Compare commits
39 Commits
Author | SHA1 | Date | |
---|---|---|---|
ebfc15d8af | |||
5b92d7b715 | |||
8f7cc9e711 | |||
9d930d6f16 | |||
0afebc3319 | |||
4a2f349954 | |||
85ac489636 | |||
aea9011296 | |||
04247d8706 | |||
0fcdbacaf3 | |||
89dfb61272 | |||
1bcf1de99e | |||
4630f44d6c | |||
efe9272816 | |||
036d7df3eb | |||
a33dbf9fde | |||
dfa1e6a745 | |||
f04ea0fefa | |||
8ceb8d768c | |||
c93109e28b | |||
d80de42d2f | |||
2e6a5a0dfb | |||
62147d5348 | |||
2dfc11c908 | |||
0c23df7bf0 | |||
3b6ddc5ea6 | |||
824afef513 | |||
f2b356b78d | |||
955050ecee | |||
22e75c6901 | |||
425433cd5b | |||
cc0a9580ab | |||
05e131baad | |||
0a15fb48a3 | |||
ebc6e16aef | |||
cae599e0d7 | |||
336c1c7e80 | |||
ea29e08836 | |||
3ab98420c8 |
12
.dependabot/config.yml
Normal file
12
.dependabot/config.yml
Normal file
@ -0,0 +1,12 @@
|
||||
version: 1
|
||||
update_configs:
|
||||
- package_manager: "rust:cargo"
|
||||
directory: "."
|
||||
update_schedule: "live"
|
||||
target_branch: "master"
|
||||
default_reviewers:
|
||||
- "phaazon"
|
||||
default_assignees:
|
||||
- "phaazon"
|
||||
default_labels:
|
||||
- "dependency-update"
|
24
.github/workflows/ci.yaml
vendored
24
.github/workflows/ci.yaml
vendored
@ -1,5 +1,5 @@
|
||||
name: CI
|
||||
on: [push]
|
||||
on: [push, pull_request]
|
||||
|
||||
jobs:
|
||||
build-linux:
|
||||
@ -13,7 +13,6 @@ jobs:
|
||||
run: |
|
||||
cargo test --verbose --all-features
|
||||
|
||||
|
||||
build-windows:
|
||||
runs-on: windows-latest
|
||||
steps:
|
||||
@ -26,21 +25,30 @@ jobs:
|
||||
cargo test --verbose --all-features
|
||||
|
||||
build-macosx:
|
||||
runs-on: macosx-latest
|
||||
runs-on: macOS-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Rust requirements
|
||||
run: curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y --profile=minimal
|
||||
- name: Build
|
||||
run: |
|
||||
. ~/.cargo/env
|
||||
cargo build --verbose --all-features
|
||||
- name: Test
|
||||
run: |
|
||||
. ~/.cargo/env
|
||||
cargo test --verbose --all-features
|
||||
|
||||
check-readme:
|
||||
quality:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Install cargo-sync-readme
|
||||
run: cargo install --force cargo-sync-readme
|
||||
- name: Check
|
||||
run: cargo sync-readme -c
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
cargo install --force cargo-sync-readme
|
||||
rustup component add rustfmt
|
||||
- name: cargo sync-readme
|
||||
run: |
|
||||
cargo sync-readme -c
|
||||
- name: rustfmt
|
||||
run: cargo fmt -- --check
|
||||
|
71
CHANGELOG.md
71
CHANGELOG.md
@ -1,6 +1,73 @@
|
||||
# 2.0.0
|
||||
# 3.4
|
||||
|
||||
> Mon Sep 24th 2019
|
||||
> Thu May 21st 2020
|
||||
|
||||
- Add support for `float-cmp-0.7` and `float-cmp-0.8`. Because this uses a SemVer range, if you
|
||||
already have a `Cargo.lock`, don’t forget to update `splines` with `cargo update --aggressive`.
|
||||
|
||||
# 3.3
|
||||
|
||||
> Thu Apr 10th 2020
|
||||
|
||||
- Add support for `nalgebra-0.21`.
|
||||
|
||||
# 3.2
|
||||
|
||||
> Thu Mar 19th 2020
|
||||
|
||||
- Add support for `nalgebra-0.20`.
|
||||
- Add support for `float-cmp-0.6`.
|
||||
|
||||
# 3.1
|
||||
|
||||
> Sat Jan 26th 2020
|
||||
|
||||
- Add support for `nalgebra-0.19`.
|
||||
|
||||
# 3.0
|
||||
|
||||
> Tue Oct 22th 2019
|
||||
|
||||
## Major changes
|
||||
|
||||
- Sampling now requires the value of the key to be `Linear<T>` for `Interpolate<T>`. That is needed
|
||||
to ease some interpolation mode (especially Bézier).
|
||||
|
||||
## Patch changes
|
||||
|
||||
- Fix Bézier interpolation when the next key is Bézier too.
|
||||
|
||||
# 2.2
|
||||
|
||||
> Mon Oct 17th 2019
|
||||
|
||||
- Add `Interpolation::StrokeBezier`.
|
||||
|
||||
# 2.1.1
|
||||
|
||||
> Mon Oct 17th 2019
|
||||
|
||||
- Licensing support in the crate.
|
||||
|
||||
# 2.1
|
||||
|
||||
> Mon Sep 30th 2019
|
||||
|
||||
- Add `Spline::sample_with_key` and `Spline::clamped_sample_with_key`. Those methods allow one to
|
||||
perform the regular `Spline::sample` and `Spline::clamped_sample` but also retreive the base
|
||||
key that was used to perform the interpolation. The key can be inspected to get the base time,
|
||||
interpolation, etc. The next key is also returned, if present.
|
||||
|
||||
# 2.0.1
|
||||
|
||||
> Tue Sep 24th 2019
|
||||
|
||||
- Fix the cubic Bézier curve interpolation. The “output” tangent is now taken by mirroring the
|
||||
next key’s tangent around its control point.
|
||||
|
||||
# 2.0
|
||||
|
||||
> Mon Sep 23rd 2019
|
||||
|
||||
## Major changes
|
||||
|
||||
|
19
Cargo.toml
19
Cargo.toml
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "splines"
|
||||
version = "2.0.0"
|
||||
version = "3.4.0"
|
||||
license = "BSD-3-Clause"
|
||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||
description = "Spline interpolation made easy"
|
||||
@ -22,17 +22,28 @@ maintenance = { status = "actively-developed" }
|
||||
[features]
|
||||
default = ["std"]
|
||||
impl-cgmath = ["cgmath"]
|
||||
impl-nalgebra = ["alga", "nalgebra", "num-traits"]
|
||||
impl-nalgebra = ["nalgebra", "num-traits", "simba"]
|
||||
serialization = ["serde", "serde_derive"]
|
||||
std = []
|
||||
|
||||
[dependencies]
|
||||
alga = { version = "0.9", optional = true }
|
||||
cgmath = { version = "0.17", optional = true }
|
||||
nalgebra = { version = ">=0.14, <0.19", optional = true }
|
||||
nalgebra = { version = "0.21", optional = true }
|
||||
num-traits = { version = "0.2", optional = true }
|
||||
serde = { version = "1", optional = true }
|
||||
serde_derive = { version = "1", optional = true }
|
||||
simba = { version = "0.1.2", optional = true }
|
||||
|
||||
[dev-dependencies]
|
||||
float-cmp = ">=0.6, < 0.9"
|
||||
serde_json = "1"
|
||||
|
||||
[package.metadata.docs.rs]
|
||||
all-features = true
|
||||
|
||||
[[example]]
|
||||
name = "hello-world"
|
||||
|
||||
[[example]]
|
||||
name = "serialization"
|
||||
required-features = ["serialization"]
|
||||
|
30
LICENSE
Normal file
30
LICENSE
Normal file
@ -0,0 +1,30 @@
|
||||
Copyright (c) 2019, Dimitri Sabadie <dimitri.sabadie@gmail.com>
|
||||
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following
|
||||
disclaimer in the documentation and/or other materials provided
|
||||
with the distribution.
|
||||
|
||||
* Neither the name of Dimitri Sabadie <dimitri.sabadie@gmail.com> nor the names of other
|
||||
contributors may be used to endorse or promote products derived
|
||||
from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
@ -24,7 +24,7 @@ is picked from its lower control point.
|
||||
|
||||
# Quickly create splines
|
||||
|
||||
```
|
||||
```rust
|
||||
use splines::{Interpolation, Key, Spline};
|
||||
|
||||
let start = Key::new(0., 0., Interpolation::Linear);
|
||||
@ -46,7 +46,7 @@ value.
|
||||
|
||||
If you try to sample in out-of-bounds sampling parameter, you’ll get no value.
|
||||
|
||||
```
|
||||
```rust
|
||||
assert_eq!(spline.sample(0.), Some(0.));
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample(1.1), None);
|
||||
@ -56,7 +56,7 @@ It’s possible that you want to get a value even if you’re out-of-bounds. Thi
|
||||
important for simulations / animations. Feel free to use the `Spline::clamped_interpolation` for
|
||||
that purpose.
|
||||
|
||||
```
|
||||
```rust
|
||||
assert_eq!(spline.clamped_sample(-0.9), Some(0.)); // clamped to the first key
|
||||
assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
|
||||
```
|
||||
|
@ -1,7 +0,0 @@
|
||||
[package]
|
||||
name = "hello-world"
|
||||
version = "0.2.0"
|
||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||
|
||||
[dependencies]
|
||||
splines = "1.0.0-rc.2"
|
@ -1,8 +0,0 @@
|
||||
[package]
|
||||
name = "serialization"
|
||||
version = "0.2.0"
|
||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||
|
||||
[dependencies]
|
||||
serde_json = "1"
|
||||
splines = { version = "1.0.0-rc.2", features = ["serialization"] }
|
@ -1,9 +0,0 @@
|
||||
[workspace]
|
||||
|
||||
members = [
|
||||
"01-hello-world",
|
||||
"02-serialization"
|
||||
]
|
||||
|
||||
[patch.crates-io]
|
||||
splines = { path = ".." }
|
@ -3,7 +3,10 @@ extern crate splines;
|
||||
use splines::{Interpolation, Key, Spline};
|
||||
|
||||
fn main() {
|
||||
let keys = vec![Key::new(0., 0., Interpolation::default()), Key::new(5., 1., Interpolation::default())];
|
||||
let keys = vec![
|
||||
Key::new(0., 0., Interpolation::default()),
|
||||
Key::new(5., 1., Interpolation::default()),
|
||||
];
|
||||
let spline = Spline::from_vec(keys);
|
||||
|
||||
println!("value at 0: {:?}", spline.clamped_sample(0.));
|
@ -1,4 +1,5 @@
|
||||
#[macro_use] extern crate serde_json;
|
||||
#[macro_use]
|
||||
extern crate serde_json;
|
||||
extern crate splines;
|
||||
|
||||
use serde_json::from_value;
|
15
rustfmt.toml
Normal file
15
rustfmt.toml
Normal file
@ -0,0 +1,15 @@
|
||||
edition = "2018"
|
||||
|
||||
fn_args_layout = "Tall"
|
||||
force_explicit_abi = true
|
||||
hard_tabs = false
|
||||
max_width = 100
|
||||
merge_derives = true
|
||||
newline_style = "Unix"
|
||||
remove_nested_parens = true
|
||||
reorder_imports = true
|
||||
reorder_modules = true
|
||||
tab_spaces = 2
|
||||
use_field_init_shorthand = true
|
||||
use_small_heuristics = "Default"
|
||||
use_try_shorthand = true
|
@ -1,9 +1,9 @@
|
||||
use cgmath::{
|
||||
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
|
||||
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace,
|
||||
};
|
||||
|
||||
use crate::interpolate::{
|
||||
Additive, Interpolate, Linear, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
|
||||
cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def, Additive, Interpolate, Linear, One,
|
||||
};
|
||||
|
||||
macro_rules! impl_interpolate_vec {
|
||||
@ -50,7 +50,10 @@ impl_interpolate_vec!(Vector2);
|
||||
impl_interpolate_vec!(Vector3);
|
||||
impl_interpolate_vec!(Vector4);
|
||||
|
||||
impl<T> Linear<T> for Quaternion<T> where T: BaseFloat {
|
||||
impl<T> Linear<T> for Quaternion<T>
|
||||
where
|
||||
T: BaseFloat,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn outer_mul(self, t: T) -> Self {
|
||||
self * t
|
||||
@ -63,7 +66,10 @@ impl<T> Linear<T> for Quaternion<T> where T: BaseFloat {
|
||||
}
|
||||
|
||||
impl<T> Interpolate<T> for Quaternion<T>
|
||||
where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
|
||||
where
|
||||
Self: InnerSpace<Scalar = T>,
|
||||
T: Additive + BaseFloat + One,
|
||||
{
|
||||
#[inline(always)]
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
a.nlerp(b, t)
|
||||
|
@ -28,14 +28,22 @@
|
||||
//! [`Trigo`]: crate::interpolate::Trigo
|
||||
//! [num-traits]: https://crates.io/crates/num-traits
|
||||
|
||||
#[cfg(feature = "std")] use std::f32;
|
||||
#[cfg(not(feature = "std"))] use core::f32;
|
||||
#[cfg(not(feature = "std"))] use core::intrinsics::cosf32;
|
||||
#[cfg(feature = "std")] use std::f64;
|
||||
#[cfg(not(feature = "std"))] use core::f64;
|
||||
#[cfg(not(feature = "std"))] use core::intrinsics::cosf64;
|
||||
#[cfg(feature = "std")] use std::ops::{Add, Mul, Sub};
|
||||
#[cfg(not(feature = "std"))] use core::ops::{Add, Mul, Sub};
|
||||
#[cfg(not(feature = "std"))]
|
||||
use core::f32;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use core::f64;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use core::intrinsics::cosf32;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use core::intrinsics::cosf64;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use core::ops::{Add, Mul, Sub};
|
||||
#[cfg(feature = "std")]
|
||||
use std::f32;
|
||||
#[cfg(feature = "std")]
|
||||
use std::f64;
|
||||
#[cfg(feature = "std")]
|
||||
use std::ops::{Add, Mul, Sub};
|
||||
|
||||
/// Keys that can be interpolated in between. Implementing this trait is required to perform
|
||||
/// sampling on splines.
|
||||
@ -45,7 +53,7 @@
|
||||
/// instance to know which trait your type must implement to be usable.
|
||||
///
|
||||
/// [`Spline::sample`]: crate::spline::Spline::sample
|
||||
pub trait Interpolate<T>: Sized + Copy {
|
||||
pub trait Interpolate<T>: Sized + Copy + Linear<T> {
|
||||
/// Linear interpolation.
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self;
|
||||
|
||||
@ -68,17 +76,9 @@ pub trait Interpolate<T>: Sized + Copy {
|
||||
/// Set of types that support additions and subtraction.
|
||||
///
|
||||
/// The [`Copy`] trait is also a supertrait as it’s likely to be used everywhere.
|
||||
pub trait Additive:
|
||||
Copy +
|
||||
Add<Self, Output = Self> +
|
||||
Sub<Self, Output = Self> {
|
||||
}
|
||||
pub trait Additive: Copy + Add<Self, Output = Self> + Sub<Self, Output = Self> {}
|
||||
|
||||
impl<T> Additive for T
|
||||
where T: Copy +
|
||||
Add<Self, Output = Self> +
|
||||
Sub<Self, Output = Self> {
|
||||
}
|
||||
impl<T> Additive for T where T: Copy + Add<Self, Output = Self> + Sub<Self, Output = Self> {}
|
||||
|
||||
/// Set of additive types that support outer multiplication and division, making them linear.
|
||||
pub trait Linear<T>: Additive {
|
||||
@ -101,7 +101,7 @@ macro_rules! impl_linear_simple {
|
||||
self / t
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_linear_simple!(f32);
|
||||
@ -119,7 +119,7 @@ macro_rules! impl_linear_cast {
|
||||
self / t as $q
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_linear_cast!(f32, f64);
|
||||
@ -139,7 +139,7 @@ macro_rules! impl_one_float {
|
||||
1.
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_one_float!(f32);
|
||||
@ -198,8 +198,10 @@ impl Trigo for f64 {
|
||||
///
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
|
||||
where V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One {
|
||||
where
|
||||
V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One,
|
||||
{
|
||||
// some stupid generic constants, because Rust doesn’t have polymorphic literals…
|
||||
let one_t = T::one();
|
||||
let two_t = one_t + one_t; // lolololol
|
||||
@ -215,15 +217,20 @@ where V: Linear<T>,
|
||||
let m0 = (b.0 - x.0).outer_div(b.1 - x.1);
|
||||
let m1 = (y.0 - a.0).outer_div(y.1 - a.1);
|
||||
|
||||
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
|
||||
a.0.outer_mul(two_t3 - three_t2 + one_t)
|
||||
+ m0.outer_mul(t3 - t2 * two_t + t)
|
||||
+ b.0.outer_mul(three_t2 - two_t3)
|
||||
+ m1.outer_mul(t3 - t2)
|
||||
}
|
||||
|
||||
/// Default implementation of [`Interpolate::quadratic_bezier`].
|
||||
///
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
|
||||
where V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One {
|
||||
where
|
||||
V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One,
|
||||
{
|
||||
let one_t = T::one() - t;
|
||||
let one_t_2 = one_t * one_t;
|
||||
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
|
||||
@ -233,14 +240,19 @@ where V: Linear<T>,
|
||||
///
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
|
||||
where V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One {
|
||||
where
|
||||
V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One,
|
||||
{
|
||||
let one_t = T::one() - t;
|
||||
let one_t_2 = one_t * one_t;
|
||||
let one_t_3 = one_t_2 * one_t;
|
||||
let three = T::one() + T::one() + T::one();
|
||||
|
||||
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
|
||||
a.outer_mul(one_t_3)
|
||||
+ u.outer_mul(three * one_t_2 * t)
|
||||
+ v.outer_mul(three * one_t * t * t)
|
||||
+ b.outer_mul(t * t * t)
|
||||
}
|
||||
|
||||
macro_rules! impl_interpolate_simple {
|
||||
@ -262,7 +274,7 @@ macro_rules! impl_interpolate_simple {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_interpolate_simple!(f32);
|
||||
@ -275,8 +287,20 @@ macro_rules! impl_interpolate_via {
|
||||
a * (1. - t as $v) + b * t as $v
|
||||
}
|
||||
|
||||
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
||||
fn cubic_hermite(
|
||||
(x, xt): (Self, $t),
|
||||
(a, at): (Self, $t),
|
||||
(b, bt): (Self, $t),
|
||||
(y, yt): (Self, $t),
|
||||
t: $t,
|
||||
) -> Self {
|
||||
cubic_hermite_def(
|
||||
(x, xt as $v),
|
||||
(a, at as $v),
|
||||
(b, bt as $v),
|
||||
(y, yt as $v),
|
||||
t as $v,
|
||||
)
|
||||
}
|
||||
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
@ -287,7 +311,7 @@ macro_rules! impl_interpolate_via {
|
||||
cubic_bezier_def(a, u, v, b, t as $v)
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_interpolate_via!(f32, f64);
|
||||
|
@ -1,6 +1,7 @@
|
||||
//! Available interpolation modes.
|
||||
|
||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
||||
#[cfg(feature = "serialization")]
|
||||
use serde_derive::{Deserialize, Serialize};
|
||||
|
||||
/// Available kind of interpolations.
|
||||
///
|
||||
@ -40,8 +41,20 @@ pub enum Interpolation<T, V> {
|
||||
/// point and the current control point’s associated point. This is called _quadratic Bézer
|
||||
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
||||
Bezier(V),
|
||||
/// A special Bézier interpolation using an _input tangent_ and an _output tangent_.
|
||||
///
|
||||
/// With this kind of interpolation, a control point has an input tangent, which has the same role
|
||||
/// as the one defined by [`Interpolation::Bezier`], and an output tangent, which has the same
|
||||
/// role defined by the next key’s [`Interpolation::Bezier`] if present, normally.
|
||||
///
|
||||
/// What it means is that instead of setting the output tangent as the next key’s Bézier tangent,
|
||||
/// this interpolation mode allows you to manually set the output tangent. That will yield more
|
||||
/// control on the tangents but might generate discontinuities. Use with care.
|
||||
///
|
||||
/// Stroke Bézier interpolation is always a cubic Bézier interpolation by default.
|
||||
StrokeBezier(V, V),
|
||||
#[doc(hidden)]
|
||||
__NonExhaustive
|
||||
__NonExhaustive,
|
||||
}
|
||||
|
||||
impl<T, V> Default for Interpolation<T, V> {
|
||||
|
14
src/iter.rs
14
src/iter.rs
@ -11,9 +11,13 @@ use crate::{Key, Spline};
|
||||
/// Iterator over spline keys.
|
||||
///
|
||||
/// This iterator type is guaranteed to iterate over sorted keys.
|
||||
pub struct Iter<'a, T, V> where T: 'a, V: 'a {
|
||||
pub struct Iter<'a, T, V>
|
||||
where
|
||||
T: 'a,
|
||||
V: 'a,
|
||||
{
|
||||
spline: &'a Spline<T, V>,
|
||||
i: usize
|
||||
i: usize,
|
||||
}
|
||||
|
||||
impl<'a, T, V> Iterator for Iter<'a, T, V> {
|
||||
@ -35,10 +39,6 @@ impl<'a, T, V> IntoIterator for &'a Spline<T, V> {
|
||||
type IntoIter = Iter<'a, T, V>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
Iter {
|
||||
spline: self,
|
||||
i: 0
|
||||
Iter { spline: self, i: 0 }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
|
11
src/key.rs
11
src/key.rs
@ -6,7 +6,8 @@
|
||||
//! Splines constructed with this crate have the property that it’s possible to change the
|
||||
//! interpolation mode on a key-based way, allowing you to implement and encode complex curves.
|
||||
|
||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
||||
#[cfg(feature = "serialization")]
|
||||
use serde_derive::{Deserialize, Serialize};
|
||||
|
||||
use crate::interpolation::Interpolation;
|
||||
|
||||
@ -26,12 +27,16 @@ pub struct Key<T, V> {
|
||||
/// Carried value.
|
||||
pub value: V,
|
||||
/// Interpolation mode.
|
||||
pub interpolation: Interpolation<T, V>
|
||||
pub interpolation: Interpolation<T, V>,
|
||||
}
|
||||
|
||||
impl<T, V> Key<T, V> {
|
||||
/// Create a new key.
|
||||
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
|
||||
Key { t, value, interpolation }
|
||||
Key {
|
||||
t,
|
||||
value,
|
||||
interpolation,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -106,14 +106,17 @@
|
||||
#![cfg_attr(not(feature = "std"), feature(alloc))]
|
||||
#![cfg_attr(not(feature = "std"), feature(core_intrinsics))]
|
||||
|
||||
#[cfg(not(feature = "std"))] extern crate alloc;
|
||||
#[cfg(not(feature = "std"))]
|
||||
extern crate alloc;
|
||||
|
||||
#[cfg(feature = "impl-cgmath")] mod cgmath;
|
||||
#[cfg(feature = "impl-cgmath")]
|
||||
mod cgmath;
|
||||
pub mod interpolate;
|
||||
pub mod interpolation;
|
||||
pub mod iter;
|
||||
pub mod key;
|
||||
#[cfg(feature = "impl-nalgebra")] mod nalgebra;
|
||||
#[cfg(feature = "impl-nalgebra")]
|
||||
mod nalgebra;
|
||||
pub mod spline;
|
||||
|
||||
pub use crate::interpolate::Interpolate;
|
||||
|
@ -1,16 +1,22 @@
|
||||
use alga::general::{ClosedAdd, ClosedDiv, ClosedMul, ClosedSub};
|
||||
use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6};
|
||||
use num_traits as nt;
|
||||
use simba::scalar::{ClosedAdd, ClosedDiv, ClosedMul, ClosedSub};
|
||||
use std::ops::Mul;
|
||||
|
||||
use crate::interpolate::{
|
||||
Interpolate, Linear, Additive, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
|
||||
cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def, Additive, Interpolate, Linear, One,
|
||||
};
|
||||
|
||||
macro_rules! impl_interpolate_vector {
|
||||
($($t:tt)*) => {
|
||||
// implement Linear
|
||||
impl<T> Linear<T> for $($t)*<T> where T: Scalar + ClosedAdd + ClosedSub + ClosedMul + ClosedDiv {
|
||||
impl<T> Linear<T> for $($t)*<T>
|
||||
where T: Scalar +
|
||||
Copy +
|
||||
ClosedAdd +
|
||||
ClosedSub +
|
||||
ClosedMul +
|
||||
ClosedDiv {
|
||||
#[inline(always)]
|
||||
fn outer_mul(self, t: T) -> Self {
|
||||
self * t
|
||||
|
164
src/spline.rs
164
src/spline.rs
@ -1,13 +1,19 @@
|
||||
//! Spline curves and operations.
|
||||
|
||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
||||
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
|
||||
#[cfg(feature = "std")] use std::cmp::Ordering;
|
||||
#[cfg(feature = "std")] use std::ops::{Div, Mul};
|
||||
#[cfg(not(feature = "std"))] use core::ops::{Div, Mul};
|
||||
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use alloc::vec::Vec;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use core::cmp::Ordering;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use core::ops::{Div, Mul};
|
||||
#[cfg(feature = "serialization")]
|
||||
use serde_derive::{Deserialize, Serialize};
|
||||
#[cfg(feature = "std")]
|
||||
use std::cmp::Ordering;
|
||||
#[cfg(feature = "std")]
|
||||
use std::ops::{Div, Mul};
|
||||
|
||||
use crate::interpolate::{Interpolate, Additive, One, Trigo};
|
||||
use crate::interpolate::{Additive, Interpolate, One, Trigo};
|
||||
use crate::interpolation::Interpolation;
|
||||
use crate::key::Key;
|
||||
|
||||
@ -29,13 +35,21 @@ pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
|
||||
|
||||
impl<T, V> Spline<T, V> {
|
||||
/// Internal sort to ensure invariant of sorting keys is valid.
|
||||
fn internal_sort(&mut self) where T: PartialOrd {
|
||||
self.0.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||||
fn internal_sort(&mut self)
|
||||
where
|
||||
T: PartialOrd,
|
||||
{
|
||||
self
|
||||
.0
|
||||
.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||||
}
|
||||
|
||||
/// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended
|
||||
/// to provide ascending sorted ones (for performance purposes).
|
||||
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
|
||||
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self
|
||||
where
|
||||
T: PartialOrd,
|
||||
{
|
||||
let mut spline = Spline(keys);
|
||||
spline.internal_sort();
|
||||
spline
|
||||
@ -48,7 +62,11 @@ impl<T, V> Spline<T, V> {
|
||||
///
|
||||
/// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
|
||||
/// use [`Spline::from_vec`] if you are passing a [`Vec`].
|
||||
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
|
||||
pub fn from_iter<I>(iter: I) -> Self
|
||||
where
|
||||
I: Iterator<Item = Key<T, V>>,
|
||||
T: PartialOrd,
|
||||
{
|
||||
Self::from_vec(iter.collect())
|
||||
}
|
||||
|
||||
@ -69,7 +87,8 @@ impl<T, V> Spline<T, V> {
|
||||
self.0.is_empty()
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time.
|
||||
/// Sample a spline at a given time, returning the interpolated value along with its associated
|
||||
/// key.
|
||||
///
|
||||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||||
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
||||
@ -83,10 +102,11 @@ impl<T, V> Spline<T, V> {
|
||||
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
|
||||
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
||||
/// the sampling.
|
||||
///
|
||||
pub fn sample(&self, t: T) -> Option<V>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||
where
|
||||
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Additive + Interpolate<T>,
|
||||
{
|
||||
let keys = &self.0;
|
||||
let i = search_lower_cp(keys, t)?;
|
||||
let cp0 = &keys[i];
|
||||
@ -95,14 +115,17 @@ impl<T, V> Spline<T, V> {
|
||||
Interpolation::Step(threshold) => {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
Some(if nt < threshold { cp0.value } else { cp1.value })
|
||||
let value = if nt < threshold { cp0.value } else { cp1.value };
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::Linear => {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::Cosine => {
|
||||
@ -110,8 +133,9 @@ impl<T, V> Spline<T, V> {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
||||
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::CatmullRom => {
|
||||
@ -124,33 +148,54 @@ impl<T, V> Spline<T, V> {
|
||||
let cpm0 = &keys[i - 1];
|
||||
let cpm1 = &keys[i + 2];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = Interpolate::cubic_hermite(
|
||||
(cpm0.value, cpm0.t),
|
||||
(cp0.value, cp0.t),
|
||||
(cp1.value, cp1.t),
|
||||
(cpm1.value, cpm1.t),
|
||||
nt,
|
||||
);
|
||||
|
||||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
}
|
||||
|
||||
Interpolation::Bezier(u) => {
|
||||
Interpolation::Bezier(u) | Interpolation::StrokeBezier(_, u) => {
|
||||
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
|
||||
if let Interpolation::Bezier(v) = cp1.interpolation {
|
||||
Some(Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt))
|
||||
//let one_nt = T::one() - nt;
|
||||
//let one_nt_2 = one_nt * one_nt;
|
||||
//let one_nt_3 = one_nt_2 * one_nt;
|
||||
//let three_one_nt_2 = one_nt_2 + one_nt_2 + one_nt_2; // one_nt_2 * 3
|
||||
//let r = cp0.value * one_nt_3;
|
||||
} else {
|
||||
Some(Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt))
|
||||
let value = match cp1.interpolation {
|
||||
Interpolation::Bezier(v) => {
|
||||
Interpolate::cubic_bezier(cp0.value, u, cp1.value + cp1.value - v, cp1.value, nt)
|
||||
}
|
||||
|
||||
Interpolation::StrokeBezier(v, _) => {
|
||||
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
|
||||
}
|
||||
|
||||
_ => Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt),
|
||||
};
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::__NonExhaustive => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping.
|
||||
/// Sample a spline at a given time.
|
||||
///
|
||||
pub fn sample(&self, t: T) -> Option<V>
|
||||
where
|
||||
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Additive + Interpolate<T>,
|
||||
{
|
||||
self.sample_with_key(t).map(|(v, _, _)| v)
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
|
||||
/// associated key.
|
||||
///
|
||||
/// # Return
|
||||
///
|
||||
@ -160,22 +205,29 @@ impl<T, V> Spline<T, V> {
|
||||
/// # Error
|
||||
///
|
||||
/// This function returns [`None`] if you have no key.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||
where
|
||||
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Additive + Interpolate<T>,
|
||||
{
|
||||
if self.0.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
self.sample(t).or_else(move || {
|
||||
self.sample_with_key(t).or_else(move || {
|
||||
let first = self.0.first().unwrap();
|
||||
if t <= first.t {
|
||||
Some(first.value)
|
||||
let second = if self.0.len() >= 2 {
|
||||
Some(&self.0[1])
|
||||
} else {
|
||||
None
|
||||
};
|
||||
Some((first.value, &first, second))
|
||||
} else {
|
||||
let last = self.0.last().unwrap();
|
||||
|
||||
if t >= last.t {
|
||||
Some(last.value)
|
||||
Some((last.value, &last, None))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
@ -183,8 +235,20 @@ impl<T, V> Spline<T, V> {
|
||||
})
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||
where
|
||||
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Additive + Interpolate<T>,
|
||||
{
|
||||
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
|
||||
}
|
||||
|
||||
/// Add a key into the spline.
|
||||
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
|
||||
pub fn add(&mut self, key: Key<T, V>)
|
||||
where
|
||||
T: PartialOrd,
|
||||
{
|
||||
self.0.push(key);
|
||||
self.internal_sort();
|
||||
}
|
||||
@ -207,14 +271,10 @@ impl<T, V> Spline<T, V> {
|
||||
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
|
||||
/// your key. If you just want to change the interpolation mode or the carried value, consider
|
||||
/// using the [`Spline::get_mut`] method instead as it will be way faster.
|
||||
pub fn replace<F>(
|
||||
&mut self,
|
||||
index: usize,
|
||||
f: F
|
||||
) -> Option<Key<T, V>>
|
||||
pub fn replace<F>(&mut self, index: usize, f: F) -> Option<Key<T, V>>
|
||||
where
|
||||
F: FnOnce(&Key<T, V>) -> Key<T, V>,
|
||||
T: PartialOrd
|
||||
T: PartialOrd,
|
||||
{
|
||||
let key = self.remove(index)?;
|
||||
self.add(f(&key));
|
||||
@ -230,7 +290,7 @@ impl<T, V> Spline<T, V> {
|
||||
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
|
||||
self.0.get_mut(index).map(|key| KeyMut {
|
||||
value: &mut key.value,
|
||||
interpolation: &mut key.interpolation
|
||||
interpolation: &mut key.interpolation,
|
||||
})
|
||||
}
|
||||
}
|
||||
@ -249,17 +309,19 @@ pub struct KeyMut<'a, T, V> {
|
||||
|
||||
// Normalize a time ([0;1]) given two control points.
|
||||
#[inline(always)]
|
||||
pub(crate) fn normalize_time<T, V>(
|
||||
t: T,
|
||||
cp: &Key<T, V>,
|
||||
cp1: &Key<T, V>
|
||||
) -> T where T: Additive + Div<T, Output = T> + PartialEq {
|
||||
pub(crate) fn normalize_time<T, V>(t: T, cp: &Key<T, V>, cp1: &Key<T, V>) -> T
|
||||
where
|
||||
T: Additive + Div<T, Output = T> + PartialEq,
|
||||
{
|
||||
assert!(cp1.t != cp.t, "overlapping keys");
|
||||
(t - cp.t) / (cp1.t - cp.t)
|
||||
}
|
||||
|
||||
// Find the lower control point corresponding to a given time.
|
||||
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize> where T: PartialOrd {
|
||||
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize>
|
||||
where
|
||||
T: PartialOrd,
|
||||
{
|
||||
let mut i = 0;
|
||||
let len = cps.len();
|
||||
|
||||
|
41
tests/mod.rs
41
tests/mod.rs
@ -1,7 +1,9 @@
|
||||
use splines::{Interpolation, Key, Spline};
|
||||
|
||||
#[cfg(feature = "impl-cgmath")] use cgmath as cg;
|
||||
#[cfg(feature = "impl-nalgebra")] use nalgebra as na;
|
||||
#[cfg(feature = "cgmath")]
|
||||
use cgmath as cg;
|
||||
#[cfg(feature = "nalgebra")]
|
||||
use nalgebra as na;
|
||||
|
||||
#[test]
|
||||
fn step_interpolation_f32() {
|
||||
@ -16,6 +18,8 @@ fn step_interpolation_f32() {
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -31,6 +35,8 @@ fn step_interpolation_f64() {
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -145,7 +151,34 @@ fn several_interpolations_several_keys() {
|
||||
assert_eq!(spline.clamped_sample(11.), Some(4.));
|
||||
}
|
||||
|
||||
#[cfg(feature = "impl-cgmath")]
|
||||
#[cfg(feature = "cgmath")]
|
||||
#[test]
|
||||
fn stroke_bezier_straight() {
|
||||
use float_cmp::approx_eq;
|
||||
|
||||
let keys = vec![
|
||||
Key::new(
|
||||
0.0,
|
||||
cg::Vector2::new(0., 1.),
|
||||
Interpolation::StrokeBezier(cg::Vector2::new(0., 1.), cg::Vector2::new(0., 1.)),
|
||||
),
|
||||
Key::new(
|
||||
5.0,
|
||||
cg::Vector2::new(5., 1.),
|
||||
Interpolation::StrokeBezier(cg::Vector2::new(5., 1.), cg::Vector2::new(5., 1.)),
|
||||
),
|
||||
];
|
||||
let spline = Spline::from_vec(keys);
|
||||
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(0.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(1.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(2.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(3.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(4.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(5.0).unwrap().y, 1.));
|
||||
}
|
||||
|
||||
#[cfg(feature = "cgmath")]
|
||||
#[test]
|
||||
fn cgmath_vector_interpolation() {
|
||||
use splines::Interpolate;
|
||||
@ -159,7 +192,7 @@ fn cgmath_vector_interpolation() {
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
|
||||
}
|
||||
|
||||
#[cfg(feature = "impl-nalgebra")]
|
||||
#[cfg(feature = "nalgebra")]
|
||||
#[test]
|
||||
fn nalgebra_vector_interpolation() {
|
||||
use splines::Interpolate;
|
||||
|
Reference in New Issue
Block a user