, DMA>;
pub type DacCh2<'d, T, DMA = NoDma> = DacChannel<'d, T, 2, DMA>;
let mut dac = Self { _peri: peri, dma };
impl<'d, T: Instance, const N: u8, DMA> DacChannel<'d, T, N, DMA> {
const IDX: usize = (N - 1) as usize;
// Configure each activated channel. All results can be `unwrap`ed since they
// will only error if the channel is not configured (i.e. ch1, ch2 are false)
#[cfg(any(dac_v2, dac_v3))]
dac.set_channel_mode(0).unwrap();
dac.enable_channel().unwrap();
dac.set_trigger_enable(true).unwrap();
dac
}
/// Select a new trigger for this channel
/// Create a new `DacChannel` instance, consuming the underlying DAC peripheral.
///
/// **Important**: This disables the channel!
pub fn select_trigger(&mut self, trigger: Ch1Trigger) -> Result<(), Error> {
unwrap!(self.disable_channel());
T::regs().cr().modify(|reg| {
reg.set_tsel1(trigger.tsel());
});
Ok(())
}
/// Write `data` to the DAC CH1 via DMA.
/// If you're not using DMA, pass [`dma::NoDma`] for the `dma` argument.
///
/// To prevent delays/glitches when outputting a periodic waveform, the `circular` flag can be set.
/// This will configure a circular DMA transfer that periodically outputs the `data`.
/// Note that for performance reasons in circular mode the transfer complete interrupt is disabled.
/// The channel is enabled on creation and begins to drive the output pin.
/// Note that some methods, such as `set_trigger()` and `set_mode()`, will
/// disable the channel; you must re-enable it with `enable()`.
///
/// **Important:** Channel 1 has to be configured for the DAC instance!
pub async fn write(&mut self, data: ValueArray<'_>, circular: bool) -> Result<(), Error>
where
Tx: DmaCh1<T>,
{
let channel = Channel::Ch1.index();
debug!("Writing to channel {}", channel);
// Enable DAC and DMA
T::regs().cr().modify(|w| {
w.set_en(channel, true);
w.set_dmaen(channel, true);
});
let tx_request = self.dma.request();
let dma_channel = &mut self.dma;
let tx_options = crate::dma::TransferOptions {
circular,
half_transfer_ir: false,
complete_transfer_ir: !circular,
..Default::default()
};
// Initiate the correct type of DMA transfer depending on what data is passed
let tx_f = match data {
ValueArray::Bit8(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr8r(channel).as_ptr() as *mut u8,
tx_options,
)
},
ValueArray::Bit12Left(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12l(channel).as_ptr() as *mut u16,
tx_options,
)
},
ValueArray::Bit12Right(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12r(channel).as_ptr() as *mut u16,
tx_options,
)
},
};
tx_f.await;
// finish dma
// TODO: Do we need to check any status registers here?
T::regs().cr().modify(|w| {
// Disable the DAC peripheral
w.set_en(channel, false);
// Disable the DMA. TODO: Is this necessary?
w.set_dmaen(channel, false);
});
Ok(())
}
}
impl<'d, T: Instance, Tx> DacCh2<'d, T, Tx> {
/// Obtain DAC CH2
/// By default, triggering is disabled, but it can be enabled using
/// [`DacChannel::set_trigger()`].
pub fn new(
_peri: impl Peripheral<P = T> + 'd,
dma: impl Peripheral<P = Tx> + 'd,
pin: impl Peripheral<P = impl DacPin<T, 2>> + crate::gpio::sealed::Pin + 'd,
dma: impl Peripheral<P = DMA> + 'd,
pin: impl Peripheral<P = impl DacPin<T, N> + crate::gpio::sealed::Pin> + 'd,
) -> Self {
into_ref!(dma, pin);
pin.set_as_analog();
into_ref!(_peri, dma);
T::enable_and_reset();
let mut dac = Self {
phantom: PhantomData,
dma,
};
// Configure each activated channel. All results can be `unwrap`ed since they
// will only error if the channel is not configured (i.e. ch1, ch2 are false)
#[cfg(any(dac_v2, dac_v3))]
dac.set_channel_mode(0).unwrap();
dac.enable_channel().unwrap();
dac.set_trigger_enable(true).unwrap();
#[cfg(any(dac_v5, dac_v6, dac_v7))]
dac.set_hfsel();
dac.enable();
dac
}
/// Select a new trigger for this channel
pub fn select_trigger(&mut self, trigger: Ch2Trigger) -> Result<(), Error> {
unwrap!(self.disable_channel());
T::regs().cr().modify(|reg| {
reg.set_tsel2(trigger.tsel());
});
Ok(())
}
/// Write `data` to the DAC CH2 via DMA.
/// Create a new `DacChannel` instance where the external output pin is not used,
/// so the DAC can only be used to generate internal signals.
/// The GPIO pin is therefore available to be used for other functions.
///
/// To prevent delays/glitches when outputting a periodic waveform, the `circular` flag can be set.
/// This will configure a circular DMA transfer that periodically outputs the `data`.
/// Note that for performance reasons in circular mode the transfer complete interrupt is disabled.
/// The channel is set to [`Mode::NormalInternalUnbuffered`] and enabled on creation.
/// Note that some methods, such as `set_trigger()` and `set_mode()`, will disable the
/// channel; you must re-enable it with `enable()`.
///
/// **Important:** Channel 2 has to be configured for the DAC instance!
pub async fn write(&mut self, data: ValueArray<'_>, circular: bool) -> Result<(), Error>
where
Tx: DmaCh2<T>,
{
let channel = Channel::Ch2.index();
debug!("Writing to channel {}", channel);
// Enable DAC and DMA
T::regs().cr().modify(|w| {
w.set_en(channel, true);
w.set_dmaen(channel, true);
});
let tx_request = self.dma.request();
let dma_channel = &mut self.dma;
let tx_options = crate::dma::TransferOptions {
circular,
half_transfer_ir: false,
complete_transfer_ir: !circular,
..Default::default()
};
// Initiate the correct type of DMA transfer depending on what data is passed
let tx_f = match data {
ValueArray::Bit8(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr8r(channel).as_ptr() as *mut u8,
tx_options,
)
},
ValueArray::Bit12Left(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12l(channel).as_ptr() as *mut u16,
tx_options,
)
},
ValueArray::Bit12Right(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12r(channel).as_ptr() as *mut u16,
tx_options,
)
},
};
tx_f.await;
// finish dma
// TODO: Do we need to check any status registers here?
T::regs().cr().modify(|w| {
// Disable the DAC peripheral
w.set_en(channel, false);
// Disable the DMA. TODO: Is this necessary?
w.set_dmaen(channel, false);
});
Ok(())
}
}
impl<'d, T: Instance, TxCh1, TxCh2> Dac<'d, T, TxCh1, TxCh2> {
/// Create a new DAC instance with both channels.
/// If you're not using DMA, pass [`dma::NoDma`] for the `dma` argument.
///
/// This is used to obtain two independent channels via `split()` for use e.g. with DMA.
pub fn new(
peri: impl Peripheral<P = T> + 'd,
dma_ch1: impl Peripheral<P = TxCh1> + 'd,
dma_ch2: impl Peripheral<P = TxCh2> + 'd,
pin_ch1: impl Peripheral<P = impl DacPin<T, 1>> + crate::gpio::sealed::Pin + 'd,
pin_ch2: impl Peripheral<P = impl DacPin<T, 2>> + crate::gpio::sealed::Pin + 'd,
) -> Self {
pin_ch1.set_as_analog();
pin_ch2.set_as_analog();
into_ref!(peri, dma_ch1, dma_ch2);
/// By default, triggering is disabled, but it can be enabled using
/// [`DacChannel::set_trigger()`].
#[cfg(all(any(dac_v3, dac_v4, dac_v5, dac_v6, dac_v7), not(any(stm32h56x, stm32h57x))))]
pub fn new_internal(_peri: impl Peripheral<P = T> + 'd, dma: impl Peripheral<P = DMA> + 'd) -> Self {
into_ref!(dma);
T::enable_and_reset();
let mut dac_ch1 = DacCh1 {
_peri: peri,
dma: dma_ch1,
};
let mut dac_ch2 = DacCh2 {
let mut dac = Self {
phantom: PhantomData,
dma: dma_ch2,
dma,
};
#[cfg(any(dac_v5, dac_v6, dac_v7))]
dac.set_hfsel();
dac.set_mode(Mode::NormalInternalUnbuffered);
dac.enable();
dac
}
// Configure each activated channel. All results can be `unwrap`ed since they
// will only error if the channel is not configured (i.e. ch1, ch2 are false)
#[cfg(any(dac_v2, dac_v3))]
dac_ch1.set_channel_mode(0).unwrap();
dac_ch1.enable_channel().unwrap();
dac_ch1.set_trigger_enable(true).unwrap();
/// Enable or disable this channel.
pub fn set_enable(&mut self, on: bool) {
critical_section::with(|_| {
T::regs().cr().modify(|reg| {
reg.set_en(Self::IDX, on);
});
});
}
#[cfg(any(dac_v2, dac_v3))]
dac_ch2.set_channel_mode(0).unwrap();
dac_ch2.enable_channel().unwrap();
dac_ch2.set_trigger_enable(true).unwrap();
/// Enable this channel.
pub fn enable(&mut self) {
self.set_enable(true)
}
Self {
ch1: dac_ch1,
ch2: dac_ch2,
/// Disable this channel.
pub fn disable(&mut self) {
self.set_enable(false)
}
/// Set the trigger source for this channel.
///
/// This method disables the channel, so you may need to re-enable afterwards.
pub fn set_trigger(&mut self, source: TriggerSel) {
critical_section::with(|_| {
T::regs().cr().modify(|reg| {
reg.set_en(Self::IDX, false);
reg.set_tsel(Self::IDX, source as u8);
});
});
}
/// Enable or disable triggering for this channel.
pub fn set_triggering(&mut self, on: bool) {
critical_section::with(|_| {
T::regs().cr().modify(|reg| {
reg.set_ten(Self::IDX, on);
});
});
}
/// Software trigger this channel.
pub fn trigger(&mut self) {
T::regs().swtrigr().write(|reg| {
reg.set_swtrig(Self::IDX, true);
});
}
/// Set mode of this channel.
///
/// This method disables the channel, so you may need to re-enable afterwards.
#[cfg(any(dac_v3, dac_v4, dac_v5, dac_v6, dac_v7))]
pub fn set_mode(&mut self, mode: Mode) {
critical_section::with(|_| {
T::regs().cr().modify(|reg| {
reg.set_en(Self::IDX, false);
});
T::regs().mcr().modify(|reg| {
reg.set_mode(Self::IDX, mode.mode());
});
});
}
/// Write a new value to this channel.
///
/// If triggering is not enabled, the new value is immediately output; otherwise,
/// it will be output after the next trigger.
pub fn set(&mut self, value: Value) {
match value {
Value::Bit8(v) => T::regs().dhr8r(Self::IDX).write(|reg| reg.set_dhr(v)),
Value::Bit12Left(v) => T::regs().dhr12l(Self::IDX).write(|reg| reg.set_dhr(v)),
Value::Bit12Right(v) => T::regs().dhr12r(Self::IDX).write(|reg| reg.set_dhr(v)),
}
}
/// Split the DAC into CH1 and CH2 for independent use.
pub fn split(self) -> (DacCh1<'d, T, TxCh1>, DacCh2<'d, T, TxCh2>) {
/// Read the current output value of the DAC.
pub fn read(&self) -> u16 {
T::regs().dor(Self::IDX).read().dor()
}
/// Set HFSEL as appropriate for the current peripheral clock frequency.
#[cfg(dac_v5)]
fn set_hfsel(&mut self) {
if T::frequency() >= crate::time::mhz(80) {
critical_section::with(|_| {
T::regs().cr().modify(|reg| {
reg.set_hfsel(true);
});
});
}
}
/// Set HFSEL as appropriate for the current peripheral clock frequency.
#[cfg(any(dac_v6, dac_v7))]
fn set_hfsel(&mut self) {
if T::frequency() >= crate::time::mhz(160) {
critical_section::with(|_| {
T::regs().mcr().modify(|reg| {
reg.set_hfsel(0b10);
});
});
} else if T::frequency() >= crate::time::mhz(80) {
critical_section::with(|_| {
T::regs().mcr().modify(|reg| {
reg.set_hfsel(0b01);
});
});
}
}
}
macro_rules! impl_dma_methods {
($n:literal, $trait:ident) => {
impl<'d, T: Instance, DMA> DacChannel<'d, T, $n, DMA>
where
DMA: $trait<T>,
{
/// Write `data` to this channel via DMA.
///
/// To prevent delays or glitches when outputing a periodic waveform, the `circular`
/// flag can be set. This configures a circular DMA transfer that continually outputs
/// `data`. Note that for performance reasons in circular mode the transfer-complete
/// interrupt is disabled.
#[cfg(not(gpdma))]
pub async fn write(&mut self, data: ValueArray<'_>, circular: bool) {
// Enable DAC and DMA
T::regs().cr().modify(|w| {
w.set_en(Self::IDX, true);
w.set_dmaen(Self::IDX, true);
});
let tx_request = self.dma.request();
let dma_channel = &mut self.dma;
let tx_options = crate::dma::TransferOptions {
circular,
half_transfer_ir: false,
complete_transfer_ir: !circular,
..Default::default()
};
// Initiate the correct type of DMA transfer depending on what data is passed
let tx_f = match data {
ValueArray::Bit8(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr8r(Self::IDX).as_ptr() as *mut u8,
tx_options,
)
},
ValueArray::Bit12Left(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12l(Self::IDX).as_ptr() as *mut u16,
tx_options,
)
},
ValueArray::Bit12Right(buf) => unsafe {
crate::dma::Transfer::new_write(
dma_channel,
tx_request,
buf,
T::regs().dhr12r(Self::IDX).as_ptr() as *mut u16,
tx_options,
)
},
};
tx_f.await;
T::regs().cr().modify(|w| {
w.set_en(Self::IDX, false);
w.set_dmaen(Self::IDX, false);
});
}
}
};
}
impl_dma_methods!(1, DacDma1);
impl_dma_methods!(2, DacDma2);
impl<'d, T: Instance, const N: u8, DMA> Drop for DacChannel<'d, T, N, DMA> {
fn drop(&mut self) {
T::disable();
}
}
/// DAC driver.
///
/// Use this struct when you want to use both channels, either together or independently.
///
/// # Example
///
/// ```ignore
/// // Pins may need to be changed for your specific device.
/// let (dac_ch1, dac_ch2) = embassy_stm32::dac::Dac::new(p.DAC, NoDma, NoDma, p.PA4, p.PA5).split();
/// ```
pub struct Dac<'d, T: Instance, DMACh1 = NoDma, DMACh2 = NoDma> {
ch1: DacChannel<'d, T, 1, DMACh1>,
ch2: DacChannel<'d, T, 2, DMACh2>,
}
impl<'d, T: Instance, DMACh1, DMACh2> Dac<'d, T, DMACh1, DMACh2> {
/// Create a new `Dac` instance, consuming the underlying DAC peripheral.
///
/// This struct allows you to access both channels of the DAC, where available. You can either
/// call `split()` to obtain separate `DacChannel`s, or use methods on `Dac` to use
/// the two channels together.
///
/// The channels are enabled on creation and begins to drive their output pins.
/// Note that some methods, such as `set_trigger()` and `set_mode()`, will
/// disable the channel; you must re-enable them with `enable()`.
///
/// By default, triggering is disabled, but it can be enabled using the `set_trigger()`
/// method on the underlying channels.
pub fn new(
_peri: impl Peripheral<P = T> + 'd,
dma_ch1: impl Peripheral<P = DMACh1> + 'd,
dma_ch2: impl Peripheral<P = DMACh2> + 'd,
pin_ch1: impl Peripheral<P = impl DacPin<T, 1> + crate::gpio::sealed::Pin> + 'd,
pin_ch2: impl Peripheral<P = impl DacPin<T, 2> + crate::gpio::sealed::Pin> + 'd,
) -> Self {
into_ref!(dma_ch1, dma_ch2, pin_ch1, pin_ch2);
pin_ch1.set_as_analog();
pin_ch2.set_as_analog();
// Enable twice to increment the DAC refcount for each channel.
T::enable_and_reset();
T::enable_and_reset();
Self {
ch1: DacCh1 {
phantom: PhantomData,
dma: dma_ch1,
},
ch2: DacCh2 {
phantom: PhantomData,
dma: dma_ch2,
},
}
}
/// Create a new `Dac` instance where the external output pins are not used,
/// so the DAC can only be used to generate internal signals but the GPIO
/// pins remain available for other functions.
///
/// This struct allows you to access both channels of the DAC, where available. You can either
/// call `split()` to obtain separate `DacChannel`s, or use methods on `Dac` to use the two
/// channels together.
///
/// The channels are set to [`Mode::NormalInternalUnbuffered`] and enabled on creation.
/// Note that some methods, such as `set_trigger()` and `set_mode()`, will disable the
/// channel; you must re-enable them with `enable()`.
///
/// By default, triggering is disabled, but it can be enabled using the `set_trigger()`
/// method on the underlying channels.
#[cfg(all(any(dac_v3, dac_v4, dac_v5, dac_v6, dac_v7), not(any(stm32h56x, stm32h57x))))]
pub fn new_internal(
_peri: impl Peripheral<P = T> + 'd,
dma_ch1: impl Peripheral<P = DMACh1> + 'd,
dma_ch2: impl Peripheral<P = DMACh2> + 'd,
) -> Self {
into_ref!(dma_ch1, dma_ch2);
// Enable twice to increment the DAC refcount for each channel.
T::enable_and_reset();
T::enable_and_reset();
Self {
ch1: DacCh1 {
phantom: PhantomData,
dma: dma_ch1,
},
ch2: DacCh2 {
phantom: PhantomData,
dma: dma_ch2,
},
}
}
/// Split this `Dac` into separate channels.
///
/// You can access and move the channels around separately after splitting.
pub fn split(self) -> (DacCh1<'d, T, DMACh1>, DacCh2<'d, T, DMACh2>) {
(self.ch1, self.ch2)
}
/// Get mutable reference to CH1
pub fn ch1_mut(&mut self) -> &mut DacCh1<'d, T, TxCh1> {
/// Temporarily access channel 1.
pub fn ch1(&mut self) -> &mut DacCh1<'d, T, DMACh1> {
&mut self.ch1
}
/// Get mutable reference to CH2
pub fn ch2_mut(&mut self) -> &mut DacCh2<'d, T, TxCh2> {
/// Temporarily access channel 2.
pub fn ch2(&mut self) -> &mut DacCh2<'d, T, DMACh2> {
&mut self.ch2
}
/// Get reference to CH1
pub fn ch1(&mut self) -> &DacCh1<'d, T, TxCh1> {
&self.ch1
/// Simultaneously update channels 1 and 2 with a new value.
///
/// If triggering is not enabled, the new values are immediately output;
/// otherwise, they will be output after the next trigger.
pub fn set(&mut self, values: DualValue) {
match values {
DualValue::Bit8(v1, v2) => T::regs().dhr8rd().write(|reg| {
reg.set_dhr(0, v1);
reg.set_dhr(1, v2);
}),
DualValue::Bit12Left(v1, v2) => T::regs().dhr12ld().write(|reg| {
reg.set_dhr(0, v1);
reg.set_dhr(1, v2);
}),
DualValue::Bit12Right(v1, v2) => T::regs().dhr12rd().write(|reg| {
reg.set_dhr(0, v1);
reg.set_dhr(1, v2);
}),
}
}
/// Get reference to CH2
pub fn ch2(&mut self) -> &DacCh2<'d, T, TxCh2> {
&self.ch2
}
}
impl<'d, T: Instance, Tx> DacChannel<T, Tx> for DacCh1<'d, T, Tx> {
const CHANNEL: Channel = Channel::Ch1;
}
impl<'d, T: Instance, Tx> DacChannel<T, Tx> for DacCh2<'d, T, Tx> {
const CHANNEL: Channel = Channel::Ch2;
}
pub(crate) mod sealed {
@ -552,34 +493,36 @@ pub(crate) mod sealed {
}
pub trait Instance: sealed::Instance + RccPeripheral + 'static {}
dma_trait!(DmaCh1, Instance);
dma_trait!(DmaCh2, Instance);
dma_trait!(DacDma1, Instance);
dma_trait!(DacDma2, Instance);
/// Marks a pin that can be used with the DAC
pub trait DacPin<T: Instance, const C: u8>: crate::gpio::Pin + 'static {}
foreach_peripheral!(
(dac, $inst:ident) => {
// H7 uses single bit for both DAC1 and DAC2, this is a hack until a proper fix is implemented
#[cfg(any(rcc_h7, rcc_h7rm0433))]
impl crate::rcc::sealed::RccPeripheral for peripherals::$inst {
fn frequency() -> crate::time::Hertz {
critical_section::with(|_| unsafe { crate::rcc::get_freqs().pclk1 })
}
// H7 uses single bit for both DAC1 and DAC2, this is a hack until a proper fix is implemented
#[cfg(any(rcc_h7, rcc_h7rm0433))]
impl crate::rcc::sealed::RccPeripheral for peripherals::$inst {
fn frequency() -> crate::time::Hertz {
critical_section::with(|_| unsafe { crate::rcc::get_freqs().pclk1 })
}
fn enable_and_reset_with_cs(_cs: critical_section::CriticalSection) {
crate::pac::RCC.apb1lrstr().modify(|w| w.set_dac12rst(true));
crate::pac::RCC.apb1lrstr().modify(|w| w.set_dac12rst(false));
crate::pac::RCC.apb1lenr().modify(|w| w.set_dac12en(true));
}
fn enable_and_reset_with_cs(_cs: critical_section::CriticalSection) {
// TODO: Increment refcount?
crate::pac::RCC.apb1lrstr().modify(|w| w.set_dac12rst(true));
crate::pac::RCC.apb1lrstr().modify(|w| w.set_dac12rst(false));
crate::pac::RCC.apb1lenr().modify(|w| w.set_dac12en(true));
}
fn disable_with_cs(_cs: critical_section::CriticalSection) {
crate::pac::RCC.apb1lenr().modify(|w| w.set_dac12en(false))
}
}
fn disable_with_cs(_cs: critical_section::CriticalSection) {
// TODO: Decrement refcount?
crate::pac::RCC.apb1lenr().modify(|w| w.set_dac12en(false))
}
}
#[cfg(any(rcc_h7, rcc_h7rm0433))]
impl crate::rcc::RccPeripheral for peripherals::$inst {}
#[cfg(any(rcc_h7, rcc_h7rm0433))]
impl crate::rcc::RccPeripheral for peripherals::$inst {}
impl crate::dac::sealed::Instance for peripherals::$inst {
fn regs() -> &'static crate::pac::dac::Dac {

View File

@ -0,0 +1,282 @@
/// Trigger selection for STM32F0.
#[cfg(stm32f0)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
Tim3 = 1,
Tim7 = 2,
Tim15 = 3,
Tim2 = 4,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for STM32F1.
#[cfg(stm32f1)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
#[cfg(any(stm32f100, stm32f105, stm32f107))]
Tim3 = 1,
#[cfg(any(stm32f101, stm32f103))]
Tim8 = 1,
Tim7 = 2,
#[cfg(any(stm32f101, stm32f103, stm32f105, stm32f107))]
Tim5 = 3,
#[cfg(all(stm32f100, any(flashsize_4, flashsize_6, flashsize_8, flashsize_b)))]
Tim15 = 3,
#[cfg(all(stm32f100, any(flashsize_c, flashsize_d, flashsize_e)))]
/// Can be remapped to TIM15 with MISC_REMAP in AFIO_MAPR2.
Tim5Or15 = 3,
Tim2 = 4,
Tim4 = 5,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for STM32F2/F4/F7/L4, except F410 or L4+.
#[cfg(all(any(stm32f2, stm32f4, stm32f7, stm32l4_nonplus), not(stm32f410)))]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
Tim8 = 1,
#[cfg(not(any(stm32l45x, stm32l46x)))]
Tim7 = 2,
Tim5 = 3,
Tim2 = 4,
Tim4 = 5,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for STM32F410.
#[cfg(stm32f410)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim5 = 3,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for STM32F301/2 and 318.
#[cfg(any(stm32f301, stm32f302, stm32f318))]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
#[cfg(stm32f302)]
/// Requires DAC_TRIG_RMP set in SYSCFG_CFGR1.
Tim3 = 1,
Tim15 = 3,
Tim2 = 4,
#[cfg(all(stm32f302, any(flashsize_6, flashsize_8)))]
Tim4 = 5,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for STM32F303/3x8 (excluding 318 which is like 301, and 378 which is 37x).
#[cfg(any(stm32f303, stm32f328, stm32f358, stm32f398))]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
/// * DAC1: defaults to TIM8 but can be remapped to TIM3 with DAC_TRIG_RMP in SYSCFG_CFGR1
/// * DAC2: always TIM3
Tim8Or3 = 1,
Tim7 = 2,
Tim15 = 3,
Tim2 = 4,
Tim4 = 5,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for STM32F37x.
#[cfg(any(stm32f373, stm32f378))]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
Tim3 = 1,
Tim7 = 2,
/// TIM5 on DAC1, TIM18 on DAC2
Dac1Tim5Dac2Tim18 = 3,
Tim2 = 4,
Tim4 = 5,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for STM32F334.
#[cfg(stm32f334)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
/// Requires DAC_TRIG_RMP set in SYSCFG_CFGR1.
Tim3 = 1,
Tim7 = 2,
/// Can be remapped to HRTIM_DACTRG1 using DAC1_TRIG3_RMP in SYSCFG_CFGR3.
Tim15OrHrtimDacTrg1 = 3,
Tim2 = 4,
/// Requires DAC_TRIG5_RMP set in SYSCFG_CFGR3.
HrtimDacTrg2 = 5,
}
/// Trigger selection for STM32L0.
#[cfg(stm32l0)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
Tim3 = 1,
Tim3Ch3 = 2,
Tim21 = 3,
Tim2 = 4,
Tim7 = 5,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for STM32L1.
#[cfg(stm32l1)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Tim6 = 0,
Tim7 = 2,
Tim9 = 3,
Tim2 = 4,
Tim4 = 5,
Exti9 = 6,
Software = 7,
}
/// Trigger selection for L4+, L5, U5, H7.
#[cfg(any(stm32l4_plus, stm32l5, stm32u5, stm32h7))]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Software = 0,
Tim1 = 1,
Tim2 = 2,
Tim4 = 3,
Tim5 = 4,
Tim6 = 5,
Tim7 = 6,
Tim8 = 7,
Tim15 = 8,
#[cfg(all(stm32h7, hrtim))]
Hrtim1DacTrg1 = 9,
#[cfg(all(stm32h7, hrtim))]
Hrtim1DacTrg2 = 10,
Lptim1 = 11,
#[cfg(not(stm32u5))]
Lptim2 = 12,
#[cfg(stm32u5)]
Lptim3 = 12,
Exti9 = 13,
#[cfg(any(stm32h7ax, stm32h7bx))]
/// RM0455 suggests this might be LPTIM2 on DAC1 and LPTIM3 on DAC2,
/// but it's probably wrong. Please let us know if you find out.
Lptim3 = 14,
#[cfg(any(stm32h72x, stm32h73x))]
Tim23 = 14,
#[cfg(any(stm32h72x, stm32h73x))]
Tim24 = 15,
}
/// Trigger selection for H5.
#[cfg(stm32h5)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Software = 0,
Tim1 = 1,
Tim2 = 2,
#[cfg(any(stm32h56x, stm32h57x))]
Tim4 = 3,
#[cfg(stm32h503)]
Tim3 = 3,
#[cfg(any(stm32h56x, stm32h57x))]
Tim5 = 4,
Tim6 = 5,
Tim7 = 6,
#[cfg(any(stm32h56x, stm32h57x))]
Tim8 = 7,
#[cfg(any(stm32h56x, stm32h57x))]
Tim15 = 8,
Lptim1 = 11,
Lptim2 = 12,
Exti9 = 13,
}
/// Trigger selection for G0.
#[cfg(stm32g0)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Software = 0,
Tim1 = 1,
Tim2 = 2,
Tim3 = 3,
Tim6 = 5,
Tim7 = 6,
Tim15 = 8,
Lptim1 = 11,
Lptim2 = 12,
Exti9 = 13,
}
/// Trigger selection for G4.
#[cfg(stm32g4)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Software = 0,
/// * DAC1, DAC2, DAC4: TIM8
/// * DAC3: TIM1
Dac124Tim8Dac3Tim1 = 1,
Tim7 = 2,
Tim15 = 3,
Tim2 = 4,
Tim4 = 5,
Exti9 = 6,
Tim6 = 7,
Tim3 = 8,
HrtimDacRstTrg1 = 9,
HrtimDacRstTrg2 = 10,
HrtimDacRstTrg3 = 11,
HrtimDacRstTrg4 = 12,
HrtimDacRstTrg5 = 13,
HrtimDacRstTrg6 = 14,
/// * DAC1, DAC4: HRTIM_DAC_TRG1
/// * DAC2: HRTIM_DAC_TRG2
/// * DAC3: HRTIM_DAC_TRG3
HrtimDacTrg123 = 15,
}
/// Trigger selection for WL.
#[cfg(stm32wl)]
#[derive(Debug, Copy, Clone, Eq, PartialEq)]
#[cfg_attr(feature = "defmt", derive(defmt::Format))]
pub enum TriggerSel {
Software = 0,
Tim1 = 1,
Tim2 = 2,
Lptim1 = 11,
Lptim2 = 12,
Lptim3 = 13,
Exti9 = 14,
}
impl TriggerSel {
pub fn tsel(&self) -> u8 {
*self as u8
}
}

View File

@ -1,11 +1,14 @@
#![macro_use]
use core::marker::PhantomData;
use crate::interrupt;
#[cfg_attr(i2c_v1, path = "v1.rs")]
#[cfg_attr(i2c_v2, path = "v2.rs")]
mod _version;
pub use _version::*;
use embassy_sync::waitqueue::AtomicWaker;
use crate::peripherals;
@ -23,6 +26,20 @@ pub enum Error {
pub(crate) mod sealed {
use super::*;
pub struct State {
#[allow(unused)]
pub waker: AtomicWaker,
}
impl State {
pub const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
}
}
}
pub trait Instance: crate::rcc::RccPeripheral {
fn regs() -> crate::pac::i2c::I2c;
fn state() -> &'static State;
@ -30,7 +47,8 @@ pub(crate) mod sealed {
}
pub trait Instance: sealed::Instance + 'static {
type Interrupt: interrupt::typelevel::Interrupt;
type EventInterrupt: interrupt::typelevel::Interrupt;
type ErrorInterrupt: interrupt::typelevel::Interrupt;
}
pin_trait!(SclPin, Instance);
@ -38,21 +56,148 @@ pin_trait!(SdaPin, Instance);
dma_trait!(RxDma, Instance);
dma_trait!(TxDma, Instance);
foreach_interrupt!(
($inst:ident, i2c, $block:ident, EV, $irq:ident) => {
/// Interrupt handler.
pub struct EventInterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::EventInterrupt> for EventInterruptHandler<T> {
unsafe fn on_interrupt() {
_version::on_interrupt::<T>()
}
}
pub struct ErrorInterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::ErrorInterrupt> for ErrorInterruptHandler<T> {
unsafe fn on_interrupt() {
_version::on_interrupt::<T>()
}
}
foreach_peripheral!(
(i2c, $inst:ident) => {
impl sealed::Instance for peripherals::$inst {
fn regs() -> crate::pac::i2c::I2c {
crate::pac::$inst
}
fn state() -> &'static State {
static STATE: State = State::new();
fn state() -> &'static sealed::State {
static STATE: sealed::State = sealed::State::new();
&STATE
}
}
impl Instance for peripherals::$inst {
type Interrupt = crate::interrupt::typelevel::$irq;
type EventInterrupt = crate::_generated::peripheral_interrupts::$inst::EV;
type ErrorInterrupt = crate::_generated::peripheral_interrupts::$inst::ER;
}
};
);
mod eh02 {
use super::*;
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T> {
type Error = Error;
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> {
type Error = Error;
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> {
type Error = Error;
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
use crate::dma::NoDma;
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::Bus => embedded_hal_1::i2c::ErrorKind::Bus,
Self::Arbitration => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
Self::Nack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Unknown)
}
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
Self::Crc => embedded_hal_1::i2c::ErrorKind::Other,
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
Self::ZeroLengthTransfer => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_1::i2c::ErrorType for I2c<'d, T, TXDMA, RXDMA> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T, NoDma, NoDma> {
fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, read)
}
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
fn transaction(
&mut self,
_address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
todo!();
}
}
}
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
mod eha {
use super::*;
impl<'d, T: Instance, TXDMA: TxDma<T>, RXDMA: RxDma<T>> embedded_hal_async::i2c::I2c for I2c<'d, T, TXDMA, RXDMA> {
async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.read(address, read).await
}
async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.write(address, write).await
}
async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.write_read(address, write, read).await
}
async fn transaction(
&mut self,
address: u8,
operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
let _ = address;
let _ = operations;
todo!()
}
}
}

View File

@ -1,23 +1,33 @@
use core::future::poll_fn;
use core::marker::PhantomData;
use core::task::Poll;
use embassy_embedded_hal::SetConfig;
use embassy_futures::select::{select, Either};
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use crate::dma::NoDma;
use super::*;
use crate::dma::{NoDma, Transfer};
use crate::gpio::sealed::AFType;
use crate::gpio::Pull;
use crate::i2c::{Error, Instance, SclPin, SdaPin};
use crate::interrupt::typelevel::Interrupt;
use crate::pac::i2c;
use crate::time::Hertz;
use crate::{interrupt, Peripheral};
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {}
pub unsafe fn on_interrupt<T: Instance>() {
let regs = T::regs();
// i2c v2 only woke the task on transfer complete interrupts. v1 uses interrupts for a bunch of
// other stuff, so we wake the task on every interrupt.
T::state().waker.wake();
critical_section::with(|_| {
// Clear event interrupt flag.
regs.cr2().modify(|w| {
w.set_itevten(false);
w.set_iterren(false);
});
});
}
#[non_exhaustive]
@ -27,14 +37,6 @@ pub struct Config {
pub scl_pullup: bool,
}
pub struct State {}
impl State {
pub(crate) const fn new() -> Self {
Self {}
}
}
pub struct I2c<'d, T: Instance, TXDMA = NoDma, RXDMA = NoDma> {
phantom: PhantomData<&'d mut T>,
#[allow(dead_code)]
@ -48,7 +50,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
_peri: impl Peripheral<P = T> + 'd,
scl: impl Peripheral<P = impl SclPin<T>> + 'd,
sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::EventInterrupt, EventInterruptHandler<T>>
+ interrupt::typelevel::Binding<T::ErrorInterrupt, ErrorInterruptHandler<T>>
+ 'd,
tx_dma: impl Peripheral<P = TXDMA> + 'd,
rx_dma: impl Peripheral<P = RXDMA> + 'd,
freq: Hertz,
@ -98,6 +102,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
reg.set_pe(true);
});
unsafe { T::EventInterrupt::enable() };
unsafe { T::ErrorInterrupt::enable() };
Self {
phantom: PhantomData,
tx_dma,
@ -105,40 +112,58 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
}
}
fn check_and_clear_error_flags(&self) -> Result<i2c::regs::Sr1, Error> {
fn check_and_clear_error_flags() -> Result<i2c::regs::Sr1, Error> {
// Note that flags should only be cleared once they have been registered. If flags are
// cleared otherwise, there may be an inherent race condition and flags may be missed.
let sr1 = T::regs().sr1().read();
if sr1.timeout() {
T::regs().sr1().modify(|reg| reg.set_timeout(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_timeout(false);
});
return Err(Error::Timeout);
}
if sr1.pecerr() {
T::regs().sr1().modify(|reg| reg.set_pecerr(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_pecerr(false);
});
return Err(Error::Crc);
}
if sr1.ovr() {
T::regs().sr1().modify(|reg| reg.set_ovr(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_ovr(false);
});
return Err(Error::Overrun);
}
if sr1.af() {
T::regs().sr1().modify(|reg| reg.set_af(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_af(false);
});
return Err(Error::Nack);
}
if sr1.arlo() {
T::regs().sr1().modify(|reg| reg.set_arlo(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_arlo(false);
});
return Err(Error::Arbitration);
}
// The errata indicates that BERR may be incorrectly detected. It recommends ignoring and
// clearing the BERR bit instead.
if sr1.berr() {
T::regs().sr1().modify(|reg| reg.set_berr(false));
T::regs().sr1().write(|reg| {
reg.0 = !0;
reg.set_berr(false);
});
}
Ok(sr1)
@ -157,13 +182,13 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
});
// Wait until START condition was generated
while !self.check_and_clear_error_flags()?.start() {
while !Self::check_and_clear_error_flags()?.start() {
check_timeout()?;
}
// Also wait until signalled we're master and everything is waiting for us
while {
self.check_and_clear_error_flags()?;
Self::check_and_clear_error_flags()?;
let sr2 = T::regs().sr2().read();
!sr2.msl() && !sr2.busy()
@ -177,7 +202,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until address was sent
// Wait for the address to be acknowledged
// Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set.
while !self.check_and_clear_error_flags()?.addr() {
while !Self::check_and_clear_error_flags()?.addr() {
check_timeout()?;
}
@ -197,7 +222,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until we're ready for sending
while {
// Check for any I2C errors. If a NACK occurs, the ADDR bit will never be set.
!self.check_and_clear_error_flags()?.txe()
!Self::check_and_clear_error_flags()?.txe()
} {
check_timeout()?;
}
@ -208,7 +233,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until byte is transferred
while {
// Check for any potential error conditions.
!self.check_and_clear_error_flags()?.btf()
!Self::check_and_clear_error_flags()?.btf()
} {
check_timeout()?;
}
@ -219,7 +244,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
fn recv_byte(&self, check_timeout: impl Fn() -> Result<(), Error>) -> Result<u8, Error> {
while {
// Check for any potential error conditions.
self.check_and_clear_error_flags()?;
Self::check_and_clear_error_flags()?;
!T::regs().sr1().read().rxne()
} {
@ -244,7 +269,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
});
// Wait until START condition was generated
while !self.check_and_clear_error_flags()?.start() {
while !Self::check_and_clear_error_flags()?.start() {
check_timeout()?;
}
@ -261,7 +286,7 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
// Wait until address was sent
// Wait for the address to be acknowledged
while !self.check_and_clear_error_flags()?.addr() {
while !Self::check_and_clear_error_flags()?.addr() {
check_timeout()?;
}
@ -336,6 +361,356 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
pub fn blocking_write_read(&mut self, addr: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error> {
self.blocking_write_read_timeout(addr, write, read, || Ok(()))
}
// Async
#[inline] // pretty sure this should always be inlined
fn enable_interrupts() -> () {
T::regs().cr2().modify(|w| {
w.set_iterren(true);
w.set_itevten(true);
});
}
async fn write_with_stop(&mut self, address: u8, write: &[u8], send_stop: bool) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
let dma_transfer = unsafe {
let regs = T::regs();
regs.cr2().modify(|w| {
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register.
w.set_dmaen(true);
w.set_itbufen(false);
});
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event.
let dst = regs.dr().as_ptr() as *mut u8;
let ch = &mut self.tx_dma;
let request = ch.request();
Transfer::new_write(ch, request, write, dst, Default::default())
};
let on_drop = OnDrop::new(|| {
let regs = T::regs();
regs.cr2().modify(|w| {
w.set_dmaen(false);
w.set_iterren(false);
w.set_itevten(false);
})
});
Self::enable_interrupts();
// Send a START condition
T::regs().cr1().modify(|reg| {
reg.set_start(true);
});
let state = T::state();
// Wait until START condition was generated
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.start() {
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
// Also wait until signalled we're master and everything is waiting for us
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(_) => {
let sr2 = T::regs().sr2().read();
if !sr2.msl() && !sr2.busy() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
}
}
})
.await?;
// Set up current address, we're trying to talk to
Self::enable_interrupts();
T::regs().dr().write(|reg| reg.set_dr(address << 1));
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.addr() {
// Clear the ADDR condition by reading SR2.
T::regs().sr2().read();
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
Self::enable_interrupts();
let poll_error = poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
// Unclear why the Err turbofish is necessary here? The compiler didnt require it in the other
// identical poll_fn check_and_clear matches.
Err(e) => Poll::Ready(Err::<T, Error>(e)),
Ok(_) => Poll::Pending,
}
});
// Wait for either the DMA transfer to successfully finish, or an I2C error to occur.
match select(dma_transfer, poll_error).await {
Either::Second(Err(e)) => Err(e),
_ => Ok(()),
}?;
// The I2C transfer itself will take longer than the DMA transfer, so wait for that to finish too.
// 18.3.8 “Master transmitter: In the interrupt routine after the EOT interrupt, disable DMA
// requests then wait for a BTF event before programming the Stop condition.”
// TODO: If this has to be done “in the interrupt routine after the EOT interrupt”, where to put it?
T::regs().cr2().modify(|w| {
w.set_dmaen(false);
});
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.btf() {
if send_stop {
T::regs().cr1().modify(|w| {
w.set_stop(true);
});
}
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
drop(on_drop);
// Fallthrough is success
Ok(())
}
pub async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Error>
where
TXDMA: crate::i2c::TxDma<T>,
{
self.write_with_stop(address, write, true).await?;
// Wait for STOP condition to transmit.
Self::enable_interrupts();
poll_fn(|cx| {
T::state().waker.register(cx.waker());
// TODO: error interrupts are enabled here, should we additional check for and return errors?
if T::regs().cr1().read().stop() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
})
.await?;
Ok(())
}
pub async fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
{
let state = T::state();
let buffer_len = buffer.len();
let dma_transfer = unsafe {
let regs = T::regs();
regs.cr2().modify(|w| {
// DMA mode can be enabled for transmission by setting the DMAEN bit in the I2C_CR2 register.
w.set_itbufen(false);
w.set_dmaen(true);
});
// Set the I2C_DR register address in the DMA_SxPAR register. The data will be moved to this address from the memory after each TxE event.
let src = regs.dr().as_ptr() as *mut u8;
let ch = &mut self.rx_dma;
let request = ch.request();
Transfer::new_read(ch, request, src, buffer, Default::default())
};
let on_drop = OnDrop::new(|| {
let regs = T::regs();
regs.cr2().modify(|w| {
w.set_dmaen(false);
w.set_iterren(false);
w.set_itevten(false);
})
});
Self::enable_interrupts();
// Send a START condition and set ACK bit
T::regs().cr1().modify(|reg| {
reg.set_start(true);
reg.set_ack(true);
});
// Wait until START condition was generated
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.start() {
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
// Also wait until signalled we're master and everything is waiting for us
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
// blocking read didnt have a check_and_clear call here, but blocking write did so
// Im adding it here in case that was an oversight.
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(_) => {
let sr2 = T::regs().sr2().read();
if !sr2.msl() && !sr2.busy() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
}
}
})
.await?;
// Set up current address, we're trying to talk to
T::regs().dr().write(|reg| reg.set_dr((address << 1) + 1));
// Wait for the address to be acknowledged
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err(e)),
Ok(sr1) => {
if sr1.addr() {
// 18.3.8: When a single byte must be received: the NACK must be programmed during EV6
// event, i.e. program ACK=0 when ADDR=1, before clearing ADDR flag.
if buffer_len == 1 {
T::regs().cr1().modify(|w| {
w.set_ack(false);
});
}
Poll::Ready(Ok(()))
} else {
Poll::Pending
}
}
}
})
.await?;
// Clear ADDR condition by reading SR2
T::regs().sr2().read();
// 18.3.8: When a single byte must be received: [snip] Then the
// user can program the STOP condition either after clearing ADDR flag, or in the
// DMA Transfer Complete interrupt routine.
if buffer_len == 1 {
T::regs().cr1().modify(|w| {
w.set_stop(true);
});
} else {
// If, in the I2C_CR2 register, the LAST bit is set, I2C
// automatically sends a NACK after the next byte following EOT_1. The user can
// generate a Stop condition in the DMA Transfer Complete interrupt routine if enabled.
T::regs().cr2().modify(|w| {
w.set_last(true);
})
}
// Wait for bytes to be received, or an error to occur.
Self::enable_interrupts();
let poll_error = poll_fn(|cx| {
state.waker.register(cx.waker());
match Self::check_and_clear_error_flags() {
Err(e) => Poll::Ready(Err::<T, Error>(e)),
_ => Poll::Pending,
}
});
match select(dma_transfer, poll_error).await {
Either::Second(Err(e)) => Err(e),
_ => Ok(()),
}?;
// Wait for the STOP to be sent (STOP bit cleared).
Self::enable_interrupts();
poll_fn(|cx| {
state.waker.register(cx.waker());
// TODO: error interrupts are enabled here, should we additional check for and return errors?
if T::regs().cr1().read().stop() {
Poll::Pending
} else {
Poll::Ready(Ok(()))
}
})
.await?;
drop(on_drop);
// Fallthrough is success
Ok(())
}
pub async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Error>
where
RXDMA: crate::i2c::RxDma<T>,
TXDMA: crate::i2c::TxDma<T>,
{
self.write_with_stop(address, write, false).await?;
self.read(address, read).await
}
}
impl<'d, T: Instance, TXDMA, RXDMA> Drop for I2c<'d, T, TXDMA, RXDMA> {
@ -344,77 +719,6 @@ impl<'d, T: Instance, TXDMA, RXDMA> Drop for I2c<'d, T, TXDMA, RXDMA> {
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T> {
type Error = Error;
fn read(&mut self, addr: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(addr, read)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> {
type Error = Error;
fn write(&mut self, addr: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(addr, write)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> {
type Error = Error;
fn write_read(&mut self, addr: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(addr, write, read)
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::Bus => embedded_hal_1::i2c::ErrorKind::Bus,
Self::Arbitration => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
Self::Nack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Unknown)
}
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
Self::Crc => embedded_hal_1::i2c::ErrorKind::Other,
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
Self::ZeroLengthTransfer => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, T: Instance> embedded_hal_1::i2c::ErrorType for I2c<'d, T> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T> {
fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, read)
}
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
fn transaction(
&mut self,
_address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
todo!();
}
}
}
enum Mode {
Fast,
Standard,

View File

@ -1,19 +1,17 @@
use core::cmp;
use core::future::poll_fn;
use core::marker::PhantomData;
use core::task::Poll;
use embassy_embedded_hal::SetConfig;
use embassy_hal_internal::drop::OnDrop;
use embassy_hal_internal::{into_ref, PeripheralRef};
use embassy_sync::waitqueue::AtomicWaker;
#[cfg(feature = "time")]
use embassy_time::{Duration, Instant};
use super::*;
use crate::dma::{NoDma, Transfer};
use crate::gpio::sealed::AFType;
use crate::gpio::Pull;
use crate::i2c::{Error, Instance, SclPin, SdaPin};
use crate::interrupt::typelevel::Interrupt;
use crate::pac::i2c;
use crate::time::Hertz;
@ -36,25 +34,18 @@ pub fn no_timeout_fn() -> impl Fn() -> Result<(), Error> {
move || Ok(())
}
/// Interrupt handler.
pub struct InterruptHandler<T: Instance> {
_phantom: PhantomData<T>,
}
pub unsafe fn on_interrupt<T: Instance>() {
let regs = T::regs();
let isr = regs.isr().read();
impl<T: Instance> interrupt::typelevel::Handler<T::Interrupt> for InterruptHandler<T> {
unsafe fn on_interrupt() {
let regs = T::regs();
let isr = regs.isr().read();
if isr.tcr() || isr.tc() {
T::state().waker.wake();
}
// The flag can only be cleared by writting to nbytes, we won't do that here, so disable
// the interrupt
critical_section::with(|_| {
regs.cr1().modify(|w| w.set_tcie(false));
});
if isr.tcr() || isr.tc() {
T::state().waker.wake();
}
// The flag can only be cleared by writting to nbytes, we won't do that here, so disable
// the interrupt
critical_section::with(|_| {
regs.cr1().modify(|w| w.set_tcie(false));
});
}
#[non_exhaustive]
@ -77,18 +68,6 @@ impl Default for Config {
}
}
pub struct State {
waker: AtomicWaker,
}
impl State {
pub(crate) const fn new() -> Self {
Self {
waker: AtomicWaker::new(),
}
}
}
pub struct I2c<'d, T: Instance, TXDMA = NoDma, RXDMA = NoDma> {
_peri: PeripheralRef<'d, T>,
#[allow(dead_code)]
@ -104,7 +83,9 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
peri: impl Peripheral<P = T> + 'd,
scl: impl Peripheral<P = impl SclPin<T>> + 'd,
sda: impl Peripheral<P = impl SdaPin<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::Interrupt, InterruptHandler<T>> + 'd,
_irq: impl interrupt::typelevel::Binding<T::EventInterrupt, EventInterruptHandler<T>>
+ interrupt::typelevel::Binding<T::ErrorInterrupt, ErrorInterruptHandler<T>>
+ 'd,
tx_dma: impl Peripheral<P = TXDMA> + 'd,
rx_dma: impl Peripheral<P = RXDMA> + 'd,
freq: Hertz,
@ -150,8 +131,8 @@ impl<'d, T: Instance, TXDMA, RXDMA> I2c<'d, T, TXDMA, RXDMA> {
reg.set_pe(true);
});
T::Interrupt::unpend();
unsafe { T::Interrupt::enable() };
unsafe { T::EventInterrupt::enable() };
unsafe { T::ErrorInterrupt::enable() };
Self {
_peri: peri,
@ -987,35 +968,6 @@ impl<'d, T: Instance, TXDMA, RXDMA> Drop for I2c<'d, T, TXDMA, RXDMA> {
}
}
#[cfg(feature = "time")]
mod eh02 {
use super::*;
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Read for I2c<'d, T> {
type Error = Error;
fn read(&mut self, address: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, buffer)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::Write for I2c<'d, T> {
type Error = Error;
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
}
impl<'d, T: Instance> embedded_hal_02::blocking::i2c::WriteRead for I2c<'d, T> {
type Error = Error;
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
}
}
/// I2C Stop Configuration
///
/// Peripheral options for generating the STOP condition
@ -1140,83 +1092,6 @@ impl Timings {
}
}
#[cfg(feature = "unstable-traits")]
mod eh1 {
use super::*;
impl embedded_hal_1::i2c::Error for Error {
fn kind(&self) -> embedded_hal_1::i2c::ErrorKind {
match *self {
Self::Bus => embedded_hal_1::i2c::ErrorKind::Bus,
Self::Arbitration => embedded_hal_1::i2c::ErrorKind::ArbitrationLoss,
Self::Nack => {
embedded_hal_1::i2c::ErrorKind::NoAcknowledge(embedded_hal_1::i2c::NoAcknowledgeSource::Unknown)
}
Self::Timeout => embedded_hal_1::i2c::ErrorKind::Other,
Self::Crc => embedded_hal_1::i2c::ErrorKind::Other,
Self::Overrun => embedded_hal_1::i2c::ErrorKind::Overrun,
Self::ZeroLengthTransfer => embedded_hal_1::i2c::ErrorKind::Other,
}
}
}
impl<'d, T: Instance, TXDMA, RXDMA> embedded_hal_1::i2c::ErrorType for I2c<'d, T, TXDMA, RXDMA> {
type Error = Error;
}
impl<'d, T: Instance> embedded_hal_1::i2c::I2c for I2c<'d, T, NoDma, NoDma> {
fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_read(address, read)
}
fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.blocking_write(address, write)
}
fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.blocking_write_read(address, write, read)
}
fn transaction(
&mut self,
_address: u8,
_operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
todo!();
}
}
}
#[cfg(all(feature = "unstable-traits", feature = "nightly"))]
mod eha {
use super::super::{RxDma, TxDma};
use super::*;
impl<'d, T: Instance, TXDMA: TxDma<T>, RXDMA: RxDma<T>> embedded_hal_async::i2c::I2c for I2c<'d, T, TXDMA, RXDMA> {
async fn read(&mut self, address: u8, read: &mut [u8]) -> Result<(), Self::Error> {
self.read(address, read).await
}
async fn write(&mut self, address: u8, write: &[u8]) -> Result<(), Self::Error> {
self.write(address, write).await
}
async fn write_read(&mut self, address: u8, write: &[u8], read: &mut [u8]) -> Result<(), Self::Error> {
self.write_read(address, write, read).await
}
async fn transaction(
&mut self,
address: u8,
operations: &mut [embedded_hal_1::i2c::Operation<'_>],
) -> Result<(), Self::Error> {
let _ = address;
let _ = operations;
todo!()
}
}
}
impl<'d, T: Instance> SetConfig for I2c<'d, T> {
type Config = Hertz;
type ConfigError = ();

View File

@ -346,10 +346,7 @@ fn calc_pll(config: &Config, Hertz(sysclk): Hertz) -> (Hertz, PllConfig) {
None => {
cfg_if::cfg_if! {
// For some chips PREDIV is always two, and cannot be changed
if #[cfg(any(
stm32f302xd, stm32f302xe, stm32f303xd,
stm32f303xe, stm32f398xe
))] {
if #[cfg(any(flashsize_d, flashsize_e))] {
let (multiplier, divisor) = get_mul_div(sysclk, HSI_FREQ.0);
(
Hertz((HSI_FREQ.0 / divisor) * multiplier),

View File

@ -1457,8 +1457,8 @@ cfg_if::cfg_if! {
macro_rules! kernel_clk {
($inst:ident) => {
critical_section::with(|_| unsafe {
crate::rcc::get_freqs().pll1_q
}).expect("PLL48 is required for SDIO")
unwrap!(crate::rcc::get_freqs().pll1_q)
})
}
}
} else if #[cfg(stm32f7)] {
@ -1469,7 +1469,7 @@ cfg_if::cfg_if! {
if sdmmcsel == crate::pac::rcc::vals::Sdmmcsel::SYS {
crate::rcc::get_freqs().sys
} else {
crate::rcc::get_freqs().pll1_q.expect("PLL48 is required for SDMMC")
unwrap!(crate::rcc::get_freqs().pll1_q)
}
})
};
@ -1479,7 +1479,7 @@ cfg_if::cfg_if! {
if sdmmcsel == crate::pac::rcc::vals::Sdmmcsel::SYS {
crate::rcc::get_freqs().sys
} else {
crate::rcc::get_freqs().pll1_q.expect("PLL48 is required for SDMMC")
unwrap!(crate::rcc::get_freqs().pll1_q)
}
})
};

View File

@ -4,7 +4,7 @@ This crate contains the driver traits for [`embassy-usb`]. HAL/BSP crates can im
traits to add support for using `embassy-usb` for a given chip/platform.
The traits are kept in a separate crate so that breaking changes in the higher-level [`embassy-usb`]
APIs don't cause a semver-major bump of thsi crate. This allows existing HALs/BSPs to be used
APIs don't cause a semver-major bump of this crate. This allows existing HALs/BSPs to be used
with the newer `embassy-usb` without needing updates.
If you're writing an application using USB, you should depend on the main [`embassy-usb`] crate

View File

@ -4,7 +4,7 @@
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::dac::{DacCh1, DacChannel, Value};
use embassy_stm32::dac::{DacCh1, Value};
use embassy_stm32::dma::NoDma;
use {defmt_rtt as _, panic_probe as _};
@ -14,11 +14,10 @@ async fn main(_spawner: Spawner) -> ! {
info!("Hello World, dude!");
let mut dac = DacCh1::new(p.DAC, NoDma, p.PA4);
unwrap!(dac.set_trigger_enable(false));
loop {
for v in 0..=255 {
unwrap!(dac.set(Value::Bit8(to_sine_wave(v))));
dac.set(Value::Bit8(to_sine_wave(v)));
}
}
}

View File

@ -14,7 +14,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -0,0 +1,62 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
// Example originally designed for stm32f411ceu6 reading an A1454 hall effect sensor on I2C1
// DMA peripherals changed to compile for stm32f429zi, for the CI.
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::i2c::I2c;
use embassy_stm32::time::Hertz;
use embassy_stm32::{bind_interrupts, i2c, peripherals};
use {defmt_rtt as _, panic_probe as _};
const ADDRESS: u8 = 96;
bind_interrupts!(struct Irqs {
I2C1_EV => i2c::EventInterruptHandler<peripherals::I2C1>;
I2C1_ER => i2c::ErrorInterruptHandler<peripherals::I2C1>;
});
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
info!("Hello world!");
let p = embassy_stm32::init(Default::default());
let mut i2c = I2c::new(
p.I2C1,
p.PB8,
p.PB7,
Irqs,
p.DMA1_CH6,
p.DMA1_CH0,
Hertz(100_000),
Default::default(),
);
loop {
let a1454_read_sensor_command = [0x1F];
let mut sensor_data_buffer: [u8; 4] = [0, 0, 0, 0];
match i2c
.write_read(ADDRESS, &a1454_read_sensor_command, &mut sensor_data_buffer)
.await
{
Ok(()) => {
// Convert 12-bit signed integer into 16-bit signed integer.
// Is the 12 bit number negative?
if (sensor_data_buffer[2] & 0b00001000) == 0b0001000 {
sensor_data_buffer[2] = sensor_data_buffer[2] | 0b11110000;
}
let mut sensor_value_raw: u16 = sensor_data_buffer[3].into();
sensor_value_raw |= (sensor_data_buffer[2] as u16) << 8;
let sensor_value: u16 = sensor_value_raw.into();
let sensor_value = sensor_value as i16;
info!("Data: {}", sensor_value);
}
Err(e) => error!("I2C Error during read: {:?}", e),
}
}
}

View File

@ -0,0 +1,135 @@
#![no_std]
#![no_main]
#![feature(type_alias_impl_trait)]
// Example originally designed for stm32f411ceu6 with three A1454 hall effect sensors, connected to I2C1, 2 and 3
// on the pins referenced in the peripheral definitions.
// Pins and DMA peripherals changed to compile for stm32f429zi, to work with the CI.
// MUST be compiled in release mode to see actual performance, otherwise the async transactions take 2x
// as long to complete as the blocking ones!
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::i2c::I2c;
use embassy_stm32::time::Hertz;
use embassy_stm32::{bind_interrupts, i2c, peripherals};
use embassy_time::Instant;
use futures::future::try_join3;
use {defmt_rtt as _, panic_probe as _};
const ADDRESS: u8 = 96;
bind_interrupts!(struct Irqs {
I2C1_EV => i2c::EventInterruptHandler<peripherals::I2C1>;
I2C1_ER => i2c::ErrorInterruptHandler<peripherals::I2C1>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
I2C3_EV => i2c::EventInterruptHandler<peripherals::I2C3>;
I2C3_ER => i2c::ErrorInterruptHandler<peripherals::I2C3>;
});
/// Convert 12-bit signed integer within a 4 byte long buffer into 16-bit signed integer.
fn a1454_buf_to_i16(buffer: &[u8; 4]) -> i16 {
let lower = buffer[3];
let mut upper = buffer[2];
// Fill in additional 1s if the 12 bit number is negative.
if (upper & 0b00001000) == 0b0001000 {
upper = upper | 0b11110000;
}
let mut sensor_value_raw: u16 = lower.into();
sensor_value_raw |= (upper as u16) << 8;
let sensor_value: u16 = sensor_value_raw.into();
let sensor_value = sensor_value as i16;
sensor_value
}
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
info!("Setting up peripherals.");
let p = embassy_stm32::init(Default::default());
let mut i2c1 = I2c::new(
p.I2C1,
p.PB8,
p.PB7,
Irqs,
p.DMA1_CH6,
p.DMA1_CH0,
Hertz(100_000),
Default::default(),
);
let mut i2c2 = I2c::new(
p.I2C2,
p.PB10,
p.PB11,
Irqs,
p.DMA1_CH7,
p.DMA1_CH3,
Hertz(100_000),
Default::default(),
);
let mut i2c3 = I2c::new(
p.I2C3,
p.PA8,
p.PC9,
Irqs,
p.DMA1_CH4,
p.DMA1_CH2,
Hertz(100_000),
Default::default(),
);
let a1454_read_sensor_command = [0x1F];
let mut i2c1_buffer: [u8; 4] = [0, 0, 0, 0];
let mut i2c2_buffer: [u8; 4] = [0, 0, 0, 0];
let mut i2c3_buffer: [u8; 4] = [0, 0, 0, 0];
loop {
// Blocking reads one after the other. Completes in about 2000us.
let blocking_read_start_us = Instant::now().as_micros();
match i2c1.blocking_write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c1_buffer) {
Ok(()) => {}
Err(e) => error!("I2C Error: {:?}", e),
}
match i2c2.blocking_write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c2_buffer) {
Ok(()) => {}
Err(e) => error!("I2C Error: {:?}", e),
}
match i2c3.blocking_write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c3_buffer) {
Ok(()) => {}
Err(e) => error!("I2C Error: {:?}", e),
}
let blocking_read_total_us = Instant::now().as_micros() - blocking_read_start_us;
info!(
"Blocking reads completed in {}us: i2c1: {} i2c2: {} i2c3: {}",
blocking_read_total_us,
a1454_buf_to_i16(&i2c1_buffer),
a1454_buf_to_i16(&i2c2_buffer),
a1454_buf_to_i16(&i2c3_buffer)
);
// Async reads overlapping. Completes in about 1000us.
let async_read_start_us = Instant::now().as_micros();
let i2c1_result = i2c1.write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c1_buffer);
let i2c2_result = i2c2.write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c2_buffer);
let i2c3_result = i2c3.write_read(ADDRESS, &a1454_read_sensor_command, &mut i2c3_buffer);
// Wait for all three transactions to finish, or any one of them to fail.
match try_join3(i2c1_result, i2c2_result, i2c3_result).await {
Ok(_) => {
let async_read_total_us = Instant::now().as_micros() - async_read_start_us;
info!(
"Async reads completed in {}us: i2c1: {} i2c2: {} i2c3: {}",
async_read_total_us,
a1454_buf_to_i16(&i2c1_buffer),
a1454_buf_to_i16(&i2c2_buffer),
a1454_buf_to_i16(&i2c3_buffer)
);
}
Err(e) => error!("I2C Error during async write-read: {}", e),
};
}
}

View File

@ -13,7 +13,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -19,7 +19,8 @@ const HEIGHT: usize = 100;
static mut FRAME: [u32; WIDTH * HEIGHT / 2] = [0u32; WIDTH * HEIGHT / 2];
bind_interrupts!(struct Irqs {
I2C1_EV => i2c::InterruptHandler<peripherals::I2C1>;
I2C1_EV => i2c::EventInterruptHandler<peripherals::I2C1>;
I2C1_ER => i2c::ErrorInterruptHandler<peripherals::I2C1>;
DCMI => dcmi::InterruptHandler<peripherals::DCMI>;
});

View File

@ -4,7 +4,7 @@
use cortex_m_rt::entry;
use defmt::*;
use embassy_stm32::dac::{DacCh1, DacChannel, Value};
use embassy_stm32::dac::{DacCh1, Value};
use embassy_stm32::dma::NoDma;
use embassy_stm32::Config;
use {defmt_rtt as _, panic_probe as _};
@ -46,11 +46,10 @@ fn main() -> ! {
let p = embassy_stm32::init(config);
let mut dac = DacCh1::new(p.DAC1, NoDma, p.PA4);
unwrap!(dac.set_trigger_enable(false));
loop {
for v in 0..=255 {
unwrap!(dac.set(Value::Bit8(to_sine_wave(v))));
dac.set(Value::Bit8(to_sine_wave(v)));
}
}
}

View File

@ -4,21 +4,15 @@
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::dac::{DacChannel, ValueArray};
use embassy_stm32::dac::{DacCh1, DacCh2, ValueArray};
use embassy_stm32::pac::timer::vals::{Mms, Opm};
use embassy_stm32::peripherals::{TIM6, TIM7};
use embassy_stm32::peripherals::{DAC1, DMA1_CH3, DMA1_CH4, TIM6, TIM7};
use embassy_stm32::rcc::low_level::RccPeripheral;
use embassy_stm32::time::Hertz;
use embassy_stm32::timer::low_level::Basic16bitInstance;
use micromath::F32Ext;
use {defmt_rtt as _, panic_probe as _};
pub type Dac1Type =
embassy_stm32::dac::DacCh1<'static, embassy_stm32::peripherals::DAC1, embassy_stm32::peripherals::DMA1_CH3>;
pub type Dac2Type =
embassy_stm32::dac::DacCh2<'static, embassy_stm32::peripherals::DAC1, embassy_stm32::peripherals::DMA1_CH4>;
#[embassy_executor::main]
async fn main(spawner: Spawner) {
let mut config = embassy_stm32::Config::default();
@ -63,7 +57,7 @@ async fn main(spawner: Spawner) {
}
#[embassy_executor::task]
async fn dac_task1(mut dac: Dac1Type) {
async fn dac_task1(mut dac: DacCh1<'static, DAC1, DMA1_CH3>) {
let data: &[u8; 256] = &calculate_array::<256>();
info!("TIM6 frequency is {}", TIM6::frequency());
@ -77,8 +71,9 @@ async fn dac_task1(mut dac: Dac1Type) {
error!("Reload value {} below threshold!", reload);
}
dac.select_trigger(embassy_stm32::dac::Ch1Trigger::Tim6).unwrap();
dac.enable_channel().unwrap();
dac.set_trigger(embassy_stm32::dac::TriggerSel::Tim6);
dac.set_triggering(true);
dac.enable();
TIM6::enable_and_reset();
TIM6::regs().arr().modify(|w| w.set_arr(reload as u16 - 1));
@ -100,14 +95,12 @@ async fn dac_task1(mut dac: Dac1Type) {
// Loop technically not necessary if DMA circular mode is enabled
loop {
info!("Loop DAC1");
if let Err(e) = dac.write(ValueArray::Bit8(data), true).await {
error!("Could not write to dac: {}", e);
}
dac.write(ValueArray::Bit8(data), true).await;
}
}
#[embassy_executor::task]
async fn dac_task2(mut dac: Dac2Type) {
async fn dac_task2(mut dac: DacCh2<'static, DAC1, DMA1_CH4>) {
let data: &[u8; 256] = &calculate_array::<256>();
info!("TIM7 frequency is {}", TIM7::frequency());
@ -127,7 +120,9 @@ async fn dac_task2(mut dac: Dac2Type) {
w.set_cen(true);
});
dac.select_trigger(embassy_stm32::dac::Ch2Trigger::Tim7).unwrap();
dac.set_trigger(embassy_stm32::dac::TriggerSel::Tim7);
dac.set_triggering(true);
dac.enable();
debug!(
"TIM7 Frequency {}, Target Frequency {}, Reload {}, Reload as u16 {}, Samples {}",
@ -138,9 +133,7 @@ async fn dac_task2(mut dac: Dac2Type) {
data.len()
);
if let Err(e) = dac.write(ValueArray::Bit8(data), true).await {
error!("Could not write to dac: {}", e);
}
dac.write(ValueArray::Bit8(data), true).await;
}
fn to_sine_wave(v: u8) -> u8 {

View File

@ -13,7 +13,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -3,7 +3,7 @@
#![feature(type_alias_impl_trait)]
use defmt::*;
use embassy_stm32::dac::{DacCh1, DacChannel, Value};
use embassy_stm32::dac::{DacCh1, Value};
use embassy_stm32::dma::NoDma;
use {defmt_rtt as _, panic_probe as _};
@ -13,11 +13,10 @@ fn main() -> ! {
info!("Hello World!");
let mut dac = DacCh1::new(p.DAC1, NoDma, p.PA4);
unwrap!(dac.set_trigger_enable(false));
loop {
for v in 0..=255 {
unwrap!(dac.set(Value::Bit8(to_sine_wave(v))));
dac.set(Value::Bit8(to_sine_wave(v)));
}
}
}

View File

@ -4,21 +4,15 @@
use defmt::*;
use embassy_executor::Spawner;
use embassy_stm32::dac::{DacChannel, ValueArray};
use embassy_stm32::dac::{DacCh1, DacCh2, ValueArray};
use embassy_stm32::pac::timer::vals::{Mms, Opm};
use embassy_stm32::peripherals::{TIM6, TIM7};
use embassy_stm32::peripherals::{DAC1, DMA1_CH3, DMA1_CH4, TIM6, TIM7};
use embassy_stm32::rcc::low_level::RccPeripheral;
use embassy_stm32::time::Hertz;
use embassy_stm32::timer::low_level::Basic16bitInstance;
use micromath::F32Ext;
use {defmt_rtt as _, panic_probe as _};
pub type Dac1Type =
embassy_stm32::dac::DacCh1<'static, embassy_stm32::peripherals::DAC1, embassy_stm32::peripherals::DMA1_CH3>;
pub type Dac2Type =
embassy_stm32::dac::DacCh2<'static, embassy_stm32::peripherals::DAC1, embassy_stm32::peripherals::DMA1_CH4>;
#[embassy_executor::main]
async fn main(spawner: Spawner) {
let config = embassy_stm32::Config::default();
@ -34,7 +28,7 @@ async fn main(spawner: Spawner) {
}
#[embassy_executor::task]
async fn dac_task1(mut dac: Dac1Type) {
async fn dac_task1(mut dac: DacCh1<'static, DAC1, DMA1_CH3>) {
let data: &[u8; 256] = &calculate_array::<256>();
info!("TIM6 frequency is {}", TIM6::frequency());
@ -48,8 +42,9 @@ async fn dac_task1(mut dac: Dac1Type) {
error!("Reload value {} below threshold!", reload);
}
dac.select_trigger(embassy_stm32::dac::Ch1Trigger::Tim6).unwrap();
dac.enable_channel().unwrap();
dac.set_trigger(embassy_stm32::dac::TriggerSel::Tim6);
dac.set_triggering(true);
dac.enable();
TIM6::enable_and_reset();
TIM6::regs().arr().modify(|w| w.set_arr(reload as u16 - 1));
@ -71,14 +66,12 @@ async fn dac_task1(mut dac: Dac1Type) {
// Loop technically not necessary if DMA circular mode is enabled
loop {
info!("Loop DAC1");
if let Err(e) = dac.write(ValueArray::Bit8(data), true).await {
error!("Could not write to dac: {}", e);
}
dac.write(ValueArray::Bit8(data), true).await;
}
}
#[embassy_executor::task]
async fn dac_task2(mut dac: Dac2Type) {
async fn dac_task2(mut dac: DacCh2<'static, DAC1, DMA1_CH4>) {
let data: &[u8; 256] = &calculate_array::<256>();
info!("TIM7 frequency is {}", TIM7::frequency());
@ -98,7 +91,9 @@ async fn dac_task2(mut dac: Dac2Type) {
w.set_cen(true);
});
dac.select_trigger(embassy_stm32::dac::Ch2Trigger::Tim7).unwrap();
dac.set_trigger(embassy_stm32::dac::TriggerSel::Tim7);
dac.set_triggering(true);
dac.enable();
debug!(
"TIM7 Frequency {}, Target Frequency {}, Reload {}, Reload as u16 {}, Samples {}",
@ -109,9 +104,7 @@ async fn dac_task2(mut dac: Dac2Type) {
data.len()
);
if let Err(e) = dac.write(ValueArray::Bit8(data), true).await {
error!("Could not write to dac: {}", e);
}
dac.write(ValueArray::Bit8(data), true).await;
}
fn to_sine_wave(v: u8) -> u8 {

View File

@ -14,7 +14,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -16,7 +16,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -13,7 +13,8 @@ const ADDRESS: u8 = 0x5F;
const WHOAMI: u8 = 0x0F;
bind_interrupts!(struct Irqs {
I2C2_EV => i2c::InterruptHandler<peripherals::I2C2>;
I2C2_EV => i2c::EventInterruptHandler<peripherals::I2C2>;
I2C2_ER => i2c::ErrorInterruptHandler<peripherals::I2C2>;
});
#[embassy_executor::main]

View File

@ -40,7 +40,8 @@ use static_cell::make_static;
use {embassy_stm32 as hal, panic_probe as _};
bind_interrupts!(struct Irqs {
I2C3_EV => i2c::InterruptHandler<peripherals::I2C3>;
I2C3_EV => i2c::EventInterruptHandler<peripherals::I2C3>;
I2C3_ER => i2c::ErrorInterruptHandler<peripherals::I2C3>;
RNG => rng::InterruptHandler<peripherals::RNG>;
});

View File

@ -6,28 +6,29 @@ license = "MIT OR Apache-2.0"
autobins = false
[features]
stm32f103c8 = ["embassy-stm32/stm32f103c8", "not-gpdma"]
stm32f429zi = ["embassy-stm32/stm32f429zi", "chrono", "eth", "stop", "can", "not-gpdma", "dac-adc-pin", "rng"]
stm32g071rb = ["embassy-stm32/stm32g071rb", "cm0", "not-gpdma", "dac-adc-pin"]
stm32c031c6 = ["embassy-stm32/stm32c031c6", "cm0", "not-gpdma"]
stm32f103c8 = ["embassy-stm32/stm32f103c8", "not-gpdma"]
stm32f207zg = ["embassy-stm32/stm32f207zg", "chrono", "not-gpdma", "eth", "rng"]
stm32f303ze = ["embassy-stm32/stm32f303ze", "chrono", "not-gpdma"]
stm32f429zi = ["embassy-stm32/stm32f429zi", "chrono", "eth", "stop", "can", "not-gpdma", "dac-adc-pin", "rng"]
stm32f446re = ["embassy-stm32/stm32f446re", "chrono", "stop", "can", "not-gpdma", "dac-adc-pin", "sdmmc"]
stm32f767zi = ["embassy-stm32/stm32f767zi", "chrono", "not-gpdma", "eth", "rng"]
stm32g071rb = ["embassy-stm32/stm32g071rb", "cm0", "not-gpdma", "dac-adc-pin"]
stm32g491re = ["embassy-stm32/stm32g491re", "chrono", "stop", "not-gpdma", "rng"]
stm32h755zi = ["embassy-stm32/stm32h755zi-cm7", "chrono", "not-gpdma", "eth", "dac-adc-pin", "rng"]
stm32h753zi = ["embassy-stm32/stm32h753zi", "chrono", "not-gpdma", "eth", "rng"]
stm32h7a3zi = ["embassy-stm32/stm32h7a3zi", "not-gpdma", "rng"]
stm32wb55rg = ["embassy-stm32/stm32wb55rg", "chrono", "not-gpdma", "ble", "mac" , "rng"]
stm32h563zi = ["embassy-stm32/stm32h563zi", "chrono", "eth", "rng"]
stm32u585ai = ["embassy-stm32/stm32u585ai", "chrono", "rng"]
stm32u5a5zj = ["embassy-stm32/stm32u5a5zj", "chrono", "rng"]
stm32wba52cg = ["embassy-stm32/stm32wba52cg", "chrono", "rng"]
stm32h753zi = ["embassy-stm32/stm32h753zi", "chrono", "not-gpdma", "eth", "rng"]
stm32h755zi = ["embassy-stm32/stm32h755zi-cm7", "chrono", "not-gpdma", "eth", "dac-adc-pin", "rng"]
stm32h7a3zi = ["embassy-stm32/stm32h7a3zi", "not-gpdma", "rng"]
stm32l073rz = ["embassy-stm32/stm32l073rz", "cm0", "not-gpdma", "rng"]
stm32l152re = ["embassy-stm32/stm32l152re", "chrono", "not-gpdma"]
stm32l496zg = ["embassy-stm32/stm32l496zg", "not-gpdma", "rng"]
stm32l4a6zg = ["embassy-stm32/stm32l4a6zg", "chrono", "not-gpdma", "rng"]
stm32l4r5zi = ["embassy-stm32/stm32l4r5zi", "chrono", "not-gpdma", "rng"]
stm32l552ze = ["embassy-stm32/stm32l552ze", "not-gpdma", "rng"]
stm32f767zi = ["embassy-stm32/stm32f767zi", "chrono", "not-gpdma", "eth", "rng"]
stm32f207zg = ["embassy-stm32/stm32f207zg", "chrono", "not-gpdma", "eth", "rng"]
stm32f303ze = ["embassy-stm32/stm32f303ze", "chrono", "not-gpdma"]
stm32l496zg = ["embassy-stm32/stm32l496zg", "not-gpdma", "rng"]
stm32u585ai = ["embassy-stm32/stm32u585ai", "chrono", "rng"]
stm32u5a5zj = ["embassy-stm32/stm32u5a5zj", "chrono", "rng"]
stm32wb55rg = ["embassy-stm32/stm32wb55rg", "chrono", "not-gpdma", "ble", "mac" , "rng"]
stm32wba52cg = ["embassy-stm32/stm32wba52cg", "chrono", "rng"]
stm32wl55jc = ["embassy-stm32/stm32wl55jc-cm4", "not-gpdma", "rng", "chrono"]
eth = []

View File

@ -27,21 +27,21 @@ bind_interrupts!(struct Irqs {
#[embassy_executor::main]
async fn main(_spawner: Spawner) {
let mut p = embassy_stm32::init(config());
let p = embassy_stm32::init(config());
info!("Hello World!");
// HW is connected as follows:
// PB13 -> PD0
// PB12 -> PD1
let can = peri!(p, CAN);
let tx = peri!(p, CAN_TX);
let mut rx = peri!(p, CAN_RX);
// The next two lines are a workaround for testing without transceiver.
// To synchronise to the bus the RX input needs to see a high level.
// Use `mem::forget()` to release the borrow on the pin but keep the
// pull-up resistor enabled.
let rx_pin = Input::new(&mut p.PD0, Pull::Up);
let rx_pin = Input::new(&mut rx, Pull::Up);
core::mem::forget(rx_pin);
let mut can = Can::new(p.CAN1, p.PD0, p.PD1, Irqs);
let mut can = Can::new(can, rx, tx, Irqs);
info!("Configuring can...");

View File

@ -6,13 +6,16 @@
#[path = "../common.rs"]
mod common;
use core::f32::consts::PI;
use common::*;
use defmt::assert;
use embassy_executor::Spawner;
use embassy_stm32::adc::Adc;
use embassy_stm32::dac::{DacCh1, DacChannel, Value};
use embassy_stm32::dac::{DacCh1, Value};
use embassy_stm32::dma::NoDma;
use embassy_time::{Delay, Timer};
use micromath::F32Ext;
use {defmt_rtt as _, panic_probe as _};
#[embassy_executor::main]
@ -20,31 +23,27 @@ async fn main(_spawner: Spawner) {
// Initialize the board and obtain a Peripherals instance
let p: embassy_stm32::Peripherals = embassy_stm32::init(config());
#[cfg(feature = "stm32f429zi")]
let dac_peripheral = p.DAC;
#[cfg(any(feature = "stm32h755zi", feature = "stm32g071rb"))]
let dac_peripheral = p.DAC1;
let mut dac: DacCh1<'_, _, NoDma> = DacCh1::new(dac_peripheral, NoDma, p.PA4);
unwrap!(dac.set_trigger_enable(false));
let dac = peri!(p, DAC);
let dac_pin = peri!(p, DAC_PIN);
let mut adc_pin = unsafe { core::ptr::read(&dac_pin) };
let mut dac = DacCh1::new(dac, NoDma, dac_pin);
let mut adc = Adc::new(p.ADC1, &mut Delay);
#[cfg(feature = "stm32h755zi")]
let normalization_factor = 256;
#[cfg(any(feature = "stm32f429zi", feature = "stm32g071rb"))]
#[cfg(any(feature = "stm32f429zi", feature = "stm32f446re", feature = "stm32g071rb"))]
let normalization_factor: i32 = 16;
unwrap!(dac.set(Value::Bit8(0)));
dac.set(Value::Bit8(0));
// Now wait a little to obtain a stable value
Timer::after_millis(30).await;
let offset = adc.read(&mut unsafe { embassy_stm32::Peripherals::steal() }.PA4);
let offset = adc.read(&mut adc_pin);
for v in 0..=255 {
// First set the DAC output value
let dac_output_val = to_sine_wave(v);
unwrap!(dac.set(Value::Bit8(dac_output_val)));
dac.set(Value::Bit8(dac_output_val));
// Now wait a little to obtain a stable value
Timer::after_millis(30).await;
@ -64,10 +63,6 @@ async fn main(_spawner: Spawner) {
cortex_m::asm::bkpt();
}
use core::f32::consts::PI;
use micromath::F32Ext;
fn to_sine_wave(v: u8) -> u8 {
if v >= 128 {
// top half

View File

@ -5,11 +5,12 @@
#[path = "../common.rs"]
mod common;
use defmt::{assert_eq, *};
use common::*;
use defmt::assert_eq;
use embassy_executor::Spawner;
use embassy_stm32::sdmmc::{DataBlock, Sdmmc};
use embassy_stm32::time::mhz;
use embassy_stm32::{bind_interrupts, peripherals, sdmmc, Config};
use embassy_stm32::{bind_interrupts, peripherals, sdmmc};
use {defmt_rtt as _, panic_probe as _};
bind_interrupts!(struct Irqs {
@ -20,12 +21,8 @@ bind_interrupts!(struct Irqs {
async fn main(_spawner: Spawner) {
info!("Hello World!");
let mut config = Config::default();
config.rcc.sys_ck = Some(mhz(48));
config.rcc.pll48 = true;
let p = embassy_stm32::init(config);
let p = embassy_stm32::init(config());
#[cfg(feature = "stm32f429zi")]
let (mut sdmmc, mut dma, mut clk, mut cmd, mut d0, mut d1, mut d2, mut d3) =
(p.SDIO, p.DMA2_CH3, p.PC12, p.PD2, p.PC8, p.PC9, p.PC10, p.PC11);

View File

@ -14,6 +14,8 @@ teleprobe_meta::target!(b"nucleo-stm32g491re");
teleprobe_meta::target!(b"nucleo-stm32g071rb");
#[cfg(feature = "stm32f429zi")]
teleprobe_meta::target!(b"nucleo-stm32f429zi");
#[cfg(feature = "stm32f446re")]
teleprobe_meta::target!(b"weact-stm32f446re");
#[cfg(feature = "stm32wb55rg")]
teleprobe_meta::target!(b"nucleo-stm32wb55rg");
#[cfg(feature = "stm32h755zi")]
@ -99,14 +101,25 @@ define_peris!(
define_peris!(
UART = USART1, UART_TX = PC4, UART_RX = PC5, UART_TX_DMA = DMA1_CH1, UART_RX_DMA = DMA1_CH2,
SPI = SPI1, SPI_SCK = PA5, SPI_MOSI = PA7, SPI_MISO = PA6, SPI_TX_DMA = DMA1_CH1, SPI_RX_DMA = DMA1_CH2,
DAC = DAC1, DAC_PIN = PA4,
@irq UART = {USART1 => embassy_stm32::usart::InterruptHandler<embassy_stm32::peripherals::USART1>;},
);
#[cfg(feature = "stm32f429zi")]
define_peris!(
UART = USART6, UART_TX = PG14, UART_RX = PG9, UART_TX_DMA = DMA2_CH6, UART_RX_DMA = DMA2_CH1,
SPI = SPI1, SPI_SCK = PA5, SPI_MOSI = PA7, SPI_MISO = PA6, SPI_TX_DMA = DMA2_CH3, SPI_RX_DMA = DMA2_CH2,
DAC = DAC, DAC_PIN = PA4,
CAN = CAN1, CAN_RX = PD0, CAN_TX = PD1,
@irq UART = {USART6 => embassy_stm32::usart::InterruptHandler<embassy_stm32::peripherals::USART6>;},
);
#[cfg(feature = "stm32f446re")]
define_peris!(
UART = USART1, UART_TX = PA9, UART_RX = PA10, UART_TX_DMA = DMA2_CH7, UART_RX_DMA = DMA2_CH5,
SPI = SPI1, SPI_SCK = PA5, SPI_MOSI = PA7, SPI_MISO = PA6, SPI_TX_DMA = DMA2_CH3, SPI_RX_DMA = DMA2_CH2,
DAC = DAC, DAC_PIN = PA4,
CAN = CAN1, CAN_RX = PA11, CAN_TX = PA12,
@irq UART = {USART1 => embassy_stm32::usart::InterruptHandler<embassy_stm32::peripherals::USART1>;},
);
#[cfg(feature = "stm32wb55rg")]
define_peris!(
UART = LPUART1, UART_TX = PA2, UART_RX = PA3, UART_TX_DMA = DMA1_CH1, UART_RX_DMA = DMA1_CH2,
@ -117,6 +130,7 @@ define_peris!(
define_peris!(
UART = USART1, UART_TX = PB6, UART_RX = PB7, UART_TX_DMA = DMA1_CH0, UART_RX_DMA = DMA1_CH1,
SPI = SPI1, SPI_SCK = PA5, SPI_MOSI = PB5, SPI_MISO = PA6, SPI_TX_DMA = DMA1_CH0, SPI_RX_DMA = DMA1_CH1,
DAC = DAC1, DAC_PIN = PA4,
@irq UART = {USART1 => embassy_stm32::usart::InterruptHandler<embassy_stm32::peripherals::USART1>;},
);
#[cfg(feature = "stm32h7a3zi")]
@ -282,6 +296,27 @@ pub fn config() -> Config {
config.rcc.sys = Sysclk::PLL1_P;
}
#[cfg(feature = "stm32f446re")]
{
use embassy_stm32::rcc::*;
config.rcc.hse = Some(Hse {
freq: Hertz(8_000_000),
mode: HseMode::Oscillator,
});
config.rcc.pll_src = PllSource::HSE;
config.rcc.pll = Some(Pll {
prediv: PllPreDiv::DIV4,
mul: PllMul::MUL168,
divp: Some(PllPDiv::DIV2), // 8mhz / 4 * 168 / 2 = 168 Mhz.
divq: Some(PllQDiv::DIV7), // 8mhz / 4 * 168 / 7 = 48 Mhz.
divr: None,
});
config.rcc.ahb_pre = AHBPrescaler::DIV1;
config.rcc.apb1_pre = APBPrescaler::DIV4;
config.rcc.apb2_pre = APBPrescaler::DIV2;
config.rcc.sys = Sysclk::PLL1_P;
}
#[cfg(feature = "stm32f767zi")]
{
use embassy_stm32::rcc::*;