Compare commits
139 Commits
Author | SHA1 | Date | |
---|---|---|---|
35881a8122 | |||
|
f6fa4ecbce | ||
|
e2f220ec15 | ||
|
c3670d6b0a | ||
|
c6ba8476f2 | ||
|
389f4d182d | ||
|
8af9151dac | ||
|
a82cf85619 | ||
|
37d3cc5f29 | ||
|
1e70ab882c | ||
|
2179c8300f | ||
|
e7a9723ae0 | ||
|
eca09f1baf | ||
|
e1b78070c6 | ||
|
cdc48a49a7 | ||
|
decd85dba2 | ||
|
df9815a464 | ||
|
ca8e797932 | ||
|
5b746aaf57 | ||
|
88a7ee7a8d | ||
|
5463fd11d6 | ||
|
d9770ad60b | ||
|
3dfea81856 | ||
|
604dcc6e27 | ||
|
8c952ae242 | ||
|
b52643b5d7 | ||
|
dc6ef0a5cc | ||
|
043a8608c3 | ||
|
295043e5af | ||
|
1c249215c9 | ||
|
5a7e74d79c | ||
|
2012105a72 | ||
|
f25ebb2c64 | ||
|
e9c1de389f | ||
|
bdeaefd9f9 | ||
|
ace0f4ec50 | ||
|
b056a4e9a7 | ||
|
042253ab9c | ||
|
270f225394 | ||
|
138828e798 | ||
|
0ca1c5aa48 | ||
|
f4c8be33b9 | ||
|
26bd5c88eb | ||
|
a4cd49fd20 | ||
|
09bc7069b2 | ||
|
8dc8606bf0 | ||
|
fc2f53200f | ||
|
b3836975c3 | ||
|
322d271499 | ||
|
e64298dc88 | ||
|
32e5122339 | ||
|
1be94935cf | ||
|
06f6e4b578 | ||
|
87e27e732d | ||
|
fb678f9613 | ||
|
ee4230340b | ||
|
f585119883 | ||
|
25d5c5217e | ||
|
355178f5fa | ||
|
b92c28cfbb | ||
|
695caf0cca | ||
|
3e85a1f026 | ||
|
0ccc3c0956 | ||
|
3d43e4c644 | ||
|
29833f0ebb | ||
|
80fb6fbe28 | ||
|
cc3ac349b4 | ||
|
395dff34ee | ||
|
469a785767 | ||
|
dd7ae34670 | ||
|
b0a6e3d5e9 | ||
|
e1998fda56 | ||
|
e7c3003dcf | ||
|
cf6ae61859 | ||
|
3640078d12 | ||
|
c0d9a0b540 | ||
|
4f0bf51b5c | ||
|
cc2b9c75a0 | ||
|
60952acb73 | ||
|
fb67b32959 | ||
|
ab543b61e8 | ||
|
73df77380b | ||
|
08bcf902a4 | ||
|
bfb1cc14bb | ||
|
5836f778f4 | ||
|
7b5c08d9fa | ||
|
fe78bf2eb6 | ||
|
4b3a06d66e | ||
|
c50a9274a5 | ||
|
3ffe6106ec | ||
|
45244628ac | ||
|
69c166e630 | ||
|
da4c02202a | ||
|
05a3862e30 | ||
|
37ca7b1e2d | ||
|
680c863ce1 | ||
|
209d4fc7c5 | ||
|
51769e1b12 | ||
|
c32edbd4cb | ||
|
a175e86db7 | ||
|
ebfc15d8af | ||
|
5b92d7b715 | ||
|
8f7cc9e711 | ||
|
9d930d6f16 | ||
|
0afebc3319 | ||
|
4a2f349954 | ||
|
85ac489636 | ||
|
aea9011296 | ||
|
04247d8706 | ||
|
0fcdbacaf3 | ||
|
89dfb61272 | ||
|
1bcf1de99e | ||
|
4630f44d6c | ||
|
efe9272816 | ||
|
036d7df3eb | ||
|
a33dbf9fde | ||
|
dfa1e6a745 | ||
|
f04ea0fefa | ||
|
8ceb8d768c | ||
|
c93109e28b | ||
|
d80de42d2f | ||
|
2e6a5a0dfb | ||
|
62147d5348 | ||
|
2dfc11c908 | ||
|
0c23df7bf0 | ||
|
3b6ddc5ea6 | ||
|
824afef513 | ||
|
f2b356b78d | ||
|
955050ecee | ||
|
22e75c6901 | ||
|
425433cd5b | ||
|
cc0a9580ab | ||
|
05e131baad | ||
|
0a15fb48a3 | ||
|
ebc6e16aef | ||
|
cae599e0d7 | ||
|
336c1c7e80 | ||
|
ea29e08836 | ||
|
3ab98420c8 |
25
.github/dependabot.yml
vendored
Normal file
25
.github/dependabot.yml
vendored
Normal file
@ -0,0 +1,25 @@
|
|||||||
|
version: 2
|
||||||
|
updates:
|
||||||
|
- package-ecosystem: cargo
|
||||||
|
directory: "/."
|
||||||
|
schedule:
|
||||||
|
interval: daily
|
||||||
|
time: "04:00"
|
||||||
|
open-pull-requests-limit: 10
|
||||||
|
target-branch: master
|
||||||
|
reviewers:
|
||||||
|
- phaazon
|
||||||
|
assignees:
|
||||||
|
- phaazon
|
||||||
|
labels:
|
||||||
|
- dependency-update
|
||||||
|
ignore:
|
||||||
|
- dependency-name: glam
|
||||||
|
versions:
|
||||||
|
- 0.13.0
|
||||||
|
- dependency-name: nalgebra
|
||||||
|
versions:
|
||||||
|
- 0.25.0
|
||||||
|
- dependency-name: cgmath
|
||||||
|
versions:
|
||||||
|
- 0.18.0
|
38
.github/workflows/ci.yaml
vendored
38
.github/workflows/ci.yaml
vendored
@ -1,46 +1,38 @@
|
|||||||
name: CI
|
name: CI
|
||||||
on: [push]
|
on: [push, pull_request]
|
||||||
|
|
||||||
jobs:
|
jobs:
|
||||||
build-linux:
|
build-linux:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v1
|
- uses: actions/checkout@v1
|
||||||
- name: Build
|
|
||||||
run: |
|
|
||||||
cargo build --verbose --all-features
|
|
||||||
- name: Test
|
- name: Test
|
||||||
run: |
|
run: cargo test --verbose --all-features
|
||||||
cargo test --verbose --all-features
|
|
||||||
|
|
||||||
|
|
||||||
build-windows:
|
build-windows:
|
||||||
runs-on: windows-latest
|
runs-on: windows-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v1
|
- uses: actions/checkout@v1
|
||||||
- name: Build
|
|
||||||
run: |
|
|
||||||
cargo build --verbose --all-features
|
|
||||||
- name: Test
|
- name: Test
|
||||||
run: |
|
run: cargo test --verbose --all-features
|
||||||
cargo test --verbose --all-features
|
|
||||||
|
|
||||||
build-macosx:
|
build-macosx:
|
||||||
runs-on: macosx-latest
|
runs-on: macOS-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v1
|
- uses: actions/checkout@v1
|
||||||
- name: Build
|
|
||||||
run: |
|
|
||||||
cargo build --verbose --all-features
|
|
||||||
- name: Test
|
- name: Test
|
||||||
run: |
|
run: cargo test --verbose --all-features
|
||||||
cargo test --verbose --all-features
|
|
||||||
|
|
||||||
check-readme:
|
quality:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v1
|
- uses: actions/checkout@v1
|
||||||
- name: Install cargo-sync-readme
|
- name: Install dependencies
|
||||||
run: cargo install --force cargo-sync-readme
|
run: |
|
||||||
- name: Check
|
cargo install --force cargo-sync-readme
|
||||||
run: cargo sync-readme -c
|
rustup component add rustfmt
|
||||||
|
- name: cargo sync-readme
|
||||||
|
run: |
|
||||||
|
cargo sync-readme -c
|
||||||
|
- name: rustfmt
|
||||||
|
run: cargo fmt -- --check
|
||||||
|
247
CHANGELOG.md
247
CHANGELOG.md
@ -1,6 +1,249 @@
|
|||||||
# 2.0.0
|
# Changelog
|
||||||
|
|
||||||
> Mon Sep 24th 2019
|
* [4.3.1](#431)
|
||||||
|
* [4.3](#43)
|
||||||
|
* [4.2](#42)
|
||||||
|
* [4.1.1](#411)
|
||||||
|
* [4.1](#41)
|
||||||
|
* [4.0.3](#403)
|
||||||
|
* [4.0.2](#402)
|
||||||
|
* [4.0.1](#401)
|
||||||
|
* [4.0](#40)
|
||||||
|
* [Major changes](#major-changes)
|
||||||
|
* [Patch changes](#patch-changes)
|
||||||
|
* [3.5.4](#354)
|
||||||
|
* [3.5.3](#353)
|
||||||
|
* [3.5.2](#352)
|
||||||
|
* [3.5.1](#351)
|
||||||
|
* [3.5](#35)
|
||||||
|
* [3.4.2](#342)
|
||||||
|
* [3.4.1](#341)
|
||||||
|
* [3.4](#34)
|
||||||
|
* [3.3](#33)
|
||||||
|
* [3.2](#32)
|
||||||
|
* [3.1](#31)
|
||||||
|
* [3.0](#30)
|
||||||
|
* [Major changes](#major-changes-1)
|
||||||
|
* [Patch changes](#patch-changes-1)
|
||||||
|
* [2.2](#22)
|
||||||
|
* [2.1.1](#211)
|
||||||
|
* [2.1](#21)
|
||||||
|
* [2.0.1](#201)
|
||||||
|
* [2.0](#20)
|
||||||
|
* [Major changes](#major-changes-2)
|
||||||
|
* [Minor changes](#minor-changes)
|
||||||
|
* [1.0](#10)
|
||||||
|
* [Major changes](#major-changes-3)
|
||||||
|
* [Minor changes](#minor-changes-1)
|
||||||
|
* [Patch changes](#patch-changes-2)
|
||||||
|
* [0.2.3](#023)
|
||||||
|
* [0.2.2](#022)
|
||||||
|
* [0.2.1](#021)
|
||||||
|
* [0.2](#02)
|
||||||
|
* [0.1.1](#011)
|
||||||
|
* [0.1](#01)
|
||||||
|
|
||||||
|
# 4.3.1
|
||||||
|
|
||||||
|
> Nov 22, 2023
|
||||||
|
|
||||||
|
- Add `Default` implementation for `Spline`. [c6ba847](https://github.com/phaazon/splines/commit/c6ba847)
|
||||||
|
|
||||||
|
# 4.3
|
||||||
|
|
||||||
|
> Sep 23, 2023
|
||||||
|
|
||||||
|
- Add support for `glam-0.23` and `glam-0.24`. [cdc48a4](https://github.com/phaazon/splines/commit/cdc48a4)
|
||||||
|
- Add `Spline::clear` to clear a spline keys without deallocating its internal storage. [eca09f1](https://github.com/phaazon/splines/commit/eca09f1)
|
||||||
|
|
||||||
|
# 4.2
|
||||||
|
|
||||||
|
> Feb 1, 2023
|
||||||
|
|
||||||
|
- Add support for `glam-0.22`.
|
||||||
|
- Add support for `nalgebra-0.32`.
|
||||||
|
- Add deprecation lints for `impl-*` feature gates. Those shouldn’t be used anymore and the `*` variant should be
|
||||||
|
preferred. For instance, if you used `impl-cgmath`, you should just use the `cgmath` feature gate now.
|
||||||
|
|
||||||
|
# 4.1.1
|
||||||
|
|
||||||
|
> Jul 27, 2022
|
||||||
|
|
||||||
|
- Internal enhancement of sampling splines by looking for control points. That brings the lookup from _O(N)_ to
|
||||||
|
_O(log(N))_. That is super embarassing because it should have been the default from the very first commit. Sorry
|
||||||
|
about that.
|
||||||
|
- Fix hermite cubic interpolation.
|
||||||
|
- Add support for `glam-0.21`.
|
||||||
|
- Add support for `nalgebra-0.31`.
|
||||||
|
|
||||||
|
# 4.1
|
||||||
|
|
||||||
|
> Mar 28, 2022
|
||||||
|
|
||||||
|
- Support for edition 2021.
|
||||||
|
- Bump `float-cmp` dependency.
|
||||||
|
- Bump `glam` dependency.
|
||||||
|
- Bump `nalgebra` dependency.
|
||||||
|
- Simplify the CI.
|
||||||
|
|
||||||
|
# 4.0.3
|
||||||
|
|
||||||
|
> Jul 11, 2021
|
||||||
|
|
||||||
|
- Add more implementors for `Interpolate`.
|
||||||
|
|
||||||
|
# 4.0.2
|
||||||
|
|
||||||
|
> Jul 11, 2021
|
||||||
|
|
||||||
|
- **Yanked.**
|
||||||
|
|
||||||
|
# 4.0.1
|
||||||
|
|
||||||
|
> Jul 11, 2021
|
||||||
|
|
||||||
|
- Add support up to `glam-0.17`.
|
||||||
|
- Add support up to `nalgebra-0.27`.
|
||||||
|
- Replace the name of some feature gates:
|
||||||
|
- `serialization` becomes `serde`.
|
||||||
|
- `impl-*` becomes `*`.
|
||||||
|
- The previous feature gates are kept around to prevent a breaking change but will eventually be removed in the next
|
||||||
|
major update.
|
||||||
|
|
||||||
|
# 4.0
|
||||||
|
|
||||||
|
> Mar 05, 2021
|
||||||
|
|
||||||
|
## Major changes
|
||||||
|
|
||||||
|
- Switch the `Interpolation` enum to `#[non_exhaustive]` to allow adding more interpolation modes (if any) in the
|
||||||
|
future.
|
||||||
|
- Introduce `SampledWithKey`, which is a more elegant / typed way to access a sample along with its associated key
|
||||||
|
index.
|
||||||
|
- Refactor the `Interpolate` trait and add the `Interpolator` trait.
|
||||||
|
|
||||||
|
## Patch changes
|
||||||
|
|
||||||
|
- Highly simplify the various implementors (`cgmath`, `nalgebra` and `glam`) so that maintenance is easy.
|
||||||
|
- Expose the `impl_Interpolate` macro, allowing to implement the API all at once if a type implements the various
|
||||||
|
`std::ops:*` traits. Since most of the crates do, this macro makes it really easy to add support for a crate.
|
||||||
|
- Drop `simba` as a direct dependency.
|
||||||
|
- Drop `num-traits` as a direct dependency.
|
||||||
|
|
||||||
|
# 3.5.4
|
||||||
|
|
||||||
|
> Feb 27, 2021
|
||||||
|
|
||||||
|
- Support of `cgmath-0.18`.
|
||||||
|
|
||||||
|
# 3.5.3
|
||||||
|
|
||||||
|
> Jan 16, 2021
|
||||||
|
|
||||||
|
- Resynchronize and fix links in the README (fix in `cargo sync-readme`).
|
||||||
|
|
||||||
|
# 3.5.2
|
||||||
|
|
||||||
|
> Fri Jan 01, 2021
|
||||||
|
|
||||||
|
- Support of `nalgebra-0.24`.
|
||||||
|
|
||||||
|
# 3.5.1
|
||||||
|
|
||||||
|
> Dec 5th, 2020
|
||||||
|
|
||||||
|
- Support of `glam-0.11`.
|
||||||
|
|
||||||
|
# 3.5
|
||||||
|
|
||||||
|
> Nov 23rd, 2020
|
||||||
|
|
||||||
|
- Add support for [glam](https://crates.io/crates/glam) via the `"impl-glam"` feature gate.
|
||||||
|
- Support of `nalgebra-0.23`.
|
||||||
|
|
||||||
|
# 3.4.2
|
||||||
|
|
||||||
|
> Oct 24th, 2020
|
||||||
|
|
||||||
|
- Support of `simba-0.3`.
|
||||||
|
|
||||||
|
# 3.4.1
|
||||||
|
|
||||||
|
> Sep 5th, 2020
|
||||||
|
|
||||||
|
- Support of `simba-0.2`.
|
||||||
|
- Support of `nalgebra-0.22`.
|
||||||
|
|
||||||
|
# 3.4
|
||||||
|
|
||||||
|
> Thu May 21st 2020
|
||||||
|
|
||||||
|
- Add support for `float-cmp-0.7` and `float-cmp-0.8`. Because this uses a SemVer range, if you
|
||||||
|
already have a `Cargo.lock`, don’t forget to update `splines` with `cargo update --aggressive`.
|
||||||
|
|
||||||
|
# 3.3
|
||||||
|
|
||||||
|
> Thu Apr 10th 2020
|
||||||
|
|
||||||
|
- Add support for `nalgebra-0.21`.
|
||||||
|
|
||||||
|
# 3.2
|
||||||
|
|
||||||
|
> Thu Mar 19th 2020
|
||||||
|
|
||||||
|
- Add support for `nalgebra-0.20`.
|
||||||
|
- Add support for `float-cmp-0.6`.
|
||||||
|
|
||||||
|
# 3.1
|
||||||
|
|
||||||
|
> Sat Jan 26th 2020
|
||||||
|
|
||||||
|
- Add support for `nalgebra-0.19`.
|
||||||
|
|
||||||
|
# 3.0
|
||||||
|
|
||||||
|
> Tue Oct 22th 2019
|
||||||
|
|
||||||
|
## Major changes
|
||||||
|
|
||||||
|
- Sampling now requires the value of the key to be `Linear<T>` for `Interpolate<T>`. That is needed
|
||||||
|
to ease some interpolation mode (especially Bézier).
|
||||||
|
|
||||||
|
## Patch changes
|
||||||
|
|
||||||
|
- Fix Bézier interpolation when the next key is Bézier too.
|
||||||
|
|
||||||
|
# 2.2
|
||||||
|
|
||||||
|
> Mon Oct 17th 2019
|
||||||
|
|
||||||
|
- Add `Interpolation::StrokeBezier`.
|
||||||
|
|
||||||
|
# 2.1.1
|
||||||
|
|
||||||
|
> Mon Oct 17th 2019
|
||||||
|
|
||||||
|
- Licensing support in the crate.
|
||||||
|
|
||||||
|
# 2.1
|
||||||
|
|
||||||
|
> Mon Sep 30th 2019
|
||||||
|
|
||||||
|
- Add `Spline::sample_with_key` and `Spline::clamped_sample_with_key`. Those methods allow one to
|
||||||
|
perform the regular `Spline::sample` and `Spline::clamped_sample` but also retreive the base
|
||||||
|
key that was used to perform the interpolation. The key can be inspected to get the base time,
|
||||||
|
interpolation, etc. The next key is also returned, if present.
|
||||||
|
|
||||||
|
# 2.0.1
|
||||||
|
|
||||||
|
> Tue Sep 24th 2019
|
||||||
|
|
||||||
|
- Fix the cubic Bézier curve interpolation. The “output” tangent is now taken by mirroring the
|
||||||
|
next key’s tangent around its control point.
|
||||||
|
|
||||||
|
# 2.0
|
||||||
|
|
||||||
|
> Mon Sep 23rd 2019
|
||||||
|
|
||||||
## Major changes
|
## Major changes
|
||||||
|
|
||||||
|
40
Cargo.toml
40
Cargo.toml
@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "splines"
|
name = "splines"
|
||||||
version = "2.0.0"
|
version = "4.3.1"
|
||||||
license = "BSD-3-Clause"
|
license = "BSD-3-Clause"
|
||||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||||
description = "Spline interpolation made easy"
|
description = "Spline interpolation made easy"
|
||||||
@ -11,28 +11,32 @@ repository = "https://github.com/phaazon/splines"
|
|||||||
documentation = "https://docs.rs/splines"
|
documentation = "https://docs.rs/splines"
|
||||||
readme = "README.md"
|
readme = "README.md"
|
||||||
|
|
||||||
edition = "2018"
|
edition = "2021"
|
||||||
|
|
||||||
[badges]
|
|
||||||
travis-ci = { repository = "phaazon/splines", branch = "master" }
|
|
||||||
is-it-maintained-issue-resolution = { repository = "phaazon/splines" }
|
|
||||||
is-it-maintained-open-issues = { repository = "phaazon/splines" }
|
|
||||||
maintenance = { status = "actively-developed" }
|
|
||||||
|
|
||||||
[features]
|
[features]
|
||||||
default = ["std"]
|
default = ["std"]
|
||||||
impl-cgmath = ["cgmath"]
|
impl-cgmath = ["cgmath"]
|
||||||
impl-nalgebra = ["alga", "nalgebra", "num-traits"]
|
impl-glam = ["glam"]
|
||||||
serialization = ["serde", "serde_derive"]
|
impl-nalgebra = ["nalgebra"]
|
||||||
std = []
|
serialization = ["serde"]
|
||||||
|
std = ["nalgebra/std"]
|
||||||
|
|
||||||
[dependencies]
|
[dependencies]
|
||||||
alga = { version = "0.9", optional = true }
|
cgmath = { version = ">=0.17, <0.19", optional = true }
|
||||||
cgmath = { version = "0.17", optional = true }
|
glam = { version = ">=0.10, <0.25", optional = true }
|
||||||
nalgebra = { version = ">=0.14, <0.19", optional = true }
|
nalgebra = { version = ">=0.21, <0.33", default-features = false, optional = true }
|
||||||
num-traits = { version = "0.2", optional = true }
|
serde = { version = "1", features = ["derive"], optional = true }
|
||||||
serde = { version = "1", optional = true }
|
|
||||||
serde_derive = { version = "1", optional = true }
|
[dev-dependencies]
|
||||||
|
float-cmp = ">=0.6, < 0.10"
|
||||||
|
serde_json = "1"
|
||||||
|
|
||||||
[package.metadata.docs.rs]
|
[package.metadata.docs.rs]
|
||||||
all-features = true
|
features = ["std", "cgmath", "glam", "nalgebra", "serde"]
|
||||||
|
|
||||||
|
[[example]]
|
||||||
|
name = "hello-world"
|
||||||
|
|
||||||
|
[[example]]
|
||||||
|
name = "serialization"
|
||||||
|
required-features = ["serde"]
|
||||||
|
30
LICENSE
Normal file
30
LICENSE
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
Copyright (c) 2019, Dimitri Sabadie <dimitri.sabadie@gmail.com>
|
||||||
|
|
||||||
|
All rights reserved.
|
||||||
|
|
||||||
|
Redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions are met:
|
||||||
|
|
||||||
|
* Redistributions of source code must retain the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
* Redistributions in binary form must reproduce the above
|
||||||
|
copyright notice, this list of conditions and the following
|
||||||
|
disclaimer in the documentation and/or other materials provided
|
||||||
|
with the distribution.
|
||||||
|
|
||||||
|
* Neither the name of Dimitri Sabadie <dimitri.sabadie@gmail.com> nor the names of other
|
||||||
|
contributors may be used to endorse or promote products derived
|
||||||
|
from this software without specific prior written permission.
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||||
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||||
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||||
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||||
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||||
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||||
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
19
README.md
19
README.md
@ -24,7 +24,7 @@ is picked from its lower control point.
|
|||||||
|
|
||||||
# Quickly create splines
|
# Quickly create splines
|
||||||
|
|
||||||
```
|
```rust
|
||||||
use splines::{Interpolation, Key, Spline};
|
use splines::{Interpolation, Key, Spline};
|
||||||
|
|
||||||
let start = Key::new(0., 0., Interpolation::Linear);
|
let start = Key::new(0., 0., Interpolation::Linear);
|
||||||
@ -46,7 +46,7 @@ value.
|
|||||||
|
|
||||||
If you try to sample in out-of-bounds sampling parameter, you’ll get no value.
|
If you try to sample in out-of-bounds sampling parameter, you’ll get no value.
|
||||||
|
|
||||||
```
|
```rust
|
||||||
assert_eq!(spline.sample(0.), Some(0.));
|
assert_eq!(spline.sample(0.), Some(0.));
|
||||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||||
assert_eq!(spline.sample(1.1), None);
|
assert_eq!(spline.sample(1.1), None);
|
||||||
@ -56,7 +56,7 @@ It’s possible that you want to get a value even if you’re out-of-bounds. Thi
|
|||||||
important for simulations / animations. Feel free to use the `Spline::clamped_interpolation` for
|
important for simulations / animations. Feel free to use the `Spline::clamped_interpolation` for
|
||||||
that purpose.
|
that purpose.
|
||||||
|
|
||||||
```
|
```rust
|
||||||
assert_eq!(spline.clamped_sample(-0.9), Some(0.)); // clamped to the first key
|
assert_eq!(spline.clamped_sample(-0.9), Some(0.)); // clamped to the first key
|
||||||
assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
|
assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
|
||||||
```
|
```
|
||||||
@ -66,7 +66,7 @@ assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
|
|||||||
[`Spline`] curves are parametered both by the carried value (being interpolated) but also the
|
[`Spline`] curves are parametered both by the carried value (being interpolated) but also the
|
||||||
sampling type. It’s very typical to use `f32` or `f64` but really, you can in theory use any
|
sampling type. It’s very typical to use `f32` or `f64` but really, you can in theory use any
|
||||||
kind of type; that type must, however, implement a contract defined by a set of traits to
|
kind of type; that type must, however, implement a contract defined by a set of traits to
|
||||||
implement. See [the documentation of this module](crate::interpolate) for further details.
|
implement. See [the documentation of this module](https://docs.rs/splines/latest/splines/interpolate/) for further details.
|
||||||
|
|
||||||
# Features and customization
|
# Features and customization
|
||||||
|
|
||||||
@ -83,16 +83,19 @@ not. It’s especially important to see how it copes with the documentation.
|
|||||||
|
|
||||||
So here’s a list of currently supported features and how to enable them:
|
So here’s a list of currently supported features and how to enable them:
|
||||||
|
|
||||||
- **Serialization / deserialization.**
|
- **Serde.**
|
||||||
- This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
- This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||||
types exported by this crate.
|
types exported by this crate.
|
||||||
- Enable with the `"serialization"` feature.
|
- Enable with the `"serde"` feature.
|
||||||
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
||||||
- Adds some useful implementations of `Interpolate` for some cgmath types.
|
- Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||||
- Enable with the `"impl-cgmath"` feature.
|
- Enable with the `"cgmath"` feature.
|
||||||
|
- **[glam](https://crates.io/crates/glam) implementors.**
|
||||||
|
- Adds some useful implementations of `Interpolate` for some glam types.
|
||||||
|
- Enable with the `"glam"` feature.
|
||||||
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
||||||
- Adds some useful implementations of `Interpolate` for some nalgebra types.
|
- Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||||
- Enable with the `"impl-nalgebra"` feature.
|
- Enable with the `"nalgebra"` feature.
|
||||||
- **Standard library / no standard library.**
|
- **Standard library / no standard library.**
|
||||||
- It’s possible to compile against the standard library or go on your own without it.
|
- It’s possible to compile against the standard library or go on your own without it.
|
||||||
- Compiling with the standard library is enabled by default.
|
- Compiling with the standard library is enabled by default.
|
||||||
|
@ -1,7 +0,0 @@
|
|||||||
[package]
|
|
||||||
name = "hello-world"
|
|
||||||
version = "0.2.0"
|
|
||||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
|
||||||
|
|
||||||
[dependencies]
|
|
||||||
splines = "1.0.0-rc.2"
|
|
@ -1,8 +0,0 @@
|
|||||||
[package]
|
|
||||||
name = "serialization"
|
|
||||||
version = "0.2.0"
|
|
||||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
|
||||||
|
|
||||||
[dependencies]
|
|
||||||
serde_json = "1"
|
|
||||||
splines = { version = "1.0.0-rc.2", features = ["serialization"] }
|
|
@ -1,9 +0,0 @@
|
|||||||
[workspace]
|
|
||||||
|
|
||||||
members = [
|
|
||||||
"01-hello-world",
|
|
||||||
"02-serialization"
|
|
||||||
]
|
|
||||||
|
|
||||||
[patch.crates-io]
|
|
||||||
splines = { path = ".." }
|
|
@ -3,7 +3,10 @@ extern crate splines;
|
|||||||
use splines::{Interpolation, Key, Spline};
|
use splines::{Interpolation, Key, Spline};
|
||||||
|
|
||||||
fn main() {
|
fn main() {
|
||||||
let keys = vec![Key::new(0., 0., Interpolation::default()), Key::new(5., 1., Interpolation::default())];
|
let keys = vec![
|
||||||
|
Key::new(0., 0., Interpolation::default()),
|
||||||
|
Key::new(5., 1., Interpolation::default()),
|
||||||
|
];
|
||||||
let spline = Spline::from_vec(keys);
|
let spline = Spline::from_vec(keys);
|
||||||
|
|
||||||
println!("value at 0: {:?}", spline.clamped_sample(0.));
|
println!("value at 0: {:?}", spline.clamped_sample(0.));
|
@ -1,11 +1,12 @@
|
|||||||
#[macro_use] extern crate serde_json;
|
#[macro_use]
|
||||||
|
extern crate serde_json;
|
||||||
extern crate splines;
|
extern crate splines;
|
||||||
|
|
||||||
use serde_json::from_value;
|
use serde_json::from_value;
|
||||||
use splines::Spline;
|
use splines::Spline;
|
||||||
|
|
||||||
fn main() {
|
fn main() {
|
||||||
let value = json!{
|
let value = json! {
|
||||||
[
|
[
|
||||||
{
|
{
|
||||||
"t": 0,
|
"t": 0,
|
15
rustfmt.toml
Normal file
15
rustfmt.toml
Normal file
@ -0,0 +1,15 @@
|
|||||||
|
edition = "2018"
|
||||||
|
|
||||||
|
fn_params_layout = "Tall"
|
||||||
|
force_explicit_abi = true
|
||||||
|
hard_tabs = false
|
||||||
|
max_width = 100
|
||||||
|
merge_derives = true
|
||||||
|
newline_style = "Unix"
|
||||||
|
remove_nested_parens = true
|
||||||
|
reorder_imports = true
|
||||||
|
reorder_modules = true
|
||||||
|
tab_spaces = 2
|
||||||
|
use_field_init_shorthand = true
|
||||||
|
use_small_heuristics = "Default"
|
||||||
|
use_try_shorthand = true
|
@ -1,86 +1,15 @@
|
|||||||
use cgmath::{
|
use crate::impl_Interpolate;
|
||||||
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
|
|
||||||
};
|
|
||||||
|
|
||||||
use crate::interpolate::{
|
use cgmath::{Quaternion, Vector1, Vector2, Vector3, Vector4};
|
||||||
Additive, Interpolate, Linear, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
|
|
||||||
};
|
|
||||||
|
|
||||||
macro_rules! impl_interpolate_vec {
|
impl_Interpolate!(f32, Vector1<f32>, std::f32::consts::PI);
|
||||||
($($t:tt)*) => {
|
impl_Interpolate!(f32, Vector2<f32>, std::f32::consts::PI);
|
||||||
impl<T> Linear<T> for $($t)*<T> where T: BaseNum {
|
impl_Interpolate!(f32, Vector3<f32>, std::f32::consts::PI);
|
||||||
#[inline(always)]
|
impl_Interpolate!(f32, Vector4<f32>, std::f32::consts::PI);
|
||||||
fn outer_mul(self, t: T) -> Self {
|
impl_Interpolate!(f32, Quaternion<f32>, std::f32::consts::PI);
|
||||||
self * t
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
impl_Interpolate!(f64, Vector1<f64>, std::f64::consts::PI);
|
||||||
fn outer_div(self, t: T) -> Self {
|
impl_Interpolate!(f64, Vector2<f64>, std::f64::consts::PI);
|
||||||
self / t
|
impl_Interpolate!(f64, Vector3<f64>, std::f64::consts::PI);
|
||||||
}
|
impl_Interpolate!(f64, Vector4<f64>, std::f64::consts::PI);
|
||||||
}
|
impl_Interpolate!(f64, Quaternion<f64>, std::f64::consts::PI);
|
||||||
|
|
||||||
impl<T> Interpolate<T> for $($t)*<T>
|
|
||||||
where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
|
|
||||||
#[inline(always)]
|
|
||||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
|
||||||
a.lerp(b, t)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
|
||||||
cubic_hermite_def(x, a, b, y, t)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
|
||||||
quadratic_bezier_def(a, u, b, t)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
|
||||||
cubic_bezier_def(a, u, v, b, t)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl_interpolate_vec!(Vector1);
|
|
||||||
impl_interpolate_vec!(Vector2);
|
|
||||||
impl_interpolate_vec!(Vector3);
|
|
||||||
impl_interpolate_vec!(Vector4);
|
|
||||||
|
|
||||||
impl<T> Linear<T> for Quaternion<T> where T: BaseFloat {
|
|
||||||
#[inline(always)]
|
|
||||||
fn outer_mul(self, t: T) -> Self {
|
|
||||||
self * t
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
fn outer_div(self, t: T) -> Self {
|
|
||||||
self / t
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl<T> Interpolate<T> for Quaternion<T>
|
|
||||||
where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
|
|
||||||
#[inline(always)]
|
|
||||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
|
||||||
a.nlerp(b, t)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
|
||||||
cubic_hermite_def(x, a, b, y, t)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
|
||||||
quadratic_bezier_def(a, u, b, t)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
|
||||||
cubic_bezier_def(a, u, v, b, t)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
8
src/glam.rs
Normal file
8
src/glam.rs
Normal file
@ -0,0 +1,8 @@
|
|||||||
|
use crate::impl_Interpolate;
|
||||||
|
use glam::{Quat, Vec2, Vec3, Vec3A, Vec4};
|
||||||
|
|
||||||
|
impl_Interpolate!(f32, Vec2, std::f32::consts::PI);
|
||||||
|
impl_Interpolate!(f32, Vec3, std::f32::consts::PI);
|
||||||
|
impl_Interpolate!(f32, Vec3A, std::f32::consts::PI);
|
||||||
|
impl_Interpolate!(f32, Vec4, std::f32::consts::PI);
|
||||||
|
impl_Interpolate!(f32, Quat, std::f32::consts::PI);
|
@ -28,267 +28,220 @@
|
|||||||
//! [`Trigo`]: crate::interpolate::Trigo
|
//! [`Trigo`]: crate::interpolate::Trigo
|
||||||
//! [num-traits]: https://crates.io/crates/num-traits
|
//! [num-traits]: https://crates.io/crates/num-traits
|
||||||
|
|
||||||
#[cfg(feature = "std")] use std::f32;
|
#[cfg(not(feature = "std"))]
|
||||||
#[cfg(not(feature = "std"))] use core::f32;
|
use core::f32;
|
||||||
#[cfg(not(feature = "std"))] use core::intrinsics::cosf32;
|
#[cfg(not(feature = "std"))]
|
||||||
#[cfg(feature = "std")] use std::f64;
|
use core::f64;
|
||||||
#[cfg(not(feature = "std"))] use core::f64;
|
#[cfg(not(feature = "std"))]
|
||||||
#[cfg(not(feature = "std"))] use core::intrinsics::cosf64;
|
use core::intrinsics::cosf32;
|
||||||
#[cfg(feature = "std")] use std::ops::{Add, Mul, Sub};
|
#[cfg(not(feature = "std"))]
|
||||||
#[cfg(not(feature = "std"))] use core::ops::{Add, Mul, Sub};
|
use core::intrinsics::cosf64;
|
||||||
|
#[cfg(not(feature = "std"))]
|
||||||
|
use core::ops::{Add, Mul, Sub};
|
||||||
|
#[cfg(feature = "std")]
|
||||||
|
use std::f32;
|
||||||
|
#[cfg(feature = "std")]
|
||||||
|
use std::f64;
|
||||||
|
|
||||||
/// Keys that can be interpolated in between. Implementing this trait is required to perform
|
/// Types that can be used as interpolator in splines.
|
||||||
/// sampling on splines.
|
|
||||||
///
|
///
|
||||||
/// `T` is the variable used to sample with. Typical implementations use [`f32`] or [`f64`], but
|
/// An interpolator value is like the fabric on which control keys (and sampled values) live on.
|
||||||
/// you’re free to use the ones you like. Feel free to have a look at [`Spline::sample`] for
|
pub trait Interpolator: Sized + Copy + PartialOrd {
|
||||||
/// instance to know which trait your type must implement to be usable.
|
/// Normalize the interpolator.
|
||||||
|
fn normalize(self, start: Self, end: Self) -> Self;
|
||||||
|
}
|
||||||
|
|
||||||
|
macro_rules! impl_Interpolator {
|
||||||
|
($t:ty) => {
|
||||||
|
impl Interpolator for $t {
|
||||||
|
fn normalize(self, start: Self, end: Self) -> Self {
|
||||||
|
(self - start) / (end - start)
|
||||||
|
}
|
||||||
|
}
|
||||||
|
};
|
||||||
|
}
|
||||||
|
|
||||||
|
impl_Interpolator!(f32);
|
||||||
|
impl_Interpolator!(f64);
|
||||||
|
|
||||||
|
/// Values that can be interpolated. Implementing this trait is required to perform sampling on splines.
|
||||||
///
|
///
|
||||||
/// [`Spline::sample`]: crate::spline::Spline::sample
|
/// `T` is the interpolator used to sample with. Typical implementations use [`f32`] or [`f64`], but
|
||||||
|
/// you’re free to use the ones you like.
|
||||||
pub trait Interpolate<T>: Sized + Copy {
|
pub trait Interpolate<T>: Sized + Copy {
|
||||||
|
/// Step interpolation.
|
||||||
|
fn step(t: T, threshold: T, a: Self, b: Self) -> Self;
|
||||||
|
|
||||||
/// Linear interpolation.
|
/// Linear interpolation.
|
||||||
fn lerp(a: Self, b: Self, t: T) -> Self;
|
fn lerp(t: T, a: Self, b: Self) -> Self;
|
||||||
|
|
||||||
|
/// Cosine interpolation.
|
||||||
|
fn cosine(t: T, a: Self, b: Self) -> Self;
|
||||||
|
|
||||||
/// Cubic hermite interpolation.
|
/// Cubic hermite interpolation.
|
||||||
///
|
fn cubic_hermite(t: T, x: (T, Self), a: (T, Self), b: (T, Self), y: (T, Self)) -> Self;
|
||||||
/// Default to [`lerp`].
|
|
||||||
///
|
|
||||||
/// [`lerp`]: Interpolate::lerp
|
|
||||||
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
|
|
||||||
Self::lerp(a.0, b.0, t)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Quadratic Bézier interpolation.
|
/// Quadratic Bézier interpolation.
|
||||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
|
///
|
||||||
|
/// `a` is the first point; `b` is the second point and `u` is the tangent of `a` to the curve.
|
||||||
|
fn quadratic_bezier(t: T, a: Self, u: Self, b: Self) -> Self;
|
||||||
|
|
||||||
/// Cubic Bézier interpolation.
|
/// Cubic Bézier interpolation.
|
||||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
|
///
|
||||||
|
/// `a` is the first point; `b` is the second point; `u` is the output tangent of `a` to the curve and `v` is the
|
||||||
|
/// input tangent of `b` to the curve.
|
||||||
|
fn cubic_bezier(t: T, a: Self, u: Self, v: Self, b: Self) -> Self;
|
||||||
|
|
||||||
|
/// Cubic Bézier interpolation – special case for non-explicit second tangent.
|
||||||
|
///
|
||||||
|
/// This version does the same computation as [`Interpolate::cubic_bezier`] but computes the second tangent by
|
||||||
|
/// inversing it (typical when the next point uses a Bézier interpolation, where input and output tangents are
|
||||||
|
/// mirrored for the same key).
|
||||||
|
fn cubic_bezier_mirrored(t: T, a: Self, u: Self, v: Self, b: Self) -> Self;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Set of types that support additions and subtraction.
|
#[macro_export]
|
||||||
///
|
macro_rules! impl_Interpolate {
|
||||||
/// The [`Copy`] trait is also a supertrait as it’s likely to be used everywhere.
|
($t:ty, $v:ty, $pi:expr) => {
|
||||||
pub trait Additive:
|
impl $crate::interpolate::Interpolate<$t> for $v {
|
||||||
Copy +
|
fn step(t: $t, threshold: $t, a: Self, b: Self) -> Self {
|
||||||
Add<Self, Output = Self> +
|
if t < threshold {
|
||||||
Sub<Self, Output = Self> {
|
a
|
||||||
}
|
} else {
|
||||||
|
b
|
||||||
impl<T> Additive for T
|
}
|
||||||
where T: Copy +
|
|
||||||
Add<Self, Output = Self> +
|
|
||||||
Sub<Self, Output = Self> {
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Set of additive types that support outer multiplication and division, making them linear.
|
|
||||||
pub trait Linear<T>: Additive {
|
|
||||||
/// Apply an outer multiplication law.
|
|
||||||
fn outer_mul(self, t: T) -> Self;
|
|
||||||
|
|
||||||
/// Apply an outer division law.
|
|
||||||
fn outer_div(self, t: T) -> Self;
|
|
||||||
}
|
|
||||||
|
|
||||||
macro_rules! impl_linear_simple {
|
|
||||||
($t:ty) => {
|
|
||||||
impl Linear<$t> for $t {
|
|
||||||
fn outer_mul(self, t: $t) -> Self {
|
|
||||||
self * t
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Apply an outer division law.
|
#[cfg(feature = "std")]
|
||||||
fn outer_div(self, t: $t) -> Self {
|
fn cosine(t: $t, a: Self, b: Self) -> Self {
|
||||||
self / t
|
let cos_nt = (1. - (t * $pi).cos()) * 0.5;
|
||||||
|
<Self as $crate::interpolate::Interpolate<$t>>::lerp(cos_nt, a, b)
|
||||||
}
|
}
|
||||||
}
|
#[cfg(not(feature = "std"))]
|
||||||
}
|
fn cosine(t: $t, a: Self, b: Self) -> Self {
|
||||||
}
|
unimplemented!();
|
||||||
|
|
||||||
impl_linear_simple!(f32);
|
|
||||||
impl_linear_simple!(f64);
|
|
||||||
|
|
||||||
macro_rules! impl_linear_cast {
|
|
||||||
($t:ty, $q:ty) => {
|
|
||||||
impl Linear<$t> for $q {
|
|
||||||
fn outer_mul(self, t: $t) -> Self {
|
|
||||||
self * t as $q
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Apply an outer division law.
|
fn lerp(t: $t, a: Self, b: Self) -> Self {
|
||||||
fn outer_div(self, t: $t) -> Self {
|
|
||||||
self / t as $q
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl_linear_cast!(f32, f64);
|
|
||||||
impl_linear_cast!(f64, f32);
|
|
||||||
|
|
||||||
/// Types with a neutral element for multiplication.
|
|
||||||
pub trait One {
|
|
||||||
/// The neutral element for the multiplicative monoid — typically called `1`.
|
|
||||||
fn one() -> Self;
|
|
||||||
}
|
|
||||||
|
|
||||||
macro_rules! impl_one_float {
|
|
||||||
($t:ty) => {
|
|
||||||
impl One for $t {
|
|
||||||
#[inline(always)]
|
|
||||||
fn one() -> Self {
|
|
||||||
1.
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl_one_float!(f32);
|
|
||||||
impl_one_float!(f64);
|
|
||||||
|
|
||||||
/// Types with a sane definition of π and cosine.
|
|
||||||
pub trait Trigo {
|
|
||||||
/// π.
|
|
||||||
fn pi() -> Self;
|
|
||||||
|
|
||||||
/// Cosine of the argument.
|
|
||||||
fn cos(self) -> Self;
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Trigo for f32 {
|
|
||||||
#[inline(always)]
|
|
||||||
fn pi() -> Self {
|
|
||||||
f32::consts::PI
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
fn cos(self) -> Self {
|
|
||||||
#[cfg(feature = "std")]
|
|
||||||
{
|
|
||||||
self.cos()
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(not(feature = "std"))]
|
|
||||||
{
|
|
||||||
unsafe { cosf32(self) }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl Trigo for f64 {
|
|
||||||
#[inline(always)]
|
|
||||||
fn pi() -> Self {
|
|
||||||
f64::consts::PI
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
fn cos(self) -> Self {
|
|
||||||
#[cfg(feature = "std")]
|
|
||||||
{
|
|
||||||
self.cos()
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(not(feature = "std"))]
|
|
||||||
{
|
|
||||||
unsafe { cosf64(self) }
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Default implementation of [`Interpolate::cubic_hermite`].
|
|
||||||
///
|
|
||||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
|
||||||
pub fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
|
|
||||||
where V: Linear<T>,
|
|
||||||
T: Additive + Mul<T, Output = T> + One {
|
|
||||||
// some stupid generic constants, because Rust doesn’t have polymorphic literals…
|
|
||||||
let one_t = T::one();
|
|
||||||
let two_t = one_t + one_t; // lolololol
|
|
||||||
let three_t = two_t + one_t; // megalol
|
|
||||||
|
|
||||||
// sampler stuff
|
|
||||||
let t2 = t * t;
|
|
||||||
let t3 = t2 * t;
|
|
||||||
let two_t3 = t3 * two_t;
|
|
||||||
let three_t2 = t2 * three_t;
|
|
||||||
|
|
||||||
// tangents
|
|
||||||
let m0 = (b.0 - x.0).outer_div(b.1 - x.1);
|
|
||||||
let m1 = (y.0 - a.0).outer_div(y.1 - a.1);
|
|
||||||
|
|
||||||
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Default implementation of [`Interpolate::quadratic_bezier`].
|
|
||||||
///
|
|
||||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
|
||||||
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
|
|
||||||
where V: Linear<T>,
|
|
||||||
T: Additive + Mul<T, Output = T> + One {
|
|
||||||
let one_t = T::one() - t;
|
|
||||||
let one_t_2 = one_t * one_t;
|
|
||||||
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
|
|
||||||
}
|
|
||||||
|
|
||||||
/// Default implementation of [`Interpolate::cubic_bezier`].
|
|
||||||
///
|
|
||||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
|
||||||
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
|
|
||||||
where V: Linear<T>,
|
|
||||||
T: Additive + Mul<T, Output = T> + One {
|
|
||||||
let one_t = T::one() - t;
|
|
||||||
let one_t_2 = one_t * one_t;
|
|
||||||
let one_t_3 = one_t_2 * one_t;
|
|
||||||
let three = T::one() + T::one() + T::one();
|
|
||||||
|
|
||||||
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
|
|
||||||
}
|
|
||||||
|
|
||||||
macro_rules! impl_interpolate_simple {
|
|
||||||
($t:ty) => {
|
|
||||||
impl Interpolate<$t> for $t {
|
|
||||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
|
||||||
a * (1. - t) + b * t
|
a * (1. - t) + b * t
|
||||||
}
|
}
|
||||||
|
|
||||||
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
|
fn cubic_hermite(t: $t, x: ($t, Self), a: ($t, Self), b: ($t, Self), y: ($t, Self)) -> Self {
|
||||||
cubic_hermite_def(x, a, b, y, t)
|
// sampler stuff
|
||||||
|
let two_t = t * 2.;
|
||||||
|
let three_t = t * 3.;
|
||||||
|
let t2 = t * t;
|
||||||
|
let t3 = t2 * t;
|
||||||
|
let two_t3 = t2 * two_t;
|
||||||
|
let two_t2 = t * two_t;
|
||||||
|
let three_t2 = t * three_t;
|
||||||
|
|
||||||
|
// tangents
|
||||||
|
let m0 = (b.1 - x.1) / (b.0 - x.0) * (b.0 - a.0);
|
||||||
|
let m1 = (y.1 - a.1) / (y.0 - a.0) * (b.0 - a.0);
|
||||||
|
|
||||||
|
a.1 * (two_t3 - three_t2 + 1.)
|
||||||
|
+ m0 * (t3 - two_t2 + t)
|
||||||
|
+ b.1 * (three_t2 - two_t3)
|
||||||
|
+ m1 * (t3 - t2)
|
||||||
}
|
}
|
||||||
|
|
||||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
fn quadratic_bezier(t: $t, a: Self, u: Self, b: Self) -> Self {
|
||||||
quadratic_bezier_def(a, u, b, t)
|
let one_t = 1. - t;
|
||||||
|
let one_t2 = one_t * one_t;
|
||||||
|
|
||||||
|
u + (a - u) * one_t2 + (b - u) * t * t
|
||||||
}
|
}
|
||||||
|
|
||||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
fn cubic_bezier(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
|
||||||
cubic_bezier_def(a, u, v, b, t)
|
let one_t = 1. - t;
|
||||||
|
let one_t2 = one_t * one_t;
|
||||||
|
let one_t3 = one_t2 * one_t;
|
||||||
|
let t2 = t * t;
|
||||||
|
|
||||||
|
a * one_t3 + (u * one_t2 * t + v * one_t * t2) * 3. + b * t2 * t
|
||||||
|
}
|
||||||
|
|
||||||
|
fn cubic_bezier_mirrored(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
|
||||||
|
<Self as $crate::interpolate::Interpolate<$t>>::cubic_bezier(t, a, u, b + b - v, b)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
impl_interpolate_simple!(f32);
|
#[macro_export]
|
||||||
impl_interpolate_simple!(f64);
|
macro_rules! impl_InterpolateT {
|
||||||
|
($t:ty, $v:ty, $pi:expr) => {
|
||||||
macro_rules! impl_interpolate_via {
|
impl $crate::interpolate::Interpolate<$t> for $v {
|
||||||
($t:ty, $v:ty) => {
|
fn step(t: $t, threshold: $t, a: Self, b: Self) -> Self {
|
||||||
impl Interpolate<$t> for $v {
|
if t < threshold {
|
||||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
a
|
||||||
a * (1. - t as $v) + b * t as $v
|
} else {
|
||||||
|
b
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
#[cfg(feature = "std")]
|
||||||
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
fn cosine(t: $t, a: Self, b: Self) -> Self {
|
||||||
|
let cos_nt = (1. - (t * $pi).cos()) * 0.5;
|
||||||
|
<Self as $crate::interpolate::Interpolate<$t>>::lerp(cos_nt, a, b)
|
||||||
|
}
|
||||||
|
#[cfg(not(feature = "std"))]
|
||||||
|
fn cosine(t: $t, a: Self, b: Self) -> Self {
|
||||||
|
unimplemented!()
|
||||||
}
|
}
|
||||||
|
|
||||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
fn lerp(t: $t, a: Self, b: Self) -> Self {
|
||||||
quadratic_bezier_def(a, u, b, t as $v)
|
let t = Self::from(t);
|
||||||
|
a * (1. - t) + b * t
|
||||||
}
|
}
|
||||||
|
|
||||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
fn cubic_hermite(t: $t, x: ($t, Self), a: ($t, Self), b: ($t, Self), y: ($t, Self)) -> Self {
|
||||||
cubic_bezier_def(a, u, v, b, t as $v)
|
// sampler stuff
|
||||||
|
let t = Self::from(t);
|
||||||
|
let two_t = t * 2.;
|
||||||
|
let three_t = t * 3.;
|
||||||
|
let t2 = t * t;
|
||||||
|
let t3 = t2 * t;
|
||||||
|
let two_t3 = t2 * two_t;
|
||||||
|
let two_t2 = t * two_t;
|
||||||
|
let three_t2 = t * three_t;
|
||||||
|
|
||||||
|
// tangents
|
||||||
|
let m0 = (b.1 - x.1) / (Self::from(b.0 - x.0)) * (Self::from(b.0 - a.0));
|
||||||
|
let m1 = (y.1 - a.1) / (Self::from(y.0 - a.0)) * (Self::from(b.0 - a.0));
|
||||||
|
|
||||||
|
a.1 * (two_t3 - three_t2 + 1.)
|
||||||
|
+ m0 * (t3 - two_t2 + t)
|
||||||
|
+ b.1 * (three_t2 - two_t3)
|
||||||
|
+ m1 * (t3 - t2)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn quadratic_bezier(t: $t, a: Self, u: Self, b: Self) -> Self {
|
||||||
|
let t = Self::from(t);
|
||||||
|
let one_t = 1. - t;
|
||||||
|
let one_t2 = one_t * one_t;
|
||||||
|
|
||||||
|
u + (a - u) * one_t2 + (b - u) * t * t
|
||||||
|
}
|
||||||
|
|
||||||
|
fn cubic_bezier(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
|
||||||
|
let t = Self::from(t);
|
||||||
|
let one_t = 1. - t;
|
||||||
|
let one_t2 = one_t * one_t;
|
||||||
|
let one_t3 = one_t2 * one_t;
|
||||||
|
let t2 = t * t;
|
||||||
|
|
||||||
|
a * one_t3 + (u * one_t2 * t + v * one_t * t2) * 3. + b * t2 * t
|
||||||
|
}
|
||||||
|
|
||||||
|
fn cubic_bezier_mirrored(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
|
||||||
|
<Self as $crate::interpolate::Interpolate<$t>>::cubic_bezier(t, a, u, b + b - v, b)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
};
|
||||||
}
|
}
|
||||||
|
|
||||||
impl_interpolate_via!(f32, f64);
|
impl_Interpolate!(f32, f32, f32::consts::PI);
|
||||||
impl_interpolate_via!(f64, f32);
|
impl_Interpolate!(f64, f64, f64::consts::PI);
|
||||||
|
impl_InterpolateT!(f32, f64, f32::consts::PI);
|
||||||
|
@ -1,13 +1,18 @@
|
|||||||
//! Available interpolation modes.
|
//! Available interpolation modes.
|
||||||
|
|
||||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
#[cfg(any(feature = "serialization", feature = "serde"))]
|
||||||
|
use serde::{Deserialize, Serialize};
|
||||||
|
|
||||||
/// Available kind of interpolations.
|
/// Available kind of interpolations.
|
||||||
///
|
///
|
||||||
/// Feel free to visit each variant for more documentation.
|
/// Feel free to visit each variant for more documentation.
|
||||||
|
#[non_exhaustive]
|
||||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
#[cfg_attr(
|
||||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
any(feature = "serialization", feature = "serde"),
|
||||||
|
derive(Deserialize, Serialize),
|
||||||
|
serde(rename_all = "snake_case")
|
||||||
|
)]
|
||||||
pub enum Interpolation<T, V> {
|
pub enum Interpolation<T, V> {
|
||||||
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
|
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
|
||||||
/// case the next key is used.
|
/// case the next key is used.
|
||||||
@ -19,12 +24,16 @@ pub enum Interpolation<T, V> {
|
|||||||
///
|
///
|
||||||
/// [`Key`]: crate::key::Key
|
/// [`Key`]: crate::key::Key
|
||||||
Step(T),
|
Step(T),
|
||||||
|
|
||||||
/// Linear interpolation between a key and the next one.
|
/// Linear interpolation between a key and the next one.
|
||||||
Linear,
|
Linear,
|
||||||
|
|
||||||
/// Cosine interpolation between a key and the next one.
|
/// Cosine interpolation between a key and the next one.
|
||||||
Cosine,
|
Cosine,
|
||||||
|
|
||||||
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
|
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
|
||||||
CatmullRom,
|
CatmullRom,
|
||||||
|
|
||||||
/// Bézier interpolation.
|
/// Bézier interpolation.
|
||||||
///
|
///
|
||||||
/// A control point that uses such an interpolation is associated with an extra point. The segmant
|
/// A control point that uses such an interpolation is associated with an extra point. The segmant
|
||||||
@ -40,8 +49,19 @@ pub enum Interpolation<T, V> {
|
|||||||
/// point and the current control point’s associated point. This is called _quadratic Bézer
|
/// point and the current control point’s associated point. This is called _quadratic Bézer
|
||||||
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
||||||
Bezier(V),
|
Bezier(V),
|
||||||
#[doc(hidden)]
|
|
||||||
__NonExhaustive
|
/// A special Bézier interpolation using an _input tangent_ and an _output tangent_.
|
||||||
|
///
|
||||||
|
/// With this kind of interpolation, a control point has an input tangent, which has the same role
|
||||||
|
/// as the one defined by [`Interpolation::Bezier`], and an output tangent, which has the same
|
||||||
|
/// role defined by the next key’s [`Interpolation::Bezier`] if present, normally.
|
||||||
|
///
|
||||||
|
/// What it means is that instead of setting the output tangent as the next key’s Bézier tangent,
|
||||||
|
/// this interpolation mode allows you to manually set the output tangent. That will yield more
|
||||||
|
/// control on the tangents but might generate discontinuities. Use with care.
|
||||||
|
///
|
||||||
|
/// Stroke Bézier interpolation is always a cubic Bézier interpolation by default.
|
||||||
|
StrokeBezier(V, V),
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T, V> Default for Interpolation<T, V> {
|
impl<T, V> Default for Interpolation<T, V> {
|
||||||
|
14
src/iter.rs
14
src/iter.rs
@ -11,9 +11,13 @@ use crate::{Key, Spline};
|
|||||||
/// Iterator over spline keys.
|
/// Iterator over spline keys.
|
||||||
///
|
///
|
||||||
/// This iterator type is guaranteed to iterate over sorted keys.
|
/// This iterator type is guaranteed to iterate over sorted keys.
|
||||||
pub struct Iter<'a, T, V> where T: 'a, V: 'a {
|
pub struct Iter<'a, T, V>
|
||||||
|
where
|
||||||
|
T: 'a,
|
||||||
|
V: 'a,
|
||||||
|
{
|
||||||
spline: &'a Spline<T, V>,
|
spline: &'a Spline<T, V>,
|
||||||
i: usize
|
i: usize,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<'a, T, V> Iterator for Iter<'a, T, V> {
|
impl<'a, T, V> Iterator for Iter<'a, T, V> {
|
||||||
@ -35,10 +39,6 @@ impl<'a, T, V> IntoIterator for &'a Spline<T, V> {
|
|||||||
type IntoIter = Iter<'a, T, V>;
|
type IntoIter = Iter<'a, T, V>;
|
||||||
|
|
||||||
fn into_iter(self) -> Self::IntoIter {
|
fn into_iter(self) -> Self::IntoIter {
|
||||||
Iter {
|
Iter { spline: self, i: 0 }
|
||||||
spline: self,
|
|
||||||
i: 0
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
21
src/key.rs
21
src/key.rs
@ -1,14 +1,14 @@
|
|||||||
//! Spline control points.
|
//! Spline control points.
|
||||||
//!
|
//!
|
||||||
//! A control point associates to a “sampling value” (a.k.a. time) a carriede value that can be
|
//! A control point associates to a “sampling value” (a.k.a. time) a carried value that can be
|
||||||
//! interpolated along the curve made by the control points.
|
//! interpolated along the curve made by the control points.
|
||||||
//!
|
//!
|
||||||
//! Splines constructed with this crate have the property that it’s possible to change the
|
//! Splines constructed with this crate have the property that it’s possible to change the
|
||||||
//! interpolation mode on a key-based way, allowing you to implement and encode complex curves.
|
//! interpolation mode on a key-based way, allowing you to implement and encode complex curves.
|
||||||
|
|
||||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
|
||||||
|
|
||||||
use crate::interpolation::Interpolation;
|
use crate::interpolation::Interpolation;
|
||||||
|
#[cfg(any(feature = "serialization", feature = "serde"))]
|
||||||
|
use serde::{Deserialize, Serialize};
|
||||||
|
|
||||||
/// A spline control point.
|
/// A spline control point.
|
||||||
///
|
///
|
||||||
@ -18,20 +18,27 @@ use crate::interpolation::Interpolation;
|
|||||||
///
|
///
|
||||||
/// [`Interpolation`]: crate::interpolation::Interpolation
|
/// [`Interpolation`]: crate::interpolation::Interpolation
|
||||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
#[cfg_attr(
|
||||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
any(feature = "serialization", feature = "serde"),
|
||||||
|
derive(Deserialize, Serialize),
|
||||||
|
serde(rename_all = "snake_case")
|
||||||
|
)]
|
||||||
pub struct Key<T, V> {
|
pub struct Key<T, V> {
|
||||||
/// Interpolation parameter at which the [`Key`] should be reached.
|
/// Interpolation parameter at which the [`Key`] should be reached.
|
||||||
pub t: T,
|
pub t: T,
|
||||||
/// Carried value.
|
/// Carried value.
|
||||||
pub value: V,
|
pub value: V,
|
||||||
/// Interpolation mode.
|
/// Interpolation mode.
|
||||||
pub interpolation: Interpolation<T, V>
|
pub interpolation: Interpolation<T, V>,
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T, V> Key<T, V> {
|
impl<T, V> Key<T, V> {
|
||||||
/// Create a new key.
|
/// Create a new key.
|
||||||
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
|
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
|
||||||
Key { t, value, interpolation }
|
Key {
|
||||||
|
t,
|
||||||
|
value,
|
||||||
|
interpolation,
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
33
src/lib.rs
33
src/lib.rs
@ -84,16 +84,19 @@
|
|||||||
//!
|
//!
|
||||||
//! So here’s a list of currently supported features and how to enable them:
|
//! So here’s a list of currently supported features and how to enable them:
|
||||||
//!
|
//!
|
||||||
//! - **Serialization / deserialization.**
|
//! - **Serde.**
|
||||||
//! - This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
//! - This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||||
//! types exported by this crate.
|
//! types exported by this crate.
|
||||||
//! - Enable with the `"serialization"` feature.
|
//! - Enable with the `"serde"` feature.
|
||||||
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
||||||
//! - Adds some useful implementations of `Interpolate` for some cgmath types.
|
//! - Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||||
//! - Enable with the `"impl-cgmath"` feature.
|
//! - Enable with the `"cgmath"` feature.
|
||||||
|
//! - **[glam](https://crates.io/crates/glam) implementors.**
|
||||||
|
//! - Adds some useful implementations of `Interpolate` for some glam types.
|
||||||
|
//! - Enable with the `"glam"` feature.
|
||||||
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
||||||
//! - Adds some useful implementations of `Interpolate` for some nalgebra types.
|
//! - Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||||
//! - Enable with the `"impl-nalgebra"` feature.
|
//! - Enable with the `"nalgebra"` feature.
|
||||||
//! - **Standard library / no standard library.**
|
//! - **Standard library / no standard library.**
|
||||||
//! - It’s possible to compile against the standard library or go on your own without it.
|
//! - It’s possible to compile against the standard library or go on your own without it.
|
||||||
//! - Compiling with the standard library is enabled by default.
|
//! - Compiling with the standard library is enabled by default.
|
||||||
@ -105,15 +108,31 @@
|
|||||||
#![cfg_attr(not(feature = "std"), no_std)]
|
#![cfg_attr(not(feature = "std"), no_std)]
|
||||||
#![cfg_attr(not(feature = "std"), feature(alloc))]
|
#![cfg_attr(not(feature = "std"), feature(alloc))]
|
||||||
#![cfg_attr(not(feature = "std"), feature(core_intrinsics))]
|
#![cfg_attr(not(feature = "std"), feature(core_intrinsics))]
|
||||||
|
#![cfg_attr(
|
||||||
|
any(
|
||||||
|
feature = "impl-cgmath",
|
||||||
|
feature = "impl-glam",
|
||||||
|
feature = "impl-nalgebra"
|
||||||
|
),
|
||||||
|
deprecated(
|
||||||
|
since = "4.2.0",
|
||||||
|
note = "you are using an impl-* feature gate; please switch to * (e.g. impl-cgmath becomes cgmath)"
|
||||||
|
)
|
||||||
|
)]
|
||||||
|
|
||||||
#[cfg(not(feature = "std"))] extern crate alloc;
|
#[cfg(not(feature = "std"))]
|
||||||
|
extern crate alloc;
|
||||||
|
|
||||||
#[cfg(feature = "impl-cgmath")] mod cgmath;
|
#[cfg(any(feature = "impl-cgmath", feature = "cgmath"))]
|
||||||
|
mod cgmath;
|
||||||
|
#[cfg(any(feature = "impl-glam", feature = "glam"))]
|
||||||
|
mod glam;
|
||||||
pub mod interpolate;
|
pub mod interpolate;
|
||||||
pub mod interpolation;
|
pub mod interpolation;
|
||||||
pub mod iter;
|
pub mod iter;
|
||||||
pub mod key;
|
pub mod key;
|
||||||
#[cfg(feature = "impl-nalgebra")] mod nalgebra;
|
#[cfg(any(feature = "impl-nalgebra", feature = "nalgebra"))]
|
||||||
|
mod nalgebra;
|
||||||
pub mod spline;
|
pub mod spline;
|
||||||
|
|
||||||
pub use crate::interpolate::Interpolate;
|
pub use crate::interpolate::Interpolate;
|
||||||
|
@ -1,64 +1,27 @@
|
|||||||
use alga::general::{ClosedAdd, ClosedDiv, ClosedMul, ClosedSub};
|
#[cfg(not(feature = "std"))]
|
||||||
use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6};
|
use core::f32;
|
||||||
use num_traits as nt;
|
#[cfg(not(feature = "std"))]
|
||||||
use std::ops::Mul;
|
use core::f64;
|
||||||
|
#[cfg(feature = "std")]
|
||||||
|
use std::f32;
|
||||||
|
#[cfg(feature = "std")]
|
||||||
|
use std::f64;
|
||||||
|
|
||||||
use crate::interpolate::{
|
use crate::impl_Interpolate;
|
||||||
Interpolate, Linear, Additive, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
|
use nalgebra::{Quaternion, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6};
|
||||||
};
|
|
||||||
|
|
||||||
macro_rules! impl_interpolate_vector {
|
impl_Interpolate!(f32, Vector1<f32>, f32::consts::PI);
|
||||||
($($t:tt)*) => {
|
impl_Interpolate!(f32, Vector2<f32>, f32::consts::PI);
|
||||||
// implement Linear
|
impl_Interpolate!(f32, Vector3<f32>, f32::consts::PI);
|
||||||
impl<T> Linear<T> for $($t)*<T> where T: Scalar + ClosedAdd + ClosedSub + ClosedMul + ClosedDiv {
|
impl_Interpolate!(f32, Vector4<f32>, f32::consts::PI);
|
||||||
#[inline(always)]
|
impl_Interpolate!(f32, Vector5<f32>, f32::consts::PI);
|
||||||
fn outer_mul(self, t: T) -> Self {
|
impl_Interpolate!(f32, Vector6<f32>, f32::consts::PI);
|
||||||
self * t
|
impl_Interpolate!(f32, Quaternion<f32>, f32::consts::PI);
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
impl_Interpolate!(f64, Vector1<f64>, f64::consts::PI);
|
||||||
fn outer_div(self, t: T) -> Self {
|
impl_Interpolate!(f64, Vector2<f64>, f64::consts::PI);
|
||||||
self / t
|
impl_Interpolate!(f64, Vector3<f64>, f64::consts::PI);
|
||||||
}
|
impl_Interpolate!(f64, Vector4<f64>, f64::consts::PI);
|
||||||
}
|
impl_Interpolate!(f64, Vector5<f64>, f64::consts::PI);
|
||||||
|
impl_Interpolate!(f64, Vector6<f64>, f64::consts::PI);
|
||||||
impl<T, V> Interpolate<T> for $($t)*<V>
|
impl_Interpolate!(f64, Quaternion<f64>, f64::consts::PI);
|
||||||
where Self: Linear<T>,
|
|
||||||
T: Additive + One + Mul<T, Output = T>,
|
|
||||||
V: nt::One +
|
|
||||||
nt::Zero +
|
|
||||||
Additive +
|
|
||||||
Scalar +
|
|
||||||
ClosedAdd +
|
|
||||||
ClosedMul +
|
|
||||||
ClosedSub +
|
|
||||||
Interpolate<T> {
|
|
||||||
#[inline(always)]
|
|
||||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
|
||||||
Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
|
||||||
cubic_hermite_def(x, a, b, y, t)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
|
||||||
quadratic_bezier_def(a, u, b, t)
|
|
||||||
}
|
|
||||||
|
|
||||||
#[inline(always)]
|
|
||||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
|
||||||
cubic_bezier_def(a, u, v, b, t)
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
}
|
|
||||||
|
|
||||||
impl_interpolate_vector!(Vector1);
|
|
||||||
impl_interpolate_vector!(Vector2);
|
|
||||||
impl_interpolate_vector!(Vector3);
|
|
||||||
impl_interpolate_vector!(Vector4);
|
|
||||||
impl_interpolate_vector!(Vector5);
|
|
||||||
impl_interpolate_vector!(Vector6);
|
|
||||||
|
242
src/spline.rs
242
src/spline.rs
@ -1,15 +1,19 @@
|
|||||||
//! Spline curves and operations.
|
//! Spline curves and operations.
|
||||||
|
|
||||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
// #[cfg(feature = "std")]
|
||||||
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
|
use crate::interpolate::{Interpolate, Interpolator};
|
||||||
#[cfg(feature = "std")] use std::cmp::Ordering;
|
|
||||||
#[cfg(feature = "std")] use std::ops::{Div, Mul};
|
|
||||||
#[cfg(not(feature = "std"))] use core::ops::{Div, Mul};
|
|
||||||
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
|
|
||||||
|
|
||||||
use crate::interpolate::{Interpolate, Additive, One, Trigo};
|
|
||||||
use crate::interpolation::Interpolation;
|
use crate::interpolation::Interpolation;
|
||||||
use crate::key::Key;
|
use crate::key::Key;
|
||||||
|
#[cfg(not(feature = "std"))]
|
||||||
|
use alloc::vec::Vec;
|
||||||
|
#[cfg(not(feature = "std"))]
|
||||||
|
use core::cmp::Ordering;
|
||||||
|
#[cfg(not(feature = "std"))]
|
||||||
|
use core::ops::{Div, Mul};
|
||||||
|
#[cfg(any(feature = "serialization", feature = "serde"))]
|
||||||
|
use serde::{Deserialize, Serialize};
|
||||||
|
#[cfg(feature = "std")]
|
||||||
|
use std::cmp::Ordering;
|
||||||
|
|
||||||
/// Spline curve used to provide interpolation between control points (keys).
|
/// Spline curve used to provide interpolation between control points (keys).
|
||||||
///
|
///
|
||||||
@ -23,24 +27,42 @@ use crate::key::Key;
|
|||||||
/// for the required interpolation mode, you get `None`.
|
/// for the required interpolation mode, you get `None`.
|
||||||
/// - [`Spline::clamped_sample`]: behaves like [`Spline::sample`] but will return either the first
|
/// - [`Spline::clamped_sample`]: behaves like [`Spline::sample`] but will return either the first
|
||||||
/// or last key if out of bound; it will return `None` if not enough key.
|
/// or last key if out of bound; it will return `None` if not enough key.
|
||||||
#[derive(Debug, Clone)]
|
#[derive(Debug, Clone, Default)]
|
||||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
#[cfg_attr(
|
||||||
|
any(feature = "serialization", feature = "serde"),
|
||||||
|
derive(Deserialize, Serialize)
|
||||||
|
)]
|
||||||
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
|
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
|
||||||
|
|
||||||
impl<T, V> Spline<T, V> {
|
impl<T, V> Spline<T, V> {
|
||||||
/// Internal sort to ensure invariant of sorting keys is valid.
|
/// Internal sort to ensure invariant of sorting keys is valid.
|
||||||
fn internal_sort(&mut self) where T: PartialOrd {
|
fn internal_sort(&mut self)
|
||||||
self.0.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
where
|
||||||
|
T: PartialOrd,
|
||||||
|
{
|
||||||
|
self
|
||||||
|
.0
|
||||||
|
.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended
|
/// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended
|
||||||
/// to provide ascending sorted ones (for performance purposes).
|
/// to provide ascending sorted ones (for performance purposes).
|
||||||
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
|
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self
|
||||||
|
where
|
||||||
|
T: PartialOrd,
|
||||||
|
{
|
||||||
let mut spline = Spline(keys);
|
let mut spline = Spline(keys);
|
||||||
spline.internal_sort();
|
spline.internal_sort();
|
||||||
spline
|
spline
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Clear the spline by removing all keys. Keeps the underlying allocated storage, so adding
|
||||||
|
/// new keys should be faster than creating a new [`Spline`]
|
||||||
|
#[inline]
|
||||||
|
pub fn clear(&mut self) {
|
||||||
|
self.0.clear()
|
||||||
|
}
|
||||||
|
|
||||||
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys don’t have to be
|
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys don’t have to be
|
||||||
/// sorted.
|
/// sorted.
|
||||||
///
|
///
|
||||||
@ -48,7 +70,11 @@ impl<T, V> Spline<T, V> {
|
|||||||
///
|
///
|
||||||
/// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
|
/// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
|
||||||
/// use [`Spline::from_vec`] if you are passing a [`Vec`].
|
/// use [`Spline::from_vec`] if you are passing a [`Vec`].
|
||||||
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
|
pub fn from_iter<I>(iter: I) -> Self
|
||||||
|
where
|
||||||
|
I: Iterator<Item = Key<T, V>>,
|
||||||
|
T: PartialOrd,
|
||||||
|
{
|
||||||
Self::from_vec(iter.collect())
|
Self::from_vec(iter.collect())
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -69,7 +95,8 @@ impl<T, V> Spline<T, V> {
|
|||||||
self.0.is_empty()
|
self.0.is_empty()
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Sample a spline at a given time.
|
/// Sample a spline at a given time, returning the interpolated value along with its associated
|
||||||
|
/// key.
|
||||||
///
|
///
|
||||||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||||||
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
||||||
@ -83,35 +110,38 @@ impl<T, V> Spline<T, V> {
|
|||||||
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
|
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
|
||||||
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
||||||
/// the sampling.
|
/// the sampling.
|
||||||
///
|
pub fn sample_with_key(&self, t: T) -> Option<SampledWithKey<V>>
|
||||||
pub fn sample(&self, t: T) -> Option<V>
|
where
|
||||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
T: Interpolator,
|
||||||
V: Interpolate<T> {
|
V: Interpolate<T>,
|
||||||
|
{
|
||||||
let keys = &self.0;
|
let keys = &self.0;
|
||||||
let i = search_lower_cp(keys, t)?;
|
let i = search_lower_cp(keys, t)?;
|
||||||
let cp0 = &keys[i];
|
let cp0 = &keys[i];
|
||||||
|
|
||||||
match cp0.interpolation {
|
let value = match cp0.interpolation {
|
||||||
Interpolation::Step(threshold) => {
|
Interpolation::Step(threshold) => {
|
||||||
let cp1 = &keys[i + 1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = t.normalize(cp0.t, cp1.t);
|
||||||
Some(if nt < threshold { cp0.value } else { cp1.value })
|
let value = V::step(nt, threshold, cp0.value, cp1.value);
|
||||||
|
|
||||||
|
Some(value)
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::Linear => {
|
Interpolation::Linear => {
|
||||||
let cp1 = &keys[i + 1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = t.normalize(cp0.t, cp1.t);
|
||||||
|
let value = V::lerp(nt, cp0.value, cp1.value);
|
||||||
|
|
||||||
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
Some(value)
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::Cosine => {
|
Interpolation::Cosine => {
|
||||||
let two_t = T::one() + T::one();
|
|
||||||
let cp1 = &keys[i + 1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = t.normalize(cp0.t, cp1.t);
|
||||||
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
let value = V::cosine(nt, cp0.value, cp1.value);
|
||||||
|
|
||||||
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
Some(value)
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::CatmullRom => {
|
Interpolation::CatmullRom => {
|
||||||
@ -123,34 +153,51 @@ impl<T, V> Spline<T, V> {
|
|||||||
let cp1 = &keys[i + 1];
|
let cp1 = &keys[i + 1];
|
||||||
let cpm0 = &keys[i - 1];
|
let cpm0 = &keys[i - 1];
|
||||||
let cpm1 = &keys[i + 2];
|
let cpm1 = &keys[i + 2];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = t.normalize(cp0.t, cp1.t);
|
||||||
|
let value = V::cubic_hermite(
|
||||||
|
nt,
|
||||||
|
(cpm0.t, cpm0.value),
|
||||||
|
(cp0.t, cp0.value),
|
||||||
|
(cp1.t, cp1.value),
|
||||||
|
(cpm1.t, cpm1.value),
|
||||||
|
);
|
||||||
|
|
||||||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
Some(value)
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::Bezier(u) => {
|
Interpolation::Bezier(u) | Interpolation::StrokeBezier(_, u) => {
|
||||||
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
|
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
|
||||||
let cp1 = &keys[i + 1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = t.normalize(cp0.t, cp1.t);
|
||||||
|
|
||||||
if let Interpolation::Bezier(v) = cp1.interpolation {
|
let value = match cp1.interpolation {
|
||||||
Some(Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt))
|
Interpolation::Bezier(v) => V::cubic_bezier_mirrored(nt, cp0.value, u, v, cp1.value),
|
||||||
//let one_nt = T::one() - nt;
|
|
||||||
//let one_nt_2 = one_nt * one_nt;
|
Interpolation::StrokeBezier(v, _) => V::cubic_bezier(nt, cp0.value, u, v, cp1.value),
|
||||||
//let one_nt_3 = one_nt_2 * one_nt;
|
|
||||||
//let three_one_nt_2 = one_nt_2 + one_nt_2 + one_nt_2; // one_nt_2 * 3
|
_ => V::quadratic_bezier(nt, cp0.value, u, cp1.value),
|
||||||
//let r = cp0.value * one_nt_3;
|
};
|
||||||
} else {
|
|
||||||
Some(Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt))
|
Some(value)
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
};
|
||||||
|
|
||||||
Interpolation::__NonExhaustive => unreachable!(),
|
value.map(|value| SampledWithKey { value, key: i })
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Sample a spline at a given time with clamping.
|
/// Sample a spline at a given time.
|
||||||
|
///
|
||||||
|
pub fn sample(&self, t: T) -> Option<V>
|
||||||
|
where
|
||||||
|
T: Interpolator,
|
||||||
|
V: Interpolate<T>,
|
||||||
|
{
|
||||||
|
self.sample_with_key(t).map(|sampled| sampled.value)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
|
||||||
|
/// associated key.
|
||||||
///
|
///
|
||||||
/// # Return
|
/// # Return
|
||||||
///
|
///
|
||||||
@ -160,22 +207,33 @@ impl<T, V> Spline<T, V> {
|
|||||||
/// # Error
|
/// # Error
|
||||||
///
|
///
|
||||||
/// This function returns [`None`] if you have no key.
|
/// This function returns [`None`] if you have no key.
|
||||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
pub fn clamped_sample_with_key(&self, t: T) -> Option<SampledWithKey<V>>
|
||||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
where
|
||||||
V: Interpolate<T> {
|
T: Interpolator,
|
||||||
|
V: Interpolate<T>,
|
||||||
|
{
|
||||||
if self.0.is_empty() {
|
if self.0.is_empty() {
|
||||||
return None;
|
return None;
|
||||||
}
|
}
|
||||||
|
|
||||||
self.sample(t).or_else(move || {
|
self.sample_with_key(t).or_else(move || {
|
||||||
let first = self.0.first().unwrap();
|
let first = self.0.first().unwrap();
|
||||||
|
|
||||||
if t <= first.t {
|
if t <= first.t {
|
||||||
Some(first.value)
|
let sampled = SampledWithKey {
|
||||||
|
value: first.value,
|
||||||
|
key: 0,
|
||||||
|
};
|
||||||
|
Some(sampled)
|
||||||
} else {
|
} else {
|
||||||
let last = self.0.last().unwrap();
|
let last = self.0.last().unwrap();
|
||||||
|
|
||||||
if t >= last.t {
|
if t >= last.t {
|
||||||
Some(last.value)
|
let sampled = SampledWithKey {
|
||||||
|
value: last.value,
|
||||||
|
key: self.0.len() - 1,
|
||||||
|
};
|
||||||
|
Some(sampled)
|
||||||
} else {
|
} else {
|
||||||
None
|
None
|
||||||
}
|
}
|
||||||
@ -183,8 +241,20 @@ impl<T, V> Spline<T, V> {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Sample a spline at a given time with clamping.
|
||||||
|
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||||
|
where
|
||||||
|
T: Interpolator,
|
||||||
|
V: Interpolate<T>,
|
||||||
|
{
|
||||||
|
self.clamped_sample_with_key(t).map(|sampled| sampled.value)
|
||||||
|
}
|
||||||
|
|
||||||
/// Add a key into the spline.
|
/// Add a key into the spline.
|
||||||
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
|
pub fn add(&mut self, key: Key<T, V>)
|
||||||
|
where
|
||||||
|
T: PartialOrd,
|
||||||
|
{
|
||||||
self.0.push(key);
|
self.0.push(key);
|
||||||
self.internal_sort();
|
self.internal_sort();
|
||||||
}
|
}
|
||||||
@ -207,14 +277,10 @@ impl<T, V> Spline<T, V> {
|
|||||||
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
|
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
|
||||||
/// your key. If you just want to change the interpolation mode or the carried value, consider
|
/// your key. If you just want to change the interpolation mode or the carried value, consider
|
||||||
/// using the [`Spline::get_mut`] method instead as it will be way faster.
|
/// using the [`Spline::get_mut`] method instead as it will be way faster.
|
||||||
pub fn replace<F>(
|
pub fn replace<F>(&mut self, index: usize, f: F) -> Option<Key<T, V>>
|
||||||
&mut self,
|
|
||||||
index: usize,
|
|
||||||
f: F
|
|
||||||
) -> Option<Key<T, V>>
|
|
||||||
where
|
where
|
||||||
F: FnOnce(&Key<T, V>) -> Key<T, V>,
|
F: FnOnce(&Key<T, V>) -> Key<T, V>,
|
||||||
T: PartialOrd
|
T: PartialOrd,
|
||||||
{
|
{
|
||||||
let key = self.remove(index)?;
|
let key = self.remove(index)?;
|
||||||
self.add(f(&key));
|
self.add(f(&key));
|
||||||
@ -230,16 +296,27 @@ impl<T, V> Spline<T, V> {
|
|||||||
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
|
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
|
||||||
self.0.get_mut(index).map(|key| KeyMut {
|
self.0.get_mut(index).map(|key| KeyMut {
|
||||||
value: &mut key.value,
|
value: &mut key.value,
|
||||||
interpolation: &mut key.interpolation
|
interpolation: &mut key.interpolation,
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// A sampled value along with its key index.
|
||||||
|
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
|
||||||
|
pub struct SampledWithKey<V> {
|
||||||
|
/// Sampled value.
|
||||||
|
pub value: V,
|
||||||
|
|
||||||
|
/// Key index.
|
||||||
|
pub key: usize,
|
||||||
|
}
|
||||||
|
|
||||||
/// A mutable [`Key`].
|
/// A mutable [`Key`].
|
||||||
///
|
///
|
||||||
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
|
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
|
||||||
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
|
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
|
||||||
/// want to achieve this, you’re advised to use [`Spline::replace`].
|
/// want to achieve this, you’re advised to use [`Spline::replace`].
|
||||||
|
#[derive(Debug)]
|
||||||
pub struct KeyMut<'a, T, V> {
|
pub struct KeyMut<'a, T, V> {
|
||||||
/// Carried value.
|
/// Carried value.
|
||||||
pub value: &'a mut V,
|
pub value: &'a mut V,
|
||||||
@ -247,46 +324,21 @@ pub struct KeyMut<'a, T, V> {
|
|||||||
pub interpolation: &'a mut Interpolation<T, V>,
|
pub interpolation: &'a mut Interpolation<T, V>,
|
||||||
}
|
}
|
||||||
|
|
||||||
// Normalize a time ([0;1]) given two control points.
|
|
||||||
#[inline(always)]
|
|
||||||
pub(crate) fn normalize_time<T, V>(
|
|
||||||
t: T,
|
|
||||||
cp: &Key<T, V>,
|
|
||||||
cp1: &Key<T, V>
|
|
||||||
) -> T where T: Additive + Div<T, Output = T> + PartialEq {
|
|
||||||
assert!(cp1.t != cp.t, "overlapping keys");
|
|
||||||
(t - cp.t) / (cp1.t - cp.t)
|
|
||||||
}
|
|
||||||
|
|
||||||
// Find the lower control point corresponding to a given time.
|
// Find the lower control point corresponding to a given time.
|
||||||
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize> where T: PartialOrd {
|
// It has the property to have a timestamp smaller or equal to t
|
||||||
let mut i = 0;
|
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize>
|
||||||
|
where
|
||||||
|
T: PartialOrd,
|
||||||
|
{
|
||||||
let len = cps.len();
|
let len = cps.len();
|
||||||
|
|
||||||
if len < 2 {
|
if len < 2 {
|
||||||
return None;
|
return None;
|
||||||
}
|
}
|
||||||
|
match cps.binary_search_by(|key| key.t.partial_cmp(&t).unwrap()) {
|
||||||
loop {
|
Err(i) if i >= len => None,
|
||||||
let cp = &cps[i];
|
Err(i) if i == 0 => None,
|
||||||
let cp1 = &cps[i+1];
|
Err(i) => Some(i - 1),
|
||||||
|
Ok(i) if i == len - 1 => None,
|
||||||
if t >= cp1.t {
|
Ok(i) => Some(i),
|
||||||
if i >= len - 2 {
|
|
||||||
return None;
|
|
||||||
}
|
|
||||||
|
|
||||||
i += 1;
|
|
||||||
} else if t < cp.t {
|
|
||||||
if i == 0 {
|
|
||||||
return None;
|
|
||||||
}
|
|
||||||
|
|
||||||
i -= 1;
|
|
||||||
} else {
|
|
||||||
break; // found
|
|
||||||
}
|
|
||||||
}
|
}
|
||||||
|
|
||||||
Some(i)
|
|
||||||
}
|
}
|
||||||
|
43
tests/cgmath.rs
Normal file
43
tests/cgmath.rs
Normal file
@ -0,0 +1,43 @@
|
|||||||
|
#![cfg(feature = "cgmath")]
|
||||||
|
|
||||||
|
use cgmath as cg;
|
||||||
|
use splines::{Interpolation, Key, Spline};
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn cgmath_vector_interpolation() {
|
||||||
|
use splines::Interpolate;
|
||||||
|
|
||||||
|
let start = cg::Vector2::new(0.0, 0.0);
|
||||||
|
let mid = cg::Vector2::new(0.5, 0.5);
|
||||||
|
let end = cg::Vector2::new(1.0, 1.0);
|
||||||
|
|
||||||
|
assert_eq!(Interpolate::lerp(0., start, end), start);
|
||||||
|
assert_eq!(Interpolate::lerp(1., start, end), end);
|
||||||
|
assert_eq!(Interpolate::lerp(0.5, start, end), mid);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn stroke_bezier_straight() {
|
||||||
|
use float_cmp::approx_eq;
|
||||||
|
|
||||||
|
let keys = vec![
|
||||||
|
Key::new(
|
||||||
|
0.0,
|
||||||
|
cg::Vector2::new(0., 1.),
|
||||||
|
Interpolation::StrokeBezier(cg::Vector2::new(0., 1.), cg::Vector2::new(0., 1.)),
|
||||||
|
),
|
||||||
|
Key::new(
|
||||||
|
5.0,
|
||||||
|
cg::Vector2::new(5., 1.),
|
||||||
|
Interpolation::StrokeBezier(cg::Vector2::new(5., 1.), cg::Vector2::new(5., 1.)),
|
||||||
|
),
|
||||||
|
];
|
||||||
|
let spline = Spline::from_vec(keys);
|
||||||
|
|
||||||
|
assert!(approx_eq!(f32, spline.clamped_sample(0.0).unwrap().y, 1.));
|
||||||
|
assert!(approx_eq!(f32, spline.clamped_sample(1.0).unwrap().y, 1.));
|
||||||
|
assert!(approx_eq!(f32, spline.clamped_sample(2.0).unwrap().y, 1.));
|
||||||
|
assert!(approx_eq!(f32, spline.clamped_sample(3.0).unwrap().y, 1.));
|
||||||
|
assert!(approx_eq!(f32, spline.clamped_sample(4.0).unwrap().y, 1.));
|
||||||
|
assert!(approx_eq!(f32, spline.clamped_sample(5.0).unwrap().y, 1.));
|
||||||
|
}
|
@ -1,7 +1,4 @@
|
|||||||
use splines::{Interpolation, Key, Spline};
|
use splines::{spline::SampledWithKey, Interpolation, Key, Spline};
|
||||||
|
|
||||||
#[cfg(feature = "impl-cgmath")] use cgmath as cg;
|
|
||||||
#[cfg(feature = "impl-nalgebra")] use nalgebra as na;
|
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn step_interpolation_f32() {
|
fn step_interpolation_f32() {
|
||||||
@ -16,6 +13,14 @@ fn step_interpolation_f32() {
|
|||||||
assert_eq!(spline.sample(0.9), Some(10.));
|
assert_eq!(spline.sample(0.9), Some(10.));
|
||||||
assert_eq!(spline.sample(1.), None);
|
assert_eq!(spline.sample(1.), None);
|
||||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||||
|
assert_eq!(
|
||||||
|
spline.sample_with_key(0.2),
|
||||||
|
Some(SampledWithKey { value: 10., key: 0 })
|
||||||
|
);
|
||||||
|
assert_eq!(
|
||||||
|
spline.clamped_sample_with_key(1.),
|
||||||
|
Some(SampledWithKey { value: 10., key: 1 })
|
||||||
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
@ -31,6 +36,14 @@ fn step_interpolation_f64() {
|
|||||||
assert_eq!(spline.sample(0.9), Some(10.));
|
assert_eq!(spline.sample(0.9), Some(10.));
|
||||||
assert_eq!(spline.sample(1.), None);
|
assert_eq!(spline.sample(1.), None);
|
||||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||||
|
assert_eq!(
|
||||||
|
spline.sample_with_key(0.2),
|
||||||
|
Some(SampledWithKey { value: 10., key: 0 })
|
||||||
|
);
|
||||||
|
assert_eq!(
|
||||||
|
spline.clamped_sample_with_key(1.),
|
||||||
|
Some(SampledWithKey { value: 10., key: 1 })
|
||||||
|
);
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
@ -145,34 +158,6 @@ fn several_interpolations_several_keys() {
|
|||||||
assert_eq!(spline.clamped_sample(11.), Some(4.));
|
assert_eq!(spline.clamped_sample(11.), Some(4.));
|
||||||
}
|
}
|
||||||
|
|
||||||
#[cfg(feature = "impl-cgmath")]
|
|
||||||
#[test]
|
|
||||||
fn cgmath_vector_interpolation() {
|
|
||||||
use splines::Interpolate;
|
|
||||||
|
|
||||||
let start = cg::Vector2::new(0.0, 0.0);
|
|
||||||
let mid = cg::Vector2::new(0.5, 0.5);
|
|
||||||
let end = cg::Vector2::new(1.0, 1.0);
|
|
||||||
|
|
||||||
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
|
|
||||||
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
|
|
||||||
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[cfg(feature = "impl-nalgebra")]
|
|
||||||
#[test]
|
|
||||||
fn nalgebra_vector_interpolation() {
|
|
||||||
use splines::Interpolate;
|
|
||||||
|
|
||||||
let start = na::Vector2::new(0.0, 0.0);
|
|
||||||
let mid = na::Vector2::new(0.5, 0.5);
|
|
||||||
let end = na::Vector2::new(1.0, 1.0);
|
|
||||||
|
|
||||||
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
|
|
||||||
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
|
|
||||||
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
|
|
||||||
}
|
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn add_key_empty() {
|
fn add_key_empty() {
|
||||||
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
|
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
|
16
tests/nalgebra.rs
Normal file
16
tests/nalgebra.rs
Normal file
@ -0,0 +1,16 @@
|
|||||||
|
#![cfg(feature = "nalgebra")]
|
||||||
|
|
||||||
|
use nalgebra as na;
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn nalgebra_vector_interpolation() {
|
||||||
|
use splines::Interpolate;
|
||||||
|
|
||||||
|
let start = na::Vector2::new(0.0, 0.0);
|
||||||
|
let mid = na::Vector2::new(0.5, 0.5);
|
||||||
|
let end = na::Vector2::new(1.0, 1.0);
|
||||||
|
|
||||||
|
assert_eq!(Interpolate::lerp(0., start, end), start);
|
||||||
|
assert_eq!(Interpolate::lerp(1., start, end), end);
|
||||||
|
assert_eq!(Interpolate::lerp(0.5, start, end), mid);
|
||||||
|
}
|
Loading…
x
Reference in New Issue
Block a user