Compare commits
27 Commits
1.0.0-rc.3
...
2.1.1
Author | SHA1 | Date | |
---|---|---|---|
05e131baad | |||
0a15fb48a3 | |||
ebc6e16aef | |||
cae599e0d7 | |||
336c1c7e80 | |||
ea29e08836 | |||
3ab98420c8 | |||
1bfd9a0e7c | |||
7846177471 | |||
6f65be125b | |||
5d0ebc0777 | |||
4fdbfa6189 | |||
7dbc85a312 | |||
03031a1e92 | |||
54eb89ae96 | |||
51ab8022f9 | |||
b78be8cba3 | |||
fd05dd0419 | |||
b05582d653 | |||
e76f18ac5b | |||
8e6af2cee9 | |||
a6e77a3d09 | |||
510881b5c6 | |||
1eed163277 | |||
311efa5b26 | |||
c98b493993 | |||
c818b4c810 |
46
.github/workflows/ci.yaml
vendored
Normal file
46
.github/workflows/ci.yaml
vendored
Normal file
@ -0,0 +1,46 @@
|
||||
name: CI
|
||||
on: [push]
|
||||
|
||||
jobs:
|
||||
build-linux:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Build
|
||||
run: |
|
||||
cargo build --verbose --all-features
|
||||
- name: Test
|
||||
run: |
|
||||
cargo test --verbose --all-features
|
||||
|
||||
|
||||
build-windows:
|
||||
runs-on: windows-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Build
|
||||
run: |
|
||||
cargo build --verbose --all-features
|
||||
- name: Test
|
||||
run: |
|
||||
cargo test --verbose --all-features
|
||||
|
||||
build-macosx:
|
||||
runs-on: macosx-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Build
|
||||
run: |
|
||||
cargo build --verbose --all-features
|
||||
- name: Test
|
||||
run: |
|
||||
cargo test --verbose --all-features
|
||||
|
||||
check-readme:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Install cargo-sync-readme
|
||||
run: cargo install --force cargo-sync-readme
|
||||
- name: Check
|
||||
run: cargo sync-readme -c
|
29
.travis.yml
29
.travis.yml
@ -1,29 +0,0 @@
|
||||
language: rust
|
||||
|
||||
rust:
|
||||
- stable
|
||||
- beta
|
||||
- nightly
|
||||
|
||||
os:
|
||||
- linux
|
||||
- osx
|
||||
|
||||
script:
|
||||
- rustc --version
|
||||
- cargo --version
|
||||
- echo "Testing default crate configuration"
|
||||
- cargo build --verbose
|
||||
- cargo test --verbose
|
||||
- cd examples && cargo check --verbose
|
||||
- echo "Testing feature serialization"
|
||||
- cargo build --verbose --features serialization
|
||||
- cargo test --verbose --features serialization
|
||||
- echo "Building without std"
|
||||
- cargo build --verbose --no-default-features
|
||||
- echo "Testing with cgmath"
|
||||
- cargo build --verbose --features impl-cgmath
|
||||
- cargo test --verbose --features impl-cgmath
|
||||
- echo "Testing with nalgebra"
|
||||
- cargo build --verbose --features impl-nalgebra
|
||||
- cargo test --verbose --features impl-nalgebra
|
88
CHANGELOG.md
88
CHANGELOG.md
@ -1,43 +1,95 @@
|
||||
## 0.2.3
|
||||
# 2.1
|
||||
|
||||
> Mon Sep 30th 2019
|
||||
|
||||
- Add `Spline::sample_with_key` and `Spline::clamped_sample_with_key`. Those methods allow one to
|
||||
perform the regular `Spline::sample` and `Spline::clamped_sample` but also retreive the base
|
||||
key that was used to perform the interpolation. The key can be inspected to get the base time,
|
||||
interpolation, etc. The next key is also returned, if present.
|
||||
|
||||
# 2.0.1
|
||||
|
||||
> Tue Sep 24th 2019
|
||||
|
||||
- Fix the cubic Bézier curve interpolation. The “output” tangent is now taken by mirroring the
|
||||
next key’s tangent around its control point.
|
||||
|
||||
# 2.0.0
|
||||
|
||||
> Mon Sep 23rd 2019
|
||||
|
||||
## Major changes
|
||||
|
||||
- Add support for [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
|
||||
- Because of Bézier curves, the `Interpolation` type now has one more type variable to know how we
|
||||
should interpolate with Bézier.
|
||||
|
||||
## Minor changes
|
||||
|
||||
- Add `Spline::get`, `Spline::get_mut` and `Spline::replace`.
|
||||
|
||||
# 1.0
|
||||
|
||||
> Sun Sep 22nd 2019
|
||||
|
||||
## Major changes
|
||||
|
||||
- Make `Spline::clamped_sample` failible via `Option` instead of panicking.
|
||||
- Add support for polymorphic sampling type.
|
||||
|
||||
## Minor changes
|
||||
|
||||
- Add the `std` feature (and hence support for `no_std`).
|
||||
- Add `impl-nalgebra` feature.
|
||||
- Add `impl-cgmath` feature.
|
||||
- Add support for adding keys to splines.
|
||||
- Add support for removing keys from splines.
|
||||
|
||||
## Patch changes
|
||||
|
||||
- Migrate to Rust 2018.
|
||||
- Documentation typo fixes.
|
||||
|
||||
# 0.2.3
|
||||
|
||||
> Sat 13th October 2018
|
||||
|
||||
- Add the `"impl-nalgebra"` feature gate. It gives access to some implementors for the `nalgebra`
|
||||
crate.
|
||||
- Enhance the documentation.
|
||||
- Add the `"impl-nalgebra"` feature gate. It gives access to some implementors for the `nalgebra`
|
||||
crate.
|
||||
- Enhance the documentation.
|
||||
|
||||
## 0.2.2
|
||||
# 0.2.2
|
||||
|
||||
> Sun 30th September 2018
|
||||
|
||||
- Bump version numbers (`splines-0.2`) in examples.
|
||||
- Fix several typos in the documentation.
|
||||
- Bump version numbers (`splines-0.2`) in examples.
|
||||
- Fix several typos in the documentation.
|
||||
|
||||
## 0.2.1
|
||||
# 0.2.1
|
||||
|
||||
> Thu 20th September 2018
|
||||
|
||||
- Enhance the features documentation.
|
||||
- Enhance the features documentation.
|
||||
|
||||
# 0.2
|
||||
|
||||
> Thu 6th September 2018
|
||||
|
||||
- Add the `"std"` feature gate, that can be used to compile with the standard library.
|
||||
- Add the `"impl-cgmath"` feature gate in order to make optional, if wanted, the `cgmath`
|
||||
dependency.
|
||||
- Enhance the documentation.
|
||||
- Add the `"std"` feature gate, that can be used to compile with the standard library.
|
||||
- Add the `"impl-cgmath"` feature gate in order to make optional, if wanted, the `cgmath`
|
||||
dependency.
|
||||
- Enhance the documentation.
|
||||
|
||||
## 0.1.1
|
||||
# 0.1.1
|
||||
|
||||
> Wed 8th August 2018
|
||||
|
||||
- Add a feature gate, `"serialization"`, that can be used to automatically derive `Serialize` and
|
||||
`Deserialize` from the [serde](https://crates.io/crates/serde) crate.
|
||||
- Enhance the documentation.
|
||||
- Add a feature gate, `"serialization"`, that can be used to automatically derive `Serialize` and
|
||||
`Deserialize` from the [serde](https://crates.io/crates/serde) crate.
|
||||
- Enhance the documentation.
|
||||
|
||||
# 0.1
|
||||
|
||||
> Sunday 5th August 2018
|
||||
|
||||
- Initial revision.
|
||||
- Initial revision.
|
||||
|
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "splines"
|
||||
version = "1.0.0-rc.3"
|
||||
version = "2.1.1"
|
||||
license = "BSD-3-Clause"
|
||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||
description = "Spline interpolation made easy"
|
||||
@ -33,3 +33,6 @@ nalgebra = { version = ">=0.14, <0.19", optional = true }
|
||||
num-traits = { version = "0.2", optional = true }
|
||||
serde = { version = "1", optional = true }
|
||||
serde_derive = { version = "1", optional = true }
|
||||
|
||||
[package.metadata.docs.rs]
|
||||
all-features = true
|
||||
|
30
LICENSE
Normal file
30
LICENSE
Normal file
@ -0,0 +1,30 @@
|
||||
Copyright (c) 2019, Dimitri Sabadie <dimitri.sabadie@gmail.com>
|
||||
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following
|
||||
disclaimer in the documentation and/or other materials provided
|
||||
with the distribution.
|
||||
|
||||
* Neither the name of Dimitri Sabadie <dimitri.sabadie@gmail.com> nor the names of other
|
||||
contributors may be used to endorse or promote products derived
|
||||
from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
57
README.md
57
README.md
@ -13,9 +13,9 @@ switch to a cubic Hermite interpolator for the next section.
|
||||
|
||||
Most of the crate consists of three types:
|
||||
|
||||
- [`Key`], which represents the control points by which the spline must pass.
|
||||
- [`Interpolation`], the type of possible interpolation for each segment.
|
||||
- [`Spline`], a spline from which you can *sample* points by interpolation.
|
||||
- [`Key`], which represents the control points by which the spline must pass.
|
||||
- [`Interpolation`], the type of possible interpolation for each segment.
|
||||
- [`Spline`], a spline from which you can *sample* points by interpolation.
|
||||
|
||||
When adding control points, you add new sections. Two control points define a section – i.e.
|
||||
it’s not possible to define a spline without at least two control points. Every time you add a
|
||||
@ -40,17 +40,13 @@ key. We use the default one because we don’t care.
|
||||
# Interpolate values
|
||||
|
||||
The whole purpose of splines is to interpolate discrete values to yield continuous ones. This is
|
||||
usually done with the `Spline::sample` method. This method expects the interpolation parameter
|
||||
usually done with the [`Spline::sample`] method. This method expects the sampling parameter
|
||||
(often, this will be the time of your simulation) as argument and will yield an interpolated
|
||||
value.
|
||||
|
||||
If you try to sample in out-of-bounds interpolation parameter, you’ll get no value.
|
||||
If you try to sample in out-of-bounds sampling parameter, you’ll get no value.
|
||||
|
||||
```
|
||||
# use splines::{Interpolation, Key, Spline};
|
||||
# let start = Key::new(0., 0., Interpolation::Linear);
|
||||
# let end = Key::new(1., 10., Interpolation::Linear);
|
||||
# let spline = Spline::from_vec(vec![start, end]);
|
||||
assert_eq!(spline.sample(0.), Some(0.));
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample(1.1), None);
|
||||
@ -61,14 +57,17 @@ important for simulations / animations. Feel free to use the `Spline::clamped_in
|
||||
that purpose.
|
||||
|
||||
```
|
||||
# use splines::{Interpolation, Key, Spline};
|
||||
# let start = Key::new(0., 0., Interpolation::Linear);
|
||||
# let end = Key::new(1., 10., Interpolation::Linear);
|
||||
# let spline = Spline::from_vec(vec![start, end]);
|
||||
assert_eq!(spline.clamped_sample(-0.9), Some(0.)); // clamped to the first key
|
||||
assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
|
||||
```
|
||||
|
||||
# Polymorphic sampling types
|
||||
|
||||
[`Spline`] curves are parametered both by the carried value (being interpolated) but also the
|
||||
sampling type. It’s very typical to use `f32` or `f64` but really, you can in theory use any
|
||||
kind of type; that type must, however, implement a contract defined by a set of traits to
|
||||
implement. See [the documentation of this module](crate::interpolate) for further details.
|
||||
|
||||
# Features and customization
|
||||
|
||||
This crate was written with features baked in and hidden behind feature-gates. The idea is that
|
||||
@ -84,20 +83,22 @@ not. It’s especially important to see how it copes with the documentation.
|
||||
|
||||
So here’s a list of currently supported features and how to enable them:
|
||||
|
||||
- **Serialization / deserialization.**
|
||||
+ This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||
types exported by this crate.
|
||||
+ Enable with the `"serialization"` feature.
|
||||
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
||||
+ Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||
+ Enable with the `"impl-cgmath"` feature.
|
||||
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
||||
+ Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||
+ Enable with the `"impl-nalgebra"` feature.
|
||||
- **Standard library / no standard library.**
|
||||
+ It’s possible to compile against the standard library or go on your own without it.
|
||||
+ Compiling with the standard library is enabled by default.
|
||||
+ Use `default-features = []` in your `Cargo.toml` to disable.
|
||||
+ Enable explicitly with the `"std"` feature.
|
||||
- **Serialization / deserialization.**
|
||||
- This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||
types exported by this crate.
|
||||
- Enable with the `"serialization"` feature.
|
||||
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
||||
- Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||
- Enable with the `"impl-cgmath"` feature.
|
||||
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
||||
- Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||
- Enable with the `"impl-nalgebra"` feature.
|
||||
- **Standard library / no standard library.**
|
||||
- It’s possible to compile against the standard library or go on your own without it.
|
||||
- Compiling with the standard library is enabled by default.
|
||||
- Use `default-features = []` in your `Cargo.toml` to disable.
|
||||
- Enable explicitly with the `"std"` feature.
|
||||
|
||||
[`Interpolation`]: crate::interpolation::Interpolation
|
||||
|
||||
<!-- cargo-sync-readme end -->
|
||||
|
@ -2,7 +2,9 @@ use cgmath::{
|
||||
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
|
||||
};
|
||||
|
||||
use crate::interpolate::{Additive, Interpolate, Linear, One, cubic_hermite_def};
|
||||
use crate::interpolate::{
|
||||
Additive, Interpolate, Linear, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
|
||||
};
|
||||
|
||||
macro_rules! impl_interpolate_vec {
|
||||
($($t:tt)*) => {
|
||||
@ -29,6 +31,16 @@ macro_rules! impl_interpolate_vec {
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -61,4 +73,14 @@ where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
|
@ -57,6 +57,12 @@ pub trait Interpolate<T>: Sized + Copy {
|
||||
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
|
||||
Self::lerp(a.0, b.0, t)
|
||||
}
|
||||
|
||||
/// Quadratic Bézier interpolation.
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
|
||||
|
||||
/// Cubic Bézier interpolation.
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
|
||||
}
|
||||
|
||||
/// Set of types that support additions and subtraction.
|
||||
@ -212,6 +218,34 @@ where V: Linear<T>,
|
||||
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
|
||||
}
|
||||
|
||||
/// Default implementation of [`Interpolate::quadratic_bezier`].
|
||||
///
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
|
||||
where V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One {
|
||||
let one_t = T::one() - t;
|
||||
let one_t_2 = one_t * one_t;
|
||||
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
|
||||
}
|
||||
|
||||
/// Default implementation of [`Interpolate::cubic_bezier`].
|
||||
///
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
|
||||
where V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One {
|
||||
let one_t = T::one() - t;
|
||||
let one_t_2 = one_t * one_t;
|
||||
let one_t_3 = one_t_2 * one_t;
|
||||
let three = T::one() + T::one() + T::one();
|
||||
|
||||
// mirror the “output” tangent based on the next key “input” tangent
|
||||
let v_ = b + b - v;
|
||||
|
||||
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v_.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
|
||||
}
|
||||
|
||||
macro_rules! impl_interpolate_simple {
|
||||
($t:ty) => {
|
||||
impl Interpolate<$t> for $t {
|
||||
@ -222,6 +256,14 @@ macro_rules! impl_interpolate_simple {
|
||||
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
@ -239,6 +281,14 @@ macro_rules! impl_interpolate_via {
|
||||
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
||||
}
|
||||
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t as $v)
|
||||
}
|
||||
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t as $v)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
@ -5,11 +5,11 @@
|
||||
/// Available kind of interpolations.
|
||||
///
|
||||
/// Feel free to visit each variant for more documentation.
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub enum Interpolation<T> {
|
||||
/// Hold a [`Key<T, _>`] until the sampling value passes the normalized step threshold, in which
|
||||
pub enum Interpolation<T, V> {
|
||||
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
|
||||
/// case the next key is used.
|
||||
///
|
||||
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
|
||||
@ -17,20 +17,36 @@ pub enum Interpolation<T> {
|
||||
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
|
||||
/// > used.
|
||||
///
|
||||
/// [`Key<T, _>`]: crate::key::Key
|
||||
/// [`Key`]: crate::key::Key
|
||||
Step(T),
|
||||
/// Linear interpolation between a key and the next one.
|
||||
Linear,
|
||||
/// Cosine interpolation between a key and the next one.
|
||||
Cosine,
|
||||
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
|
||||
CatmullRom
|
||||
CatmullRom,
|
||||
/// Bézier interpolation.
|
||||
///
|
||||
/// A control point that uses such an interpolation is associated with an extra point. The segmant
|
||||
/// connecting both is called the _tangent_ of this point. The part of the spline defined between
|
||||
/// this control point and the next one will be interpolated across with Bézier interpolation. Two
|
||||
/// cases are possible:
|
||||
///
|
||||
/// - The next control point also has a Bézier interpolation mode. In this case, its tangent is
|
||||
/// used for the interpolation process. This is called _cubic Bézier interpolation_ and it
|
||||
/// kicks ass.
|
||||
/// - The next control point doesn’t have a Bézier interpolation mode set. In this case, the
|
||||
/// tangent used for the next control point is defined as the segment connecting that control
|
||||
/// point and the current control point’s associated point. This is called _quadratic Bézer
|
||||
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
||||
Bezier(V),
|
||||
#[doc(hidden)]
|
||||
__NonExhaustive
|
||||
}
|
||||
|
||||
impl<T> Default for Interpolation<T> {
|
||||
impl<T, V> Default for Interpolation<T, V> {
|
||||
/// [`Interpolation::Linear`] is the default.
|
||||
fn default() -> Self {
|
||||
Interpolation::Linear
|
||||
}
|
||||
}
|
||||
|
||||
|
@ -17,7 +17,7 @@ use crate::interpolation::Interpolation;
|
||||
/// key and the next one – if existing. Have a look at [`Interpolation`] for further details.
|
||||
///
|
||||
/// [`Interpolation`]: crate::interpolation::Interpolation
|
||||
#[derive(Copy, Clone, Debug)]
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub struct Key<T, V> {
|
||||
@ -26,12 +26,12 @@ pub struct Key<T, V> {
|
||||
/// Carried value.
|
||||
pub value: V,
|
||||
/// Interpolation mode.
|
||||
pub interpolation: Interpolation<T>
|
||||
pub interpolation: Interpolation<T, V>
|
||||
}
|
||||
|
||||
impl<T, V> Key<T, V> {
|
||||
/// Create a new key.
|
||||
pub fn new(t: T, value: V, interpolation: Interpolation<T>) -> Self {
|
||||
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
|
||||
Key { t, value, interpolation }
|
||||
}
|
||||
}
|
||||
|
22
src/lib.rs
22
src/lib.rs
@ -85,20 +85,22 @@
|
||||
//! So here’s a list of currently supported features and how to enable them:
|
||||
//!
|
||||
//! - **Serialization / deserialization.**
|
||||
//! + This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||
//! - This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||
//! types exported by this crate.
|
||||
//! + Enable with the `"serialization"` feature.
|
||||
//! - Enable with the `"serialization"` feature.
|
||||
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
||||
//! + Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||
//! + Enable with the `"impl-cgmath"` feature.
|
||||
//! - Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||
//! - Enable with the `"impl-cgmath"` feature.
|
||||
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
||||
//! + Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||
//! + Enable with the `"impl-nalgebra"` feature.
|
||||
//! - Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||
//! - Enable with the `"impl-nalgebra"` feature.
|
||||
//! - **Standard library / no standard library.**
|
||||
//! + It’s possible to compile against the standard library or go on your own without it.
|
||||
//! + Compiling with the standard library is enabled by default.
|
||||
//! + Use `default-features = []` in your `Cargo.toml` to disable.
|
||||
//! + Enable explicitly with the `"std"` feature.
|
||||
//! - It’s possible to compile against the standard library or go on your own without it.
|
||||
//! - Compiling with the standard library is enabled by default.
|
||||
//! - Use `default-features = []` in your `Cargo.toml` to disable.
|
||||
//! - Enable explicitly with the `"std"` feature.
|
||||
//!
|
||||
//! [`Interpolation`]: crate::interpolation::Interpolation
|
||||
|
||||
#![cfg_attr(not(feature = "std"), no_std)]
|
||||
#![cfg_attr(not(feature = "std"), feature(alloc))]
|
||||
|
@ -3,7 +3,9 @@ use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vect
|
||||
use num_traits as nt;
|
||||
use std::ops::Mul;
|
||||
|
||||
use crate::interpolate::{Interpolate, Linear, Additive, One, cubic_hermite_def};
|
||||
use crate::interpolate::{
|
||||
Interpolate, Linear, Additive, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
|
||||
};
|
||||
|
||||
macro_rules! impl_interpolate_vector {
|
||||
($($t:tt)*) => {
|
||||
@ -40,6 +42,16 @@ macro_rules! impl_interpolate_vector {
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||
quadratic_bezier_def(a, u, b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||
cubic_bezier_def(a, u, v, b, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
164
src/spline.rs
164
src/spline.rs
@ -28,12 +28,17 @@ use crate::key::Key;
|
||||
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
|
||||
|
||||
impl<T, V> Spline<T, V> {
|
||||
/// Internal sort to ensure invariant of sorting keys is valid.
|
||||
fn internal_sort(&mut self) where T: PartialOrd {
|
||||
self.0.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||||
}
|
||||
|
||||
/// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended
|
||||
/// to provide ascending sorted ones (for performance purposes).
|
||||
pub fn from_vec(mut keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
|
||||
keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||||
|
||||
Spline(keys)
|
||||
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
|
||||
let mut spline = Spline(keys);
|
||||
spline.internal_sort();
|
||||
spline
|
||||
}
|
||||
|
||||
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys don’t have to be
|
||||
@ -42,7 +47,7 @@ impl<T, V> Spline<T, V> {
|
||||
/// # Note on iterators
|
||||
///
|
||||
/// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
|
||||
/// use [`Spline::from_vec`] if you are passing a [`Vec`]. This will remove dynamic allocations.
|
||||
/// use [`Spline::from_vec`] if you are passing a [`Vec`].
|
||||
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
|
||||
Self::from_vec(iter.collect())
|
||||
}
|
||||
@ -52,7 +57,20 @@ impl<T, V> Spline<T, V> {
|
||||
&self.0
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time.
|
||||
/// Number of keys.
|
||||
#[inline(always)]
|
||||
pub fn len(&self) -> usize {
|
||||
self.0.len()
|
||||
}
|
||||
|
||||
/// Check whether the spline has no key.
|
||||
#[inline(always)]
|
||||
pub fn is_empty(&self) -> bool {
|
||||
self.0.is_empty()
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time, returning the interpolated value along with its associated
|
||||
/// key.
|
||||
///
|
||||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||||
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
||||
@ -67,7 +85,7 @@ impl<T, V> Spline<T, V> {
|
||||
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
||||
/// the sampling.
|
||||
///
|
||||
pub fn sample(&self, t: T) -> Option<V>
|
||||
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
let keys = &self.0;
|
||||
@ -76,25 +94,29 @@ impl<T, V> Spline<T, V> {
|
||||
|
||||
match cp0.interpolation {
|
||||
Interpolation::Step(threshold) => {
|
||||
let cp1 = &keys[i+1];
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
Some(if nt < threshold { cp0.value } else { cp1.value })
|
||||
let value = if nt < threshold { cp0.value } else { cp1.value };
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::Linear => {
|
||||
let cp1 = &keys[i+1];
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::Cosine => {
|
||||
let two_t = T::one() + T::one();
|
||||
let cp1 = &keys[i+1];
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
||||
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::CatmullRom => {
|
||||
@ -103,18 +125,45 @@ impl<T, V> Spline<T, V> {
|
||||
if i == 0 || i >= keys.len() - 2 {
|
||||
None
|
||||
} else {
|
||||
let cp1 = &keys[i+1];
|
||||
let cpm0 = &keys[i-1];
|
||||
let cpm1 = &keys[i+2];
|
||||
let cp1 = &keys[i + 1];
|
||||
let cpm0 = &keys[i - 1];
|
||||
let cpm1 = &keys[i + 2];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let value = Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt);
|
||||
|
||||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
}
|
||||
|
||||
Interpolation::Bezier(u) => {
|
||||
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
|
||||
let value =
|
||||
if let Interpolation::Bezier(v) = cp1.interpolation {
|
||||
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
|
||||
} else {
|
||||
Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt)
|
||||
};
|
||||
|
||||
Some((value, cp0, Some(cp1)))
|
||||
}
|
||||
|
||||
Interpolation::__NonExhaustive => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping.
|
||||
/// Sample a spline at a given time.
|
||||
///
|
||||
pub fn sample(&self, t: T) -> Option<V>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
self.sample_with_key(t).map(|(v, _, _)| v)
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
|
||||
/// associated key.
|
||||
///
|
||||
/// # Return
|
||||
///
|
||||
@ -124,28 +173,99 @@ impl<T, V> Spline<T, V> {
|
||||
/// # Error
|
||||
///
|
||||
/// This function returns [`None`] if you have no key.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
if self.0.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
self.sample(t).or_else(move || {
|
||||
self.sample_with_key(t).or_else(move || {
|
||||
let first = self.0.first().unwrap();
|
||||
if t <= first.t {
|
||||
Some(first.value)
|
||||
let second = if self.0.len() >= 2 { Some(&self.0[1]) } else { None };
|
||||
Some((first.value, &first, second))
|
||||
} else {
|
||||
let last = self.0.last().unwrap();
|
||||
|
||||
if t >= last.t {
|
||||
Some(last.value)
|
||||
Some((last.value, &last, None))
|
||||
} else {
|
||||
None
|
||||
}
|
||||
}
|
||||
})
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
|
||||
}
|
||||
|
||||
/// Add a key into the spline.
|
||||
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
|
||||
self.0.push(key);
|
||||
self.internal_sort();
|
||||
}
|
||||
|
||||
/// Remove a key from the spline.
|
||||
pub fn remove(&mut self, index: usize) -> Option<Key<T, V>> {
|
||||
if index >= self.0.len() {
|
||||
None
|
||||
} else {
|
||||
Some(self.0.remove(index))
|
||||
}
|
||||
}
|
||||
|
||||
/// Update a key and return the key already present.
|
||||
///
|
||||
/// The key is updated — if present — with the provided function.
|
||||
///
|
||||
/// # Notes
|
||||
///
|
||||
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
|
||||
/// your key. If you just want to change the interpolation mode or the carried value, consider
|
||||
/// using the [`Spline::get_mut`] method instead as it will be way faster.
|
||||
pub fn replace<F>(
|
||||
&mut self,
|
||||
index: usize,
|
||||
f: F
|
||||
) -> Option<Key<T, V>>
|
||||
where
|
||||
F: FnOnce(&Key<T, V>) -> Key<T, V>,
|
||||
T: PartialOrd
|
||||
{
|
||||
let key = self.remove(index)?;
|
||||
self.add(f(&key));
|
||||
Some(key)
|
||||
}
|
||||
|
||||
/// Get a key at a given index.
|
||||
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
|
||||
self.0.get(index)
|
||||
}
|
||||
|
||||
/// Mutably get a key at a given index.
|
||||
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
|
||||
self.0.get_mut(index).map(|key| KeyMut {
|
||||
value: &mut key.value,
|
||||
interpolation: &mut key.interpolation
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
/// A mutable [`Key`].
|
||||
///
|
||||
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
|
||||
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
|
||||
/// want to achieve this, you’re advised to use [`Spline::replace`].
|
||||
pub struct KeyMut<'a, T, V> {
|
||||
/// Carried value.
|
||||
pub value: &'a mut V,
|
||||
/// Interpolation mode to use for that key.
|
||||
pub interpolation: &'a mut Interpolation<T, V>,
|
||||
}
|
||||
|
||||
// Normalize a time ([0;1]) given two control points.
|
||||
|
52
tests/mod.rs
52
tests/mod.rs
@ -16,6 +16,8 @@ fn step_interpolation_f32() {
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -31,6 +33,8 @@ fn step_interpolation_f64() {
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -172,3 +176,51 @@ fn nalgebra_vector_interpolation() {
|
||||
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn add_key_empty() {
|
||||
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
|
||||
spline.add(Key::new(0., 0., Interpolation::Linear));
|
||||
|
||||
assert_eq!(spline.keys(), &[Key::new(0., 0., Interpolation::Linear)]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn add_key() {
|
||||
let start = Key::new(0., 0., Interpolation::Step(0.5));
|
||||
let k1 = Key::new(1., 5., Interpolation::Linear);
|
||||
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
|
||||
let k3 = Key::new(3., 1., Interpolation::Linear);
|
||||
let k4 = Key::new(10., 2., Interpolation::Linear);
|
||||
let end = Key::new(11., 4., Interpolation::default());
|
||||
let new = Key::new(2.4, 40., Interpolation::Linear);
|
||||
let mut spline = Spline::from_vec(vec![start, k1, k2.clone(), k3, k4, end]);
|
||||
|
||||
assert_eq!(spline.keys(), &[start, k1, k2, k3, k4, end]);
|
||||
spline.add(new);
|
||||
assert_eq!(spline.keys(), &[start, k1, k2, new, k3, k4, end]);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn remove_element_empty() {
|
||||
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
|
||||
let removed = spline.remove(0);
|
||||
|
||||
assert_eq!(removed, None);
|
||||
assert!(spline.is_empty());
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn remove_element() {
|
||||
let start = Key::new(0., 0., Interpolation::Step(0.5));
|
||||
let k1 = Key::new(1., 5., Interpolation::Linear);
|
||||
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
|
||||
let k3 = Key::new(3., 1., Interpolation::Linear);
|
||||
let k4 = Key::new(10., 2., Interpolation::Linear);
|
||||
let end = Key::new(11., 4., Interpolation::default());
|
||||
let mut spline = Spline::from_vec(vec![start, k1, k2.clone(), k3, k4, end]);
|
||||
let removed = spline.remove(2);
|
||||
|
||||
assert_eq!(removed, Some(k2));
|
||||
assert_eq!(spline.len(), 5);
|
||||
}
|
||||
|
Reference in New Issue
Block a user