Compare commits
14 Commits
Author | SHA1 | Date | |
---|---|---|---|
05e131baad | |||
0a15fb48a3 | |||
ebc6e16aef | |||
cae599e0d7 | |||
336c1c7e80 | |||
ea29e08836 | |||
3ab98420c8 | |||
1bfd9a0e7c | |||
7846177471 | |||
6f65be125b | |||
5d0ebc0777 | |||
4fdbfa6189 | |||
7dbc85a312 | |||
03031a1e92 |
19
.github/workflows/ci.yaml
vendored
19
.github/workflows/ci.yaml
vendored
@ -8,12 +8,11 @@ jobs:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Build
|
||||
run: |
|
||||
cargo build --verbose
|
||||
cargo build --verbose --features bezier
|
||||
cargo build --verbose --all-features
|
||||
- name: Test
|
||||
run: |
|
||||
cargo test --verbose
|
||||
cargo test --verbose --features bezier
|
||||
cargo test --verbose --all-features
|
||||
|
||||
|
||||
build-windows:
|
||||
runs-on: windows-latest
|
||||
@ -21,12 +20,10 @@ jobs:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Build
|
||||
run: |
|
||||
cargo build --verbose
|
||||
cargo build --verbose --features bezier
|
||||
cargo build --verbose --all-features
|
||||
- name: Test
|
||||
run: |
|
||||
cargo test --verbose
|
||||
cargo test --verbose --features bezier
|
||||
cargo test --verbose --all-features
|
||||
|
||||
build-macosx:
|
||||
runs-on: macosx-latest
|
||||
@ -34,12 +31,10 @@ jobs:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Build
|
||||
run: |
|
||||
cargo build --verbose
|
||||
cargo build --verbose --features bezier
|
||||
cargo build --verbose --all-features
|
||||
- name: Test
|
||||
run: |
|
||||
cargo test --verbose
|
||||
cargo test --verbose --features bezier
|
||||
cargo test --verbose --all-features
|
||||
|
||||
check-readme:
|
||||
runs-on: ubuntu-latest
|
||||
|
32
CHANGELOG.md
32
CHANGELOG.md
@ -1,6 +1,36 @@
|
||||
# 2.1
|
||||
|
||||
> Mon Sep 30th 2019
|
||||
|
||||
- Add `Spline::sample_with_key` and `Spline::clamped_sample_with_key`. Those methods allow one to
|
||||
perform the regular `Spline::sample` and `Spline::clamped_sample` but also retreive the base
|
||||
key that was used to perform the interpolation. The key can be inspected to get the base time,
|
||||
interpolation, etc. The next key is also returned, if present.
|
||||
|
||||
# 2.0.1
|
||||
|
||||
> Tue Sep 24th 2019
|
||||
|
||||
- Fix the cubic Bézier curve interpolation. The “output” tangent is now taken by mirroring the
|
||||
next key’s tangent around its control point.
|
||||
|
||||
# 2.0.0
|
||||
|
||||
> Mon Sep 23rd 2019
|
||||
|
||||
## Major changes
|
||||
|
||||
- Add support for [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
|
||||
- Because of Bézier curves, the `Interpolation` type now has one more type variable to know how we
|
||||
should interpolate with Bézier.
|
||||
|
||||
## Minor changes
|
||||
|
||||
- Add `Spline::get`, `Spline::get_mut` and `Spline::replace`.
|
||||
|
||||
# 1.0
|
||||
|
||||
> Sun Sep 22th 2019
|
||||
> Sun Sep 22nd 2019
|
||||
|
||||
## Major changes
|
||||
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "splines"
|
||||
version = "1.1.0"
|
||||
version = "2.1.1"
|
||||
license = "BSD-3-Clause"
|
||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||
description = "Spline interpolation made easy"
|
||||
@ -21,7 +21,6 @@ maintenance = { status = "actively-developed" }
|
||||
|
||||
[features]
|
||||
default = ["std"]
|
||||
bezier = []
|
||||
impl-cgmath = ["cgmath"]
|
||||
impl-nalgebra = ["alga", "nalgebra", "num-traits"]
|
||||
serialization = ["serde", "serde_derive"]
|
||||
|
30
LICENSE
Normal file
30
LICENSE
Normal file
@ -0,0 +1,30 @@
|
||||
Copyright (c) 2019, Dimitri Sabadie <dimitri.sabadie@gmail.com>
|
||||
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following
|
||||
disclaimer in the documentation and/or other materials provided
|
||||
with the distribution.
|
||||
|
||||
* Neither the name of Dimitri Sabadie <dimitri.sabadie@gmail.com> nor the names of other
|
||||
contributors may be used to endorse or promote products derived
|
||||
from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
@ -98,12 +98,6 @@ So here’s a list of currently supported features and how to enable them:
|
||||
- Compiling with the standard library is enabled by default.
|
||||
- Use `default-features = []` in your `Cargo.toml` to disable.
|
||||
- Enable explicitly with the `"std"` feature.
|
||||
- **Extra interpolation modes.**
|
||||
- In order not to introduce breaking changes, some feature-gates are added to augment the
|
||||
[`Interpolation`] enum.
|
||||
- Those feature-gates will disappear on the next major release of the crate.
|
||||
- The following lists all currently available:
|
||||
- `"bezier"`: [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
|
||||
|
||||
[`Interpolation`]: crate::interpolation::Interpolation
|
||||
|
||||
|
@ -2,7 +2,9 @@ use cgmath::{
|
||||
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
|
||||
};
|
||||
|
||||
use crate::interpolate::{Additive, Interpolate, Linear, One, cubic_hermite_def};
|
||||
use crate::interpolate::{
|
||||
Additive, Interpolate, Linear, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
|
||||
};
|
||||
|
||||
macro_rules! impl_interpolate_vec {
|
||||
($($t:tt)*) => {
|
||||
@ -29,6 +31,16 @@ macro_rules! impl_interpolate_vec {
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -61,4 +73,14 @@ where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
|
@ -240,7 +240,10 @@ where V: Linear<T>,
|
||||
let one_t_3 = one_t_2 * one_t;
|
||||
let three = T::one() + T::one() + T::one();
|
||||
|
||||
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
|
||||
// mirror the “output” tangent based on the next key “input” tangent
|
||||
let v_ = b + b - v;
|
||||
|
||||
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v_.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
|
||||
}
|
||||
|
||||
macro_rules! impl_interpolate_simple {
|
||||
@ -268,27 +271,27 @@ macro_rules! impl_interpolate_simple {
|
||||
impl_interpolate_simple!(f32);
|
||||
impl_interpolate_simple!(f64);
|
||||
|
||||
//macro_rules! impl_interpolate_via {
|
||||
// ($t:ty, $v:ty) => {
|
||||
// impl Interpolate<$t> for $v {
|
||||
// fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
// a * (1. - t as $v) + b * t as $v
|
||||
// }
|
||||
//
|
||||
// fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
||||
// cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
||||
// }
|
||||
//
|
||||
// fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
// $t::quadratic_bezier(a as $t, u as $t, b as $t, t)
|
||||
// }
|
||||
//
|
||||
// fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
// $t::cubic_bezier(a as $t, u as $t, v as $t, b as $t, t)
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
//}
|
||||
//
|
||||
//impl_interpolate_via!(f32, f64);
|
||||
//impl_interpolate_via!(f64, f32);
|
||||
macro_rules! impl_interpolate_via {
|
||||
($t:ty, $v:ty) => {
|
||||
impl Interpolate<$t> for $v {
|
||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
a * (1. - t as $v) + b * t as $v
|
||||
}
|
||||
|
||||
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
||||
}
|
||||
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t as $v)
|
||||
}
|
||||
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t as $v)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_interpolate_via!(f32, f64);
|
||||
impl_interpolate_via!(f64, f32);
|
||||
|
@ -9,7 +9,7 @@
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub enum Interpolation<T, V> {
|
||||
/// Hold a [`Key<T, _>`] until the sampling value passes the normalized step threshold, in which
|
||||
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
|
||||
/// case the next key is used.
|
||||
///
|
||||
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
|
||||
@ -17,7 +17,7 @@ pub enum Interpolation<T, V> {
|
||||
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
|
||||
/// > used.
|
||||
///
|
||||
/// [`Key<T, _>`]: crate::key::Key
|
||||
/// [`Key`]: crate::key::Key
|
||||
Step(T),
|
||||
/// Linear interpolation between a key and the next one.
|
||||
Linear,
|
||||
@ -39,11 +39,9 @@ pub enum Interpolation<T, V> {
|
||||
/// tangent used for the next control point is defined as the segment connecting that control
|
||||
/// point and the current control point’s associated point. This is called _quadratic Bézer
|
||||
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
||||
#[cfg(feature = "bezier")]
|
||||
Bezier(V),
|
||||
#[cfg(not(any(feature = "bezier")))]
|
||||
#[doc(hidden)]
|
||||
_V(std::marker::PhantomData<V>),
|
||||
__NonExhaustive
|
||||
}
|
||||
|
||||
impl<T, V> Default for Interpolation<T, V> {
|
||||
@ -52,4 +50,3 @@ impl<T, V> Default for Interpolation<T, V> {
|
||||
Interpolation::Linear
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -99,12 +99,6 @@
|
||||
//! - Compiling with the standard library is enabled by default.
|
||||
//! - Use `default-features = []` in your `Cargo.toml` to disable.
|
||||
//! - Enable explicitly with the `"std"` feature.
|
||||
//! - **Extra interpolation modes.**
|
||||
//! - In order not to introduce breaking changes, some feature-gates are added to augment the
|
||||
//! [`Interpolation`] enum.
|
||||
//! - Those feature-gates will disappear on the next major release of the crate.
|
||||
//! - The following lists all currently available:
|
||||
//! - `"bezier"`: [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
|
||||
//!
|
||||
//! [`Interpolation`]: crate::interpolation::Interpolation
|
||||
|
||||
|
@ -3,7 +3,9 @@ use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vect
|
||||
use num_traits as nt;
|
||||
use std::ops::Mul;
|
||||
|
||||
use crate::interpolate::{Interpolate, Linear, Additive, One, cubic_hermite_def};
|
||||
use crate::interpolate::{
|
||||
Interpolate, Linear, Additive, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
|
||||
};
|
||||
|
||||
macro_rules! impl_interpolate_vector {
|
||||
($($t:tt)*) => {
|
||||
@ -40,6 +42,16 @@ macro_rules! impl_interpolate_vector {
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
115
src/spline.rs
115
src/spline.rs
@ -69,7 +69,8 @@ impl<T, V> Spline<T, V> {
|
||||
self.0.is_empty()
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time.
|
||||
/// Sample a spline at a given time, returning the interpolated value along with its associated
|
||||
/// key.
|
||||
///
|
||||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||||
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
||||
@ -84,7 +85,7 @@ impl<T, V> Spline<T, V> {
|
||||
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
||||
/// the sampling.
|
||||
///
|
||||
pub fn sample(&self, t: T) -> Option<V>
|
||||
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
let keys = &self.0;
|
||||
@ -95,14 +96,17 @@ impl<T, V> Spline<T, V> {
|
||||
Interpolation::Step(threshold) => {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
Some(if nt < threshold { cp0.value } else { cp1.value })
|
||||
let value = if nt < threshold { cp0.value } else { cp1.value };
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::Linear => {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::Cosine => {
|
||||
@ -110,8 +114,9 @@ impl<T, V> Spline<T, V> {
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
||||
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::CatmullRom => {
|
||||
@ -124,35 +129,41 @@ impl<T, V> Spline<T, V> {
|
||||
let cpm0 = &keys[i - 1];
|
||||
let cpm1 = &keys[i + 2];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt);
|
||||
|
||||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
}
|
||||
|
||||
#[cfg(feature = "bezier")]
|
||||
Interpolation::Bezier(u) => {
|
||||
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
|
||||
if let Interpolation::Bezier(v) = cp1.interpolation {
|
||||
Some(Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt))
|
||||
//let one_nt = T::one() - nt;
|
||||
//let one_nt_2 = one_nt * one_nt;
|
||||
//let one_nt_3 = one_nt_2 * one_nt;
|
||||
//let three_one_nt_2 = one_nt_2 + one_nt_2 + one_nt_2; // one_nt_2 * 3
|
||||
//let r = cp0.value * one_nt_3;
|
||||
} else {
|
||||
Some(Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt))
|
||||
}
|
||||
let value =
|
||||
if let Interpolation::Bezier(v) = cp1.interpolation {
|
||||
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
|
||||
} else {
|
||||
Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt)
|
||||
};
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
#[cfg(not(any(feature = "bezier")))]
|
||||
Interpolation::_V(_) => unreachable!()
|
||||
Interpolation::__NonExhaustive => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping.
|
||||
/// Sample a spline at a given time.
|
||||
///
|
||||
pub fn sample(&self, t: T) -> Option<V>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
self.sample_with_key(t).map(|(v, _, _)| v)
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
|
||||
/// associated key.
|
||||
///
|
||||
/// # Return
|
||||
///
|
||||
@ -162,22 +173,23 @@ impl<T, V> Spline<T, V> {
|
||||
/// # Error
|
||||
///
|
||||
/// This function returns [`None`] if you have no key.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
if self.0.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
self.sample(t).or_else(move || {
|
||||
self.sample_with_key(t).or_else(move || {
|
||||
let first = self.0.first().unwrap();
|
||||
if t <= first.t {
|
||||
Some(first.value)
|
||||
let second = if self.0.len() >= 2 { Some(&self.0[1]) } else { None };
|
||||
Some((first.value, &first, second))
|
||||
} else {
|
||||
let last = self.0.last().unwrap();
|
||||
|
||||
if t >= last.t {
|
||||
Some(last.value)
|
||||
Some((last.value, &last, None))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
@ -185,6 +197,13 @@ impl<T, V> Spline<T, V> {
|
||||
})
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
|
||||
}
|
||||
|
||||
/// Add a key into the spline.
|
||||
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
|
||||
self.0.push(key);
|
||||
@ -199,6 +218,54 @@ impl<T, V> Spline<T, V> {
|
||||
Some(self.0.remove(index))
|
||||
}
|
||||
}
|
||||
|
||||
/// Update a key and return the key already present.
|
||||
///
|
||||
/// The key is updated — if present — with the provided function.
|
||||
///
|
||||
/// # Notes
|
||||
///
|
||||
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
|
||||
/// your key. If you just want to change the interpolation mode or the carried value, consider
|
||||
/// using the [`Spline::get_mut`] method instead as it will be way faster.
|
||||
pub fn replace<F>(
|
||||
&mut self,
|
||||
index: usize,
|
||||
f: F
|
||||
) -> Option<Key<T, V>>
|
||||
where
|
||||
F: FnOnce(&Key<T, V>) -> Key<T, V>,
|
||||
T: PartialOrd
|
||||
{
|
||||
let key = self.remove(index)?;
|
||||
self.add(f(&key));
|
||||
Some(key)
|
||||
}
|
||||
|
||||
/// Get a key at a given index.
|
||||
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
|
||||
self.0.get(index)
|
||||
}
|
||||
|
||||
/// Mutably get a key at a given index.
|
||||
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
|
||||
self.0.get_mut(index).map(|key| KeyMut {
|
||||
value: &mut key.value,
|
||||
interpolation: &mut key.interpolation
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// A mutable [`Key`].
|
||||
///
|
||||
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
|
||||
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
|
||||
/// want to achieve this, you’re advised to use [`Spline::replace`].
|
||||
pub struct KeyMut<'a, T, V> {
|
||||
/// Carried value.
|
||||
pub value: &'a mut V,
|
||||
/// Interpolation mode to use for that key.
|
||||
pub interpolation: &'a mut Interpolation<T, V>,
|
||||
}
|
||||
|
||||
// Normalize a time ([0;1]) given two control points.
|
||||
|
@ -16,6 +16,8 @@ fn step_interpolation_f32() {
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -31,6 +33,8 @@ fn step_interpolation_f64() {
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
|
Reference in New Issue
Block a user