34 Commits

Author SHA1 Message Date
7644177398 1.0.0-rc.3. 2019-04-25 11:37:49 +02:00
3d0a0c570e Fix nalgebra implementor.
Point must be removed because it is not additive.
2019-04-25 11:37:49 +02:00
bdb9a68c3b 1.0.0-rc.2. 2019-04-23 18:43:30 +02:00
e7ecc9819a Documentation, step 4. 2019-04-23 18:43:30 +02:00
e88da58a87 Step 3 of doc cleanup. 2019-04-23 18:43:30 +02:00
6ae3918eb1 Second pass of doc cleanup. 2019-04-23 18:43:30 +02:00
dcd82f7301 First doc cleanup. 2019-04-23 18:43:30 +02:00
8de0f10572 1.0.0-rc.1. 2019-04-21 19:20:15 +02:00
476f762c5f Bump cgmath dependency. 2019-04-21 19:05:51 +02:00
6ee68b4d56 Build without std but do not test (yet). 2019-04-21 18:51:43 +02:00
609ebb0f37 Cleanup. 2019-04-21 18:51:43 +02:00
305ce7ac93 Align and reformat. 2019-04-21 18:51:43 +02:00
70d6cf2081 Implement impl-cgmath. 2019-04-21 18:51:43 +02:00
9d5971a5f7 Remove nalgebra point interpolation. 2019-04-21 18:51:43 +02:00
65a713c51b Implement impl-nalgebra feature. 2019-04-21 18:51:43 +02:00
427895ab10 The cubic_hermite_def function is a bit fucked as impossible to use. 2019-04-21 18:51:43 +02:00
99068fb2d0 Refactor all types in their own modules. 2019-04-21 18:51:43 +02:00
935565ca22 Add f64-key unit test. #12 2019-04-19 13:07:55 +02:00
f4a90b82bc Fix unit tests. 2019-04-19 13:04:55 +02:00
5b70d6921c Refactor polymorphic sampling code. 2019-04-19 13:04:55 +02:00
48623701a7 Fix some documentation. 2019-04-19 13:04:55 +02:00
b548566802 Add support for std/no_std num-traits. 2019-04-19 13:04:55 +02:00
f3bd7cee24 Add support for polymorphic sampling type. 2019-04-19 13:04:55 +02:00
2b5aac42dd Fix example for clamped_sample change. 2019-04-16 17:40:08 +02:00
55e792a98b Make Spline<T>::clamped_sample return Option<T> instead. #9 2019-04-16 17:40:08 +02:00
bc329fe736 Migrate to Rust 2018. 2019-04-13 21:54:17 +02:00
ed222e001d Fix a typo in the top-level documentation. 2019-04-13 21:54:17 +02:00
a3a2919eb4 0.2.3. 2018-10-13 03:31:44 +02:00
37cf89b566 Fix the nalgebra dependency to accept 0.14, 0.15 and 0.16. 2018-10-13 01:05:13 +02:00
77ccf0a47b Add support for nalgebra along with some tests.
Feature-gated with impl-nalgebra.
2018-10-13 01:05:13 +02:00
766066d9ed 0.2.2. 2018-09-30 21:38:49 +02:00
882b9e7b34 minor corrections in README.md 2018-09-30 21:32:59 +02:00
0dcfe48415 minor spelling corrections 2018-09-30 21:32:59 +02:00
24cd0d7fca bumped version numbers in examples for splines dependancy 2018-09-30 21:32:22 +02:00
17 changed files with 923 additions and 431 deletions

View File

@ -19,6 +19,11 @@ script:
- echo "Testing feature serialization"
- cargo build --verbose --features serialization
- cargo test --verbose --features serialization
- echo "Testing without std"
- echo "Building without std"
- cargo build --verbose --no-default-features
- cargo test --verbose --no-default-features
- echo "Testing with cgmath"
- cargo build --verbose --features impl-cgmath
- cargo test --verbose --features impl-cgmath
- echo "Testing with nalgebra"
- cargo build --verbose --features impl-nalgebra
- cargo test --verbose --features impl-nalgebra

View File

@ -1,4 +1,19 @@
# 0.2.1
## 0.2.3
> Sat 13th October 2018
- Add the `"impl-nalgebra"` feature gate. It gives access to some implementors for the `nalgebra`
crate.
- Enhance the documentation.
## 0.2.2
> Sun 30th September 2018
- Bump version numbers (`splines-0.2`) in examples.
- Fix several typos in the documentation.
## 0.2.1
> Thu 20th September 2018
@ -9,7 +24,8 @@
> Thu 6th September 2018
- Add the `"std"` feature gate, that can be used to compile with the standard library.
- Add the `"impl-cgmath"` in order to make it optional, if wanted, the `cgmath` dependency.
- Add the `"impl-cgmath"` feature gate in order to make optional, if wanted, the `cgmath`
dependency.
- Enhance the documentation.
## 0.1.1

View File

@ -1,6 +1,6 @@
[package]
name = "splines"
version = "0.2.1"
version = "1.0.0-rc.3"
license = "BSD-3-Clause"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
description = "Spline interpolation made easy"
@ -11,6 +11,8 @@ repository = "https://github.com/phaazon/splines"
documentation = "https://docs.rs/splines"
readme = "README.md"
edition = "2018"
[badges]
travis-ci = { repository = "phaazon/splines", branch = "master" }
is-it-maintained-issue-resolution = { repository = "phaazon/splines" }
@ -18,19 +20,16 @@ is-it-maintained-open-issues = { repository = "phaazon/splines" }
maintenance = { status = "actively-developed" }
[features]
default = ["std", "impl-cgmath"]
default = ["std"]
impl-cgmath = ["cgmath"]
impl-nalgebra = ["alga", "nalgebra", "num-traits"]
serialization = ["serde", "serde_derive"]
std = []
impl-cgmath = ["cgmath"]
[dependencies.cgmath]
version = "0.16"
optional = true
[dependencies.serde]
version = "1"
optional = true
[dependencies.serde_derive]
version = "1"
optional = true
[dependencies]
alga = { version = "0.9", optional = true }
cgmath = { version = "0.17", optional = true }
nalgebra = { version = ">=0.14, <0.19", optional = true }
num-traits = { version = "0.2", optional = true }
serde = { version = "1", optional = true }
serde_derive = { version = "1", optional = true }

111
README.md
View File

@ -1,22 +1,103 @@
# splines
This crate provides [splines](https://en.wikipedia.org/wiki/Spline_(mathematics)), mathematic curves
defined piecewise through control keys a.k.a. knots.
Feel free to dig in the [online documentation](https://docs.rs/splines) for further information.
## A note on features
<!-- cargo-sync-readme start -->
This crate has features! Heres a comprehensive list of what you can enable:
# Spline interpolation made easy.
- **Serialization / deserialization.**
+ This feature implements both the `Serialize` and `Deserialize` traits from `serde`.
+ Enable with the `"serialization"` feature.
- **[cgmath](https://crates.io/crates/cgmath) implementors**
+ Adds some usefull implementations of `Interpolate` for some cgmath types.
+ Enable with the `"impl-cgmath"` feature.
- **Standard library / no stdandard library.**
+ Its possible to compile against the standard library or go on your own without it.
+ Compiling with the standard library is enabled by default.
+ Use `defaut-features = []` in your `Cargo.toml` to disable.
+ Enable explicitly with the `"std"` feataure.
This crate exposes splines for which each sections can be interpolated independently of each
other i.e. its possible to interpolate with a linear interpolator on one section and then
switch to a cubic Hermite interpolator for the next section.
Most of the crate consists of three types:
- [`Key`], which represents the control points by which the spline must pass.
- [`Interpolation`], the type of possible interpolation for each segment.
- [`Spline`], a spline from which you can *sample* points by interpolation.
When adding control points, you add new sections. Two control points define a section i.e.
its not possible to define a spline without at least two control points. Every time you add a
new control point, a new section is created. Each section is assigned an interpolation mode that
is picked from its lower control point.
# Quickly create splines
```
use splines::{Interpolation, Key, Spline};
let start = Key::new(0., 0., Interpolation::Linear);
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
```
You will notice that we used `Interpolation::Linear` for the first key. The first key `start`s
interpolation will be used for the whole segment defined by those two keys. The `end`s
interpolation wont be used. You can in theory use any [`Interpolation`] you want for the last
key. We use the default one because we dont care.
# Interpolate values
The whole purpose of splines is to interpolate discrete values to yield continuous ones. This is
usually done with the `Spline::sample` method. This method expects the interpolation parameter
(often, this will be the time of your simulation) as argument and will yield an interpolated
value.
If you try to sample in out-of-bounds interpolation parameter, youll get no value.
```
# use splines::{Interpolation, Key, Spline};
# let start = Key::new(0., 0., Interpolation::Linear);
# let end = Key::new(1., 10., Interpolation::Linear);
# let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(0.));
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(spline.sample(1.1), None);
```
Its possible that you want to get a value even if youre out-of-bounds. This is especially
important for simulations / animations. Feel free to use the `Spline::clamped_interpolation` for
that purpose.
```
# use splines::{Interpolation, Key, Spline};
# let start = Key::new(0., 0., Interpolation::Linear);
# let end = Key::new(1., 10., Interpolation::Linear);
# let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.clamped_sample(-0.9), Some(0.)); // clamped to the first key
assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
```
# Features and customization
This crate was written with features baked in and hidden behind feature-gates. The idea is that
the default configuration (i.e. you just add `"splines = …"` to your `Cargo.toml`) will always
give you the minimal, core and raw concepts of what splines, keys / knots and interpolation
modes are. However, you might want more. Instead of letting other people do the extra work to
add implementations for very famous and useful traits and do it in less efficient way, because
they wouldnt have access to the internals of this crate, its possible to enable features in an
ad hoc way.
This mechanism is not final and this is currently an experiment to see how people like it or
not. Its especially important to see how it copes with the documentation.
So heres a list of currently supported features and how to enable them:
- **Serialization / deserialization.**
+ This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
types exported by this crate.
+ Enable with the `"serialization"` feature.
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
+ Adds some useful implementations of `Interpolate` for some cgmath types.
+ Enable with the `"impl-cgmath"` feature.
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
+ Adds some useful implementations of `Interpolate` for some nalgebra types.
+ Enable with the `"impl-nalgebra"` feature.
- **Standard library / no standard library.**
+ Its possible to compile against the standard library or go on your own without it.
+ Compiling with the standard library is enabled by default.
+ Use `default-features = []` in your `Cargo.toml` to disable.
+ Enable explicitly with the `"std"` feature.
<!-- cargo-sync-readme end -->

View File

@ -1,7 +1,7 @@
[package]
name = "hello-world"
version = "0.1.0"
version = "0.2.0"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
[dependencies]
splines = "0.1"
splines = "1.0.0-rc.2"

View File

@ -6,6 +6,6 @@ fn main() {
let keys = vec![Key::new(0., 0., Interpolation::default()), Key::new(5., 1., Interpolation::default())];
let spline = Spline::from_vec(keys);
println!("value at 0: {}", spline.clamped_sample(0.));
println!("value at 3: {}", spline.clamped_sample(3.));
println!("value at 0: {:?}", spline.clamped_sample(0.));
println!("value at 3: {:?}", spline.clamped_sample(3.));
}

View File

@ -1,11 +1,8 @@
[package]
name = "serialization"
version = "0.1.0"
version = "0.2.0"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
[dependencies]
serde_json = "1"
[dependencies.splines]
version = "0.1"
features = ["serialization"]
splines = { version = "1.0.0-rc.2", features = ["serialization"] }

View File

@ -1,7 +1,7 @@
#[macro_use] extern crate serde_json;
extern crate splines;
use serde_json::{Value, from_value};
use serde_json::from_value;
use splines::Spline;
fn main() {
@ -25,6 +25,6 @@ fn main() {
]
};
let spline = from_value::<Spline<f32>>(value);
let spline = from_value::<Spline<f32, f32>>(value);
println!("{:?}", spline);
}

64
src/cgmath.rs Normal file
View File

@ -0,0 +1,64 @@
use cgmath::{
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
};
use crate::interpolate::{Additive, Interpolate, Linear, One, cubic_hermite_def};
macro_rules! impl_interpolate_vec {
($($t:tt)*) => {
impl<T> Linear<T> for $($t)*<T> where T: BaseNum {
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T> Interpolate<T> for $($t)*<T>
where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
a.lerp(b, t)
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
}
}
}
impl_interpolate_vec!(Vector1);
impl_interpolate_vec!(Vector2);
impl_interpolate_vec!(Vector3);
impl_interpolate_vec!(Vector4);
impl<T> Linear<T> for Quaternion<T> where T: BaseFloat {
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T> Interpolate<T> for Quaternion<T>
where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
a.nlerp(b, t)
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
}

247
src/interpolate.rs Normal file
View File

@ -0,0 +1,247 @@
//! The [`Interpolate`] trait and associated symbols.
//!
//! The [`Interpolate`] trait is the central concept of the crate. It enables a spline to be
//! sampled at by interpolating in between control points.
//!
//! In order for a type to be used in [`Spline<K, V>`], some properties must be met about the `K`
//! type must implementing several traits:
//!
//! - [`One`], giving a neutral element for the multiplication monoid.
//! - [`Additive`], making the type additive (i.e. one can add or subtract with it).
//! - [`Linear`], unlocking linear combinations, required for interpolating.
//! - [`Trigo`], a trait giving *π* and *cosine*, required for e.g. cosine interpolation.
//!
//! Feel free to have a look at current implementors for further help.
//!
//! > *Why doesnt this crate use [num-traits] instead of
//! > defining its own traits?*
//!
//! The reason for this is quite simple: this crate provides a `no_std` support, which is not
//! currently available easily with [num-traits]. Also, if something changes in [num-traits] with
//! those traits, it would make this whole crate unstable.
//!
//! [`Interpolate`]: crate::interpolate::Interpolate
//! [`Spline<K, V>`]: crate::spline::Spline
//! [`One`]: crate::interpolate::One
//! [`Additive`]: crate::interpolate::Additive
//! [`Linear`]: crate::interpolate::Linear
//! [`Trigo`]: crate::interpolate::Trigo
//! [num-traits]: https://crates.io/crates/num-traits
#[cfg(feature = "std")] use std::f32;
#[cfg(not(feature = "std"))] use core::f32;
#[cfg(not(feature = "std"))] use core::intrinsics::cosf32;
#[cfg(feature = "std")] use std::f64;
#[cfg(not(feature = "std"))] use core::f64;
#[cfg(not(feature = "std"))] use core::intrinsics::cosf64;
#[cfg(feature = "std")] use std::ops::{Add, Mul, Sub};
#[cfg(not(feature = "std"))] use core::ops::{Add, Mul, Sub};
/// Keys that can be interpolated in between. Implementing this trait is required to perform
/// sampling on splines.
///
/// `T` is the variable used to sample with. Typical implementations use [`f32`] or [`f64`], but
/// youre free to use the ones you like. Feel free to have a look at [`Spline::sample`] for
/// instance to know which trait your type must implement to be usable.
///
/// [`Spline::sample`]: crate::spline::Spline::sample
pub trait Interpolate<T>: Sized + Copy {
/// Linear interpolation.
fn lerp(a: Self, b: Self, t: T) -> Self;
/// Cubic hermite interpolation.
///
/// Default to [`lerp`].
///
/// [`lerp`]: Interpolate::lerp
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
Self::lerp(a.0, b.0, t)
}
}
/// Set of types that support additions and subtraction.
///
/// The [`Copy`] trait is also a supertrait as its likely to be used everywhere.
pub trait Additive:
Copy +
Add<Self, Output = Self> +
Sub<Self, Output = Self> {
}
impl<T> Additive for T
where T: Copy +
Add<Self, Output = Self> +
Sub<Self, Output = Self> {
}
/// Set of additive types that support outer multiplication and division, making them linear.
pub trait Linear<T>: Additive {
/// Apply an outer multiplication law.
fn outer_mul(self, t: T) -> Self;
/// Apply an outer division law.
fn outer_div(self, t: T) -> Self;
}
macro_rules! impl_linear_simple {
($t:ty) => {
impl Linear<$t> for $t {
fn outer_mul(self, t: $t) -> Self {
self * t
}
/// Apply an outer division law.
fn outer_div(self, t: $t) -> Self {
self / t
}
}
}
}
impl_linear_simple!(f32);
impl_linear_simple!(f64);
macro_rules! impl_linear_cast {
($t:ty, $q:ty) => {
impl Linear<$t> for $q {
fn outer_mul(self, t: $t) -> Self {
self * t as $q
}
/// Apply an outer division law.
fn outer_div(self, t: $t) -> Self {
self / t as $q
}
}
}
}
impl_linear_cast!(f32, f64);
impl_linear_cast!(f64, f32);
/// Types with a neutral element for multiplication.
pub trait One {
/// The neutral element for the multiplicative monoid — typically called `1`.
fn one() -> Self;
}
macro_rules! impl_one_float {
($t:ty) => {
impl One for $t {
#[inline(always)]
fn one() -> Self {
1.
}
}
}
}
impl_one_float!(f32);
impl_one_float!(f64);
/// Types with a sane definition of π and cosine.
pub trait Trigo {
/// π.
fn pi() -> Self;
/// Cosine of the argument.
fn cos(self) -> Self;
}
impl Trigo for f32 {
#[inline(always)]
fn pi() -> Self {
f32::consts::PI
}
#[inline(always)]
fn cos(self) -> Self {
#[cfg(feature = "std")]
{
self.cos()
}
#[cfg(not(feature = "std"))]
{
unsafe { cosf32(self) }
}
}
}
impl Trigo for f64 {
#[inline(always)]
fn pi() -> Self {
f64::consts::PI
}
#[inline(always)]
fn cos(self) -> Self {
#[cfg(feature = "std")]
{
self.cos()
}
#[cfg(not(feature = "std"))]
{
unsafe { cosf64(self) }
}
}
}
/// Default implementation of [`Interpolate::cubic_hermite`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
where V: Linear<T>,
T: Additive + Mul<T, Output = T> + One {
// some stupid generic constants, because Rust doesnt have polymorphic literals…
let one_t = T::one();
let two_t = one_t + one_t; // lolololol
let three_t = two_t + one_t; // megalol
// sampler stuff
let t2 = t * t;
let t3 = t2 * t;
let two_t3 = t3 * two_t;
let three_t2 = t2 * three_t;
// tangents
let m0 = (b.0 - x.0).outer_div(b.1 - x.1);
let m1 = (y.0 - a.0).outer_div(y.1 - a.1);
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
}
macro_rules! impl_interpolate_simple {
($t:ty) => {
impl Interpolate<$t> for $t {
fn lerp(a: Self, b: Self, t: $t) -> Self {
a * (1. - t) + b * t
}
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
}
}
}
impl_interpolate_simple!(f32);
impl_interpolate_simple!(f64);
macro_rules! impl_interpolate_via {
($t:ty, $v:ty) => {
impl Interpolate<$t> for $v {
fn lerp(a: Self, b: Self, t: $t) -> Self {
a * (1. - t as $v) + b * t as $v
}
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
}
}
}
}
impl_interpolate_via!(f32, f64);
impl_interpolate_via!(f64, f32);

36
src/interpolation.rs Normal file
View File

@ -0,0 +1,36 @@
//! Available interpolation modes.
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
/// Available kind of interpolations.
///
/// Feel free to visit each variant for more documentation.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub enum Interpolation<T> {
/// Hold a [`Key<T, _>`] until the sampling value passes the normalized step threshold, in which
/// case the next key is used.
///
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
/// > between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
/// > used.
///
/// [`Key<T, _>`]: crate::key::Key
Step(T),
/// Linear interpolation between a key and the next one.
Linear,
/// Cosine interpolation between a key and the next one.
Cosine,
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
CatmullRom
}
impl<T> Default for Interpolation<T> {
/// [`Interpolation::Linear`] is the default.
fn default() -> Self {
Interpolation::Linear
}
}

44
src/iter.rs Normal file
View File

@ -0,0 +1,44 @@
//! Spline [`Iterator`], in a nutshell.
//!
//! You can iterate over a [`Spline<K, V>`]s keys with the [`IntoIterator`] trait on
//! `&Spline<K, V>`. This gives you iterated [`Key<K, V>`] keys.
//!
//! [`Spline<K, V>`]: crate::spline::Spline
//! [`Key<K, V>`]: crate::key::Key
use crate::{Key, Spline};
/// Iterator over spline keys.
///
/// This iterator type is guaranteed to iterate over sorted keys.
pub struct Iter<'a, T, V> where T: 'a, V: 'a {
spline: &'a Spline<T, V>,
i: usize
}
impl<'a, T, V> Iterator for Iter<'a, T, V> {
type Item = &'a Key<T, V>;
fn next(&mut self) -> Option<Self::Item> {
let r = self.spline.0.get(self.i);
if let Some(_) = r {
self.i += 1;
}
r
}
}
impl<'a, T, V> IntoIterator for &'a Spline<T, V> {
type Item = &'a Key<T, V>;
type IntoIter = Iter<'a, T, V>;
fn into_iter(self) -> Self::IntoIter {
Iter {
spline: self,
i: 0
}
}
}

37
src/key.rs Normal file
View File

@ -0,0 +1,37 @@
//! Spline control points.
//!
//! A control point associates to a “sampling value” (a.k.a. time) a carriede value that can be
//! interpolated along the curve made by the control points.
//!
//! Splines constructed with this crate have the property that its possible to change the
//! interpolation mode on a key-based way, allowing you to implement and encode complex curves.
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
use crate::interpolation::Interpolation;
/// A spline control point.
///
/// This type associates a value at a given interpolation parameter value. It also contains an
/// interpolation mode used to determine how to interpolate values on the segment defined by this
/// key and the next one if existing. Have a look at [`Interpolation`] for further details.
///
/// [`Interpolation`]: crate::interpolation::Interpolation
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub struct Key<T, V> {
/// Interpolation parameter at which the [`Key`] should be reached.
pub t: T,
/// Carried value.
pub value: V,
/// Interpolation mode.
pub interpolation: Interpolation<T>
}
impl<T, V> Key<T, V> {
/// Create a new key.
pub fn new(t: T, value: V, interpolation: Interpolation<T>) -> Self {
Key { t, value, interpolation }
}
}

View File

@ -33,11 +33,11 @@
//! # Interpolate values
//!
//! The whole purpose of splines is to interpolate discrete values to yield continuous ones. This is
//! usually done with the `Spline::sample` method. This method expects the interpolation parameter
//! usually done with the [`Spline::sample`] method. This method expects the sampling parameter
//! (often, this will be the time of your simulation) as argument and will yield an interpolated
//! value.
//!
//! If you try to sample in out-of-bounds interpolation parameter, youll get no value.
//! If you try to sample in out-of-bounds sampling parameter, youll get no value.
//!
//! ```
//! # use splines::{Interpolation, Key, Spline};
@ -45,7 +45,7 @@
//! # let end = Key::new(1., 10., Interpolation::Linear);
//! # let spline = Spline::from_vec(vec![start, end]);
//! assert_eq!(spline.sample(0.), Some(0.));
//! assert_eq!(spline.clamped_sample(1.), 10.);
//! assert_eq!(spline.clamped_sample(1.), Some(10.));
//! assert_eq!(spline.sample(1.1), None);
//! ```
//!
@ -58,13 +58,21 @@
//! # let start = Key::new(0., 0., Interpolation::Linear);
//! # let end = Key::new(1., 10., Interpolation::Linear);
//! # let spline = Spline::from_vec(vec![start, end]);
//! assert_eq!(spline.clamped_sample(-0.9), 0.); // clamped to the first key
//! assert_eq!(spline.clamped_sample(1.1), 10.); // clamped to the last key
//! assert_eq!(spline.clamped_sample(-0.9), Some(0.)); // clamped to the first key
//! assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
//! ```
//!
//! # Polymorphic sampling types
//!
//! [`Spline`] curves are parametered both by the carried value (being interpolated) but also the
//! sampling type. Its very typical to use `f32` or `f64` but really, you can in theory use any
//! kind of type; that type must, however, implement a contract defined by a set of traits to
//! implement. See [the documentation of this module](crate::interpolate) for further details.
//!
//! # Features and customization
//!
//! This crate was written with features baked in and hidden behind feature-gates. The idea is that
//! the default configuration (i.e. you just add `"spline = …"` to your `Cargo.toml`) will always
//! the default configuration (i.e. you just add `"splines = …"` to your `Cargo.toml`) will always
//! give you the minimal, core and raw concepts of what splines, keys / knots and interpolation
//! modes are. However, you might want more. Instead of letting other people do the extra work to
//! add implementations for very famous and useful traits and do it in less efficient way, because
@ -81,363 +89,32 @@
//! types exported by this crate.
//! + Enable with the `"serialization"` feature.
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
//! + Adds some usefull implementations of `Interpolate` for some cgmath types.
//! + Adds some useful implementations of `Interpolate` for some cgmath types.
//! + Enable with the `"impl-cgmath"` feature.
//! - **Standard library / no stdandard library.**
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
//! + Adds some useful implementations of `Interpolate` for some nalgebra types.
//! + Enable with the `"impl-nalgebra"` feature.
//! - **Standard library / no standard library.**
//! + Its possible to compile against the standard library or go on your own without it.
//! + Compiling with the standard library is enabled by default.
//! + Use `defaut-features = []` in your `Cargo.toml` to disable.
//! + Enable explicitly with the `"std"` feataure.
//! + Use `default-features = []` in your `Cargo.toml` to disable.
//! + Enable explicitly with the `"std"` feature.
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(not(feature = "std"), feature(alloc))]
#![cfg_attr(not(feature = "std"), feature(core_intrinsics))]
// on no_std, we also need the alloc crate for Vec
#[cfg(not(feature = "std"))] extern crate alloc;
#[cfg(feature = "impl-cgmath")] extern crate cgmath;
#[cfg(feature = "impl-cgmath")] mod cgmath;
pub mod interpolate;
pub mod interpolation;
pub mod iter;
pub mod key;
#[cfg(feature = "impl-nalgebra")] mod nalgebra;
pub mod spline;
#[cfg(feature = "serialization")] extern crate serde;
#[cfg(feature = "serialization")] #[macro_use] extern crate serde_derive;
#[cfg(feature = "impl-cgmath")] use cgmath::{InnerSpace, Quaternion, Vector2, Vector3, Vector4};
#[cfg(feature = "std")] use std::cmp::Ordering;
#[cfg(feature = "std")] use std::f32::consts;
#[cfg(feature = "std")] use std::ops::{Add, Div, Mul, Sub};
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
#[cfg(not(feature = "std"))] use core::f32::consts;
#[cfg(not(feature = "std"))] use core::ops::{Add, Div, Mul, Sub};
/// A spline control point.
///
/// This type associates a value at a given interpolation parameter value. It also contains an
/// interpolation hint used to determine how to interpolate values on the segment defined by this
/// key and the next one if existing.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub struct Key<T> {
/// Interpolation parameter at which the [`Key`] should be reached.
pub t: f32,
/// Held value.
pub value: T,
/// Interpolation mode.
pub interpolation: Interpolation
}
impl<T> Key<T> {
/// Create a new key.
pub fn new(t: f32, value: T, interpolation: Interpolation) -> Self {
Key {
t: t,
value: value,
interpolation: interpolation
}
}
}
/// Interpolation mode.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub enum Interpolation {
/// Hold a [`Key`] until the time passes the normalized step threshold, in which case the next
/// key is used.
///
/// *Note: if you set the threshold to `0.5`, the first key will be used until the time is half
/// between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
/// first key will be kept until the next key. Set it to `0.` and the first key will never be
/// used.*
Step(f32),
/// Linear interpolation between a key and the next one.
Linear,
/// Cosine interpolation between a key and the next one.
Cosine,
/// Catmull-Rom interpolation.
CatmullRom
}
impl Default for Interpolation {
/// `Interpolation::Linear` is the default.
fn default() -> Self {
Interpolation::Linear
}
}
/// Spline curve used to provide interpolation between control points (keys).
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
pub struct Spline<T>(Vec<Key<T>>);
impl<T> Spline<T> {
/// Create a new spline out of keys. The keys dont have to be sorted even though its recommended
/// to provide ascending sorted ones (for performance purposes).
pub fn from_vec(mut keys: Vec<Key<T>>) -> Self {
keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
Spline(keys)
}
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys dont have to be
/// sorted.
///
/// # Note on iterators
///
/// Its valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
/// use `Spline::from_vec` if you are passing a `Vec<_>`. This will remove dynamic allocations.
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T>> {
Self::from_vec(iter.collect())
}
/// Retrieve the keys of a spline.
pub fn keys(&self) -> &[Key<T>] {
&self.0
}
/// Sample a spline at a given time.
///
/// The current implementation, based on immutability, cannot perform in constant time. This means
/// that samplings processing complexity is currently *O(log n)*. Its possible to achieve *O(1)*
/// performance by using a slightly different spline type. If you are interested by this feature,
/// an implementation for a dedicated type is foreseen yet not started yet.
///
/// # Return
///
/// `None` if you try to sample a value at a time that has no key associated with. That can also
/// happen if you try to sample between two keys with a specific interpolation mode that make the
/// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If youre
/// near the beginning of the spline or its end, ensure you have enough keys around to make the
/// sampling.
pub fn sample(&self, t: f32) -> Option<T> where T: Interpolate {
let keys = &self.0;
let i = search_lower_cp(keys, t)?;
let cp0 = &keys[i];
match cp0.interpolation {
Interpolation::Step(threshold) => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
Some(if nt < threshold { cp0.value } else { cp1.value })
},
Interpolation::Linear => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
},
Interpolation::Cosine => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
let cos_nt = {
#[cfg(feature = "std")]
{
(1. - f32::cos(nt * consts::PI)) * 0.5
}
#[cfg(not(feature = "std"))]
{
use core::intrinsics::cosf32;
unsafe { (1. - cosf32(nt * consts::PI)) * 0.5 }
}
};
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
},
Interpolation::CatmullRom => {
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
// None.
if i == 0 || i >= keys.len() - 2 {
None
} else {
let cp1 = &keys[i+1];
let cpm0 = &keys[i-1];
let cpm1 = &keys[i+2];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
}
}
}
}
/// Sample a spline at a given time with clamping.
///
/// # Return
///
/// If you sample before the first key or after the last one, return the first key or the last
/// one, respectively. Otherwise, behave the same way as `Spline::sample`.
///
/// # Panic
///
/// This function panics if you have no key.
pub fn clamped_sample(&self, t: f32) -> T where T: Interpolate {
let first = self.0.first().unwrap();
let last = self.0.last().unwrap();
if t <= first.t {
return first.value;
} else if t >= last.t {
return last.value;
}
self.sample(t).unwrap()
}
}
/// Iterator over spline keys.
///
/// This iterator type assures you to iterate over sorted keys.
pub struct Iter<'a, T> where T: 'a {
anim_param: &'a Spline<T>,
i: usize
}
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a Key<T>;
fn next(&mut self) -> Option<Self::Item> {
let r = self.anim_param.0.get(self.i);
if let Some(_) = r {
self.i += 1;
}
r
}
}
impl<'a, T> IntoIterator for &'a Spline<T> {
type Item = &'a Key<T>;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
Iter {
anim_param: self,
i: 0
}
}
}
/// Keys that can be interpolated in between. Implementing this trait is required to perform
/// sampling on splines.
pub trait Interpolate: Copy {
/// Linear interpolation.
fn lerp(a: Self, b: Self, t: f32) -> Self;
/// Cubic hermite interpolation.
///
/// Default to `Self::lerp`.
fn cubic_hermite(_: (Self, f32), a: (Self, f32), b: (Self, f32), _: (Self, f32), t: f32) -> Self {
Self::lerp(a.0, b.0, t)
}
}
impl Interpolate for f32 {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a * (1. - t) + b * t
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
#[cfg(feature = "impl-cgmath")]
impl Interpolate for Vector2<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a.lerp(b, t)
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
#[cfg(feature = "impl-cgmath")]
impl Interpolate for Vector3<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a.lerp(b, t)
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
#[cfg(feature = "impl-cgmath")]
impl Interpolate for Vector4<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a.lerp(b, t)
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
#[cfg(feature = "impl-cgmath")]
impl Interpolate for Quaternion<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a.nlerp(b, t)
}
}
// Default implementation of Interpolate::cubic_hermit.
pub(crate) fn cubic_hermite<T>(x: (T, f32), a: (T, f32), b: (T, f32), y: (T, f32), t: f32) -> T
where T: Copy + Add<Output = T> + Sub<Output = T> + Mul<f32, Output = T> + Div<f32, Output = T> {
// time stuff
let t2 = t * t;
let t3 = t2 * t;
let two_t3 = 2. * t3;
let three_t2 = 3. * t2;
// tangents
let m0 = (b.0 - x.0) / (b.1 - x.1);
let m1 = (y.0 - a.0) / (y.1 - a.1);
a.0 * (two_t3 - three_t2 + 1.) + m0 * (t3 - 2. * t2 + t) + b.0 * (-two_t3 + three_t2) + m1 * (t3 - t2)
}
// Normalize a time ([0;1]) given two control points.
#[inline(always)]
pub(crate) fn normalize_time<T>(t: f32, cp: &Key<T>, cp1: &Key<T>) -> f32 {
assert!(cp1.t != cp.t, "overlapping keys");
(t - cp.t) / (cp1.t - cp.t)
}
// Find the lower control point corresponding to a given time.
fn search_lower_cp<T>(cps: &[Key<T>], t: f32) -> Option<usize> {
let mut i = 0;
let len = cps.len();
if len < 2 {
return None;
}
loop {
let cp = &cps[i];
let cp1 = &cps[i+1];
if t >= cp1.t {
if i >= len - 2 {
return None;
}
i += 1;
} else if t < cp.t {
if i == 0 {
return None;
}
i -= 1;
} else {
break; // found
}
}
Some(i)
}
pub use crate::interpolate::Interpolate;
pub use crate::interpolation::Interpolation;
pub use crate::key::Key;
pub use crate::spline::Spline;

52
src/nalgebra.rs Normal file
View File

@ -0,0 +1,52 @@
use alga::general::{ClosedAdd, ClosedDiv, ClosedMul, ClosedSub};
use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6};
use num_traits as nt;
use std::ops::Mul;
use crate::interpolate::{Interpolate, Linear, Additive, One, cubic_hermite_def};
macro_rules! impl_interpolate_vector {
($($t:tt)*) => {
// implement Linear
impl<T> Linear<T> for $($t)*<T> where T: Scalar + ClosedAdd + ClosedSub + ClosedMul + ClosedDiv {
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T, V> Interpolate<T> for $($t)*<V>
where Self: Linear<T>,
T: Additive + One + Mul<T, Output = T>,
V: nt::One +
nt::Zero +
Additive +
Scalar +
ClosedAdd +
ClosedMul +
ClosedSub +
Interpolate<T> {
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
}
}
}
impl_interpolate_vector!(Vector1);
impl_interpolate_vector!(Vector2);
impl_interpolate_vector!(Vector3);
impl_interpolate_vector!(Vector4);
impl_interpolate_vector!(Vector5);
impl_interpolate_vector!(Vector6);

193
src/spline.rs Normal file
View File

@ -0,0 +1,193 @@
//! Spline curves and operations.
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
#[cfg(feature = "std")] use std::cmp::Ordering;
#[cfg(feature = "std")] use std::ops::{Div, Mul};
#[cfg(not(feature = "std"))] use core::ops::{Div, Mul};
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
use crate::interpolate::{Interpolate, Additive, One, Trigo};
use crate::interpolation::Interpolation;
use crate::key::Key;
/// Spline curve used to provide interpolation between control points (keys).
///
/// Splines are made out of control points ([`Key`]). When creating a [`Spline`] with
/// [`Spline::from_vec`] or [`Spline::from_iter`], the keys dont have to be sorted (they are sorted
/// automatically by the sampling value).
///
/// You can sample from a spline with several functions:
///
/// - [`Spline::sample`]: allows you to sample from a spline. If not enough keys are available
/// for the required interpolation mode, you get `None`.
/// - [`Spline::clamped_sample`]: behaves like [`Spline::sample`] but will return either the first
/// or last key if out of bound; it will return `None` if not enough key.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
impl<T, V> Spline<T, V> {
/// Create a new spline out of keys. The keys dont have to be sorted even though its recommended
/// to provide ascending sorted ones (for performance purposes).
pub fn from_vec(mut keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
Spline(keys)
}
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys dont have to be
/// sorted.
///
/// # Note on iterators
///
/// Its valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
/// use [`Spline::from_vec`] if you are passing a [`Vec`]. This will remove dynamic allocations.
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
Self::from_vec(iter.collect())
}
/// Retrieve the keys of a spline.
pub fn keys(&self) -> &[Key<T, V>] {
&self.0
}
/// Sample a spline at a given time.
///
/// The current implementation, based on immutability, cannot perform in constant time. This means
/// that samplings processing complexity is currently *O(log n)*. Its possible to achieve *O(1)*
/// performance by using a slightly different spline type. If you are interested by this feature,
/// an implementation for a dedicated type is foreseen yet not started yet.
///
/// # Return
///
/// `None` if you try to sample a value at a time that has no key associated with. That can also
/// happen if you try to sample between two keys with a specific interpolation mode that makes the
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
/// youre near the beginning of the spline or its end, ensure you have enough keys around to make
/// the sampling.
///
pub fn sample(&self, t: T) -> Option<V>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
let keys = &self.0;
let i = search_lower_cp(keys, t)?;
let cp0 = &keys[i];
match cp0.interpolation {
Interpolation::Step(threshold) => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
Some(if nt < threshold { cp0.value } else { cp1.value })
}
Interpolation::Linear => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
}
Interpolation::Cosine => {
let two_t = T::one() + T::one();
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
}
Interpolation::CatmullRom => {
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
// None.
if i == 0 || i >= keys.len() - 2 {
None
} else {
let cp1 = &keys[i+1];
let cpm0 = &keys[i-1];
let cpm1 = &keys[i+2];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
}
}
}
}
/// Sample a spline at a given time with clamping.
///
/// # Return
///
/// If you sample before the first key or after the last one, return the first key or the last
/// one, respectively. Otherwise, behave the same way as [`Spline::sample`].
///
/// # Error
///
/// This function returns [`None`] if you have no key.
pub fn clamped_sample(&self, t: T) -> Option<V>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
if self.0.is_empty() {
return None;
}
self.sample(t).or_else(move || {
let first = self.0.first().unwrap();
if t <= first.t {
Some(first.value)
} else {
let last = self.0.last().unwrap();
if t >= last.t {
Some(last.value)
} else {
None
}
}
})
}
}
// Normalize a time ([0;1]) given two control points.
#[inline(always)]
pub(crate) fn normalize_time<T, V>(
t: T,
cp: &Key<T, V>,
cp1: &Key<T, V>
) -> T where T: Additive + Div<T, Output = T> + PartialEq {
assert!(cp1.t != cp.t, "overlapping keys");
(t - cp.t) / (cp1.t - cp.t)
}
// Find the lower control point corresponding to a given time.
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize> where T: PartialOrd {
let mut i = 0;
let len = cps.len();
if len < 2 {
return None;
}
loop {
let cp = &cps[i];
let cp1 = &cps[i+1];
if t >= cp1.t {
if i >= len - 2 {
return None;
}
i += 1;
} else if t < cp.t {
if i == 0 {
return None;
}
i -= 1;
} else {
break; // found
}
}
Some(i)
}

View File

@ -1,12 +1,13 @@
extern crate splines;
use splines::{Interpolation, Key, Spline};
#[cfg(feature = "impl-cgmath")] use cgmath as cg;
#[cfg(feature = "impl-nalgebra")] use nalgebra as na;
#[test]
fn step_interpolation_0() {
let start = Key::new(0., 0., Interpolation::Step(0.));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
fn step_interpolation_f32() {
let start = Key::new(0., 0., Interpolation::Step(0.));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::<f32, _>::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(10.));
assert_eq!(spline.sample(0.1), Some(10.));
@ -14,13 +15,28 @@ fn step_interpolation_0() {
assert_eq!(spline.sample(0.5), Some(10.));
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), 10.);
assert_eq!(spline.clamped_sample(1.), Some(10.));
}
#[test]
fn step_interpolation_f64() {
let start = Key::new(0., 0., Interpolation::Step(0.));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::<f64, _>::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(10.));
assert_eq!(spline.sample(0.1), Some(10.));
assert_eq!(spline.sample(0.2), Some(10.));
assert_eq!(spline.sample(0.5), Some(10.));
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), Some(10.));
}
#[test]
fn step_interpolation_0_5() {
let start = Key::new(0., 0., Interpolation::Step(0.5));
let end = Key::new(1., 10., Interpolation::default());
let start = Key::new(0., 0., Interpolation::Step(0.5));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -29,13 +45,13 @@ fn step_interpolation_0_5() {
assert_eq!(spline.sample(0.5), Some(10.));
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), 10.);
assert_eq!(spline.clamped_sample(1.), Some(10.));
}
#[test]
fn step_interpolation_0_75() {
let start = Key::new(0., 0., Interpolation::Step(0.75));
let end = Key::new(1., 10., Interpolation::default());
let start = Key::new(0., 0., Interpolation::Step(0.75));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -44,13 +60,13 @@ fn step_interpolation_0_75() {
assert_eq!(spline.sample(0.5), Some(0.));
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), 10.);
assert_eq!(spline.clamped_sample(1.), Some(10.));
}
#[test]
fn step_interpolation_1() {
let start = Key::new(0., 0., Interpolation::Step(1.));
let end = Key::new(1., 10., Interpolation::default());
let start = Key::new(0., 0., Interpolation::Step(1.));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -59,13 +75,13 @@ fn step_interpolation_1() {
assert_eq!(spline.sample(0.5), Some(0.));
assert_eq!(spline.sample(0.9), Some(0.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), 10.);
assert_eq!(spline.clamped_sample(1.), Some(10.));
}
#[test]
fn linear_interpolation() {
let start = Key::new(0., 0., Interpolation::Linear);
let end = Key::new(1., 10., Interpolation::default());
let start = Key::new(0., 0., Interpolation::Linear);
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -74,17 +90,17 @@ fn linear_interpolation() {
assert_eq!(spline.sample(0.5), Some(5.));
assert_eq!(spline.sample(0.9), Some(9.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), 10.);
assert_eq!(spline.clamped_sample(1.), Some(10.));
}
#[test]
fn linear_interpolation_several_keys() {
let start = Key::new(0., 0., Interpolation::Linear);
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Linear);
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Linear);
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let spline = Spline::from_vec(vec![start, k1, k2, k3, k4, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -99,17 +115,17 @@ fn linear_interpolation_several_keys() {
assert_eq!(spline.sample(3.), Some(1.));
assert_eq!(spline.sample(6.5), Some(1.5));
assert_eq!(spline.sample(10.), Some(2.));
assert_eq!(spline.clamped_sample(11.), 4.);
assert_eq!(spline.clamped_sample(11.), Some(4.));
}
#[test]
fn several_interpolations_several_keys() {
let start = Key::new(0., 0., Interpolation::Step(0.5));
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let spline = Spline::from_vec(vec![start, k1, k2, k3, k4, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -121,10 +137,38 @@ fn several_interpolations_several_keys() {
assert_eq!(spline.sample(1.5), Some(2.5));
assert_eq!(spline.sample(2.), Some(0.));
assert_eq!(spline.sample(2.05), Some(0.));
assert_eq!(spline.sample(2.1), Some(0.));
assert_eq!(spline.sample(2.099), Some(0.));
assert_eq!(spline.sample(2.75), Some(1.));
assert_eq!(spline.sample(3.), Some(1.));
assert_eq!(spline.sample(6.5), Some(1.5));
assert_eq!(spline.sample(10.), Some(2.));
assert_eq!(spline.clamped_sample(11.), 4.);
assert_eq!(spline.clamped_sample(11.), Some(4.));
}
#[cfg(feature = "impl-cgmath")]
#[test]
fn cgmath_vector_interpolation() {
use splines::Interpolate;
let start = cg::Vector2::new(0.0, 0.0);
let mid = cg::Vector2::new(0.5, 0.5);
let end = cg::Vector2::new(1.0, 1.0);
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
}
#[cfg(feature = "impl-nalgebra")]
#[test]
fn nalgebra_vector_interpolation() {
use splines::Interpolate;
let start = na::Vector2::new(0.0, 0.0);
let mid = na::Vector2::new(0.5, 0.5);
let end = na::Vector2::new(1.0, 1.0);
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
}