Compare commits
21 Commits
Author | SHA1 | Date | |
---|---|---|---|
425433cd5b | |||
cc0a9580ab | |||
05e131baad | |||
0a15fb48a3 | |||
ebc6e16aef | |||
cae599e0d7 | |||
336c1c7e80 | |||
ea29e08836 | |||
3ab98420c8 | |||
1bfd9a0e7c | |||
7846177471 | |||
6f65be125b | |||
5d0ebc0777 | |||
4fdbfa6189 | |||
7dbc85a312 | |||
03031a1e92 | |||
54eb89ae96 | |||
51ab8022f9 | |||
b78be8cba3 | |||
fd05dd0419 | |||
b05582d653 |
25
.github/workflows/ci.yaml
vendored
25
.github/workflows/ci.yaml
vendored
@ -7,27 +7,38 @@ jobs:
|
|||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v1
|
- uses: actions/checkout@v1
|
||||||
- name: Build
|
- name: Build
|
||||||
run: cargo build --verbose
|
run: |
|
||||||
|
cargo build --verbose --all-features
|
||||||
- name: Test
|
- name: Test
|
||||||
run: cargo test --verbose
|
run: |
|
||||||
|
cargo test --verbose --all-features
|
||||||
|
|
||||||
|
|
||||||
build-windows:
|
build-windows:
|
||||||
runs-on: windows-latest
|
runs-on: windows-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v1
|
- uses: actions/checkout@v1
|
||||||
- name: Build
|
- name: Build
|
||||||
run: cargo build --verbose
|
run: |
|
||||||
|
cargo build --verbose --all-features
|
||||||
- name: Test
|
- name: Test
|
||||||
run: cargo test --verbose
|
run: |
|
||||||
|
cargo test --verbose --all-features
|
||||||
|
|
||||||
build-macosx:
|
build-macosx:
|
||||||
runs-on: macosx-latest
|
runs-on: macOS-latest
|
||||||
steps:
|
steps:
|
||||||
- uses: actions/checkout@v1
|
- uses: actions/checkout@v1
|
||||||
|
- name: Rust requirements
|
||||||
|
run: curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y --profile=minimal
|
||||||
- name: Build
|
- name: Build
|
||||||
run: cargo build --verbose
|
run: |
|
||||||
|
. ~/.cargo/env
|
||||||
|
cargo build --verbose --all-features
|
||||||
- name: Test
|
- name: Test
|
||||||
run: cargo test --verbose
|
run: |
|
||||||
|
. ~/.cargo/env
|
||||||
|
cargo test --verbose --all-features
|
||||||
|
|
||||||
check-readme:
|
check-readme:
|
||||||
runs-on: ubuntu-latest
|
runs-on: ubuntu-latest
|
||||||
|
44
CHANGELOG.md
44
CHANGELOG.md
@ -1,6 +1,48 @@
|
|||||||
|
# 2.2.0
|
||||||
|
|
||||||
|
> Mon Oct 17th 2019
|
||||||
|
|
||||||
|
- Add `Interpolation::StrokeBezier`.
|
||||||
|
|
||||||
|
# 2.1.1
|
||||||
|
|
||||||
|
> Mon Oct 17th 2019
|
||||||
|
|
||||||
|
- Licensing support in the crate.
|
||||||
|
|
||||||
|
# 2.1
|
||||||
|
|
||||||
|
> Mon Sep 30th 2019
|
||||||
|
|
||||||
|
- Add `Spline::sample_with_key` and `Spline::clamped_sample_with_key`. Those methods allow one to
|
||||||
|
perform the regular `Spline::sample` and `Spline::clamped_sample` but also retreive the base
|
||||||
|
key that was used to perform the interpolation. The key can be inspected to get the base time,
|
||||||
|
interpolation, etc. The next key is also returned, if present.
|
||||||
|
|
||||||
|
# 2.0.1
|
||||||
|
|
||||||
|
> Tue Sep 24th 2019
|
||||||
|
|
||||||
|
- Fix the cubic Bézier curve interpolation. The “output” tangent is now taken by mirroring the
|
||||||
|
next key’s tangent around its control point.
|
||||||
|
|
||||||
|
# 2.0.0
|
||||||
|
|
||||||
|
> Mon Sep 23rd 2019
|
||||||
|
|
||||||
|
## Major changes
|
||||||
|
|
||||||
|
- Add support for [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
|
||||||
|
- Because of Bézier curves, the `Interpolation` type now has one more type variable to know how we
|
||||||
|
should interpolate with Bézier.
|
||||||
|
|
||||||
|
## Minor changes
|
||||||
|
|
||||||
|
- Add `Spline::get`, `Spline::get_mut` and `Spline::replace`.
|
||||||
|
|
||||||
# 1.0
|
# 1.0
|
||||||
|
|
||||||
> Sun Sep 22th 2019
|
> Sun Sep 22nd 2019
|
||||||
|
|
||||||
## Major changes
|
## Major changes
|
||||||
|
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "splines"
|
name = "splines"
|
||||||
version = "1.0.0"
|
version = "2.2.0"
|
||||||
license = "BSD-3-Clause"
|
license = "BSD-3-Clause"
|
||||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||||
description = "Spline interpolation made easy"
|
description = "Spline interpolation made easy"
|
||||||
|
30
LICENSE
Normal file
30
LICENSE
Normal file
@ -0,0 +1,30 @@
|
|||||||
|
Copyright (c) 2019, Dimitri Sabadie <dimitri.sabadie@gmail.com>
|
||||||
|
|
||||||
|
All rights reserved.
|
||||||
|
|
||||||
|
Redistribution and use in source and binary forms, with or without
|
||||||
|
modification, are permitted provided that the following conditions are met:
|
||||||
|
|
||||||
|
* Redistributions of source code must retain the above copyright
|
||||||
|
notice, this list of conditions and the following disclaimer.
|
||||||
|
|
||||||
|
* Redistributions in binary form must reproduce the above
|
||||||
|
copyright notice, this list of conditions and the following
|
||||||
|
disclaimer in the documentation and/or other materials provided
|
||||||
|
with the distribution.
|
||||||
|
|
||||||
|
* Neither the name of Dimitri Sabadie <dimitri.sabadie@gmail.com> nor the names of other
|
||||||
|
contributors may be used to endorse or promote products derived
|
||||||
|
from this software without specific prior written permission.
|
||||||
|
|
||||||
|
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||||
|
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||||
|
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||||
|
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||||
|
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||||
|
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||||
|
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||||
|
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||||
|
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||||
|
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
22
README.md
22
README.md
@ -84,19 +84,21 @@ not. It’s especially important to see how it copes with the documentation.
|
|||||||
So here’s a list of currently supported features and how to enable them:
|
So here’s a list of currently supported features and how to enable them:
|
||||||
|
|
||||||
- **Serialization / deserialization.**
|
- **Serialization / deserialization.**
|
||||||
+ This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
- This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||||
types exported by this crate.
|
types exported by this crate.
|
||||||
+ Enable with the `"serialization"` feature.
|
- Enable with the `"serialization"` feature.
|
||||||
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
||||||
+ Adds some useful implementations of `Interpolate` for some cgmath types.
|
- Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||||
+ Enable with the `"impl-cgmath"` feature.
|
- Enable with the `"impl-cgmath"` feature.
|
||||||
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
||||||
+ Adds some useful implementations of `Interpolate` for some nalgebra types.
|
- Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||||
+ Enable with the `"impl-nalgebra"` feature.
|
- Enable with the `"impl-nalgebra"` feature.
|
||||||
- **Standard library / no standard library.**
|
- **Standard library / no standard library.**
|
||||||
+ It’s possible to compile against the standard library or go on your own without it.
|
- It’s possible to compile against the standard library or go on your own without it.
|
||||||
+ Compiling with the standard library is enabled by default.
|
- Compiling with the standard library is enabled by default.
|
||||||
+ Use `default-features = []` in your `Cargo.toml` to disable.
|
- Use `default-features = []` in your `Cargo.toml` to disable.
|
||||||
+ Enable explicitly with the `"std"` feature.
|
- Enable explicitly with the `"std"` feature.
|
||||||
|
|
||||||
|
[`Interpolation`]: crate::interpolation::Interpolation
|
||||||
|
|
||||||
<!-- cargo-sync-readme end -->
|
<!-- cargo-sync-readme end -->
|
||||||
|
@ -2,7 +2,9 @@ use cgmath::{
|
|||||||
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
|
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
|
||||||
};
|
};
|
||||||
|
|
||||||
use crate::interpolate::{Additive, Interpolate, Linear, One, cubic_hermite_def};
|
use crate::interpolate::{
|
||||||
|
Additive, Interpolate, Linear, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
|
||||||
|
};
|
||||||
|
|
||||||
macro_rules! impl_interpolate_vec {
|
macro_rules! impl_interpolate_vec {
|
||||||
($($t:tt)*) => {
|
($($t:tt)*) => {
|
||||||
@ -29,6 +31,16 @@ macro_rules! impl_interpolate_vec {
|
|||||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||||
cubic_hermite_def(x, a, b, y, t)
|
cubic_hermite_def(x, a, b, y, t)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||||
|
quadratic_bezier_def(a, u, b, t)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||||
|
cubic_bezier_def(a, u, v, b, t)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -61,4 +73,14 @@ where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
|
|||||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||||
cubic_hermite_def(x, a, b, y, t)
|
cubic_hermite_def(x, a, b, y, t)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||||
|
quadratic_bezier_def(a, u, b, t)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||||
|
cubic_bezier_def(a, u, v, b, t)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@ -57,6 +57,12 @@ pub trait Interpolate<T>: Sized + Copy {
|
|||||||
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
|
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
|
||||||
Self::lerp(a.0, b.0, t)
|
Self::lerp(a.0, b.0, t)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Quadratic Bézier interpolation.
|
||||||
|
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
|
||||||
|
|
||||||
|
/// Cubic Bézier interpolation.
|
||||||
|
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Set of types that support additions and subtraction.
|
/// Set of types that support additions and subtraction.
|
||||||
@ -212,6 +218,34 @@ where V: Linear<T>,
|
|||||||
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
|
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Default implementation of [`Interpolate::quadratic_bezier`].
|
||||||
|
///
|
||||||
|
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||||
|
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
|
||||||
|
where V: Linear<T>,
|
||||||
|
T: Additive + Mul<T, Output = T> + One {
|
||||||
|
let one_t = T::one() - t;
|
||||||
|
let one_t_2 = one_t * one_t;
|
||||||
|
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Default implementation of [`Interpolate::cubic_bezier`].
|
||||||
|
///
|
||||||
|
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||||
|
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
|
||||||
|
where V: Linear<T>,
|
||||||
|
T: Additive + Mul<T, Output = T> + One {
|
||||||
|
let one_t = T::one() - t;
|
||||||
|
let one_t_2 = one_t * one_t;
|
||||||
|
let one_t_3 = one_t_2 * one_t;
|
||||||
|
let three = T::one() + T::one() + T::one();
|
||||||
|
|
||||||
|
// mirror the “output” tangent based on the next key “input” tangent
|
||||||
|
let v_ = b + b - v;
|
||||||
|
|
||||||
|
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v_.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
|
||||||
|
}
|
||||||
|
|
||||||
macro_rules! impl_interpolate_simple {
|
macro_rules! impl_interpolate_simple {
|
||||||
($t:ty) => {
|
($t:ty) => {
|
||||||
impl Interpolate<$t> for $t {
|
impl Interpolate<$t> for $t {
|
||||||
@ -222,6 +256,14 @@ macro_rules! impl_interpolate_simple {
|
|||||||
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
|
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
|
||||||
cubic_hermite_def(x, a, b, y, t)
|
cubic_hermite_def(x, a, b, y, t)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||||
|
quadratic_bezier_def(a, u, b, t)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||||
|
cubic_bezier_def(a, u, v, b, t)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -239,6 +281,14 @@ macro_rules! impl_interpolate_via {
|
|||||||
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
||||||
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||||
|
quadratic_bezier_def(a, u, b, t as $v)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||||
|
cubic_bezier_def(a, u, v, b, t as $v)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -8,8 +8,8 @@
|
|||||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||||
pub enum Interpolation<T> {
|
pub enum Interpolation<T, V> {
|
||||||
/// Hold a [`Key<T, _>`] until the sampling value passes the normalized step threshold, in which
|
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
|
||||||
/// case the next key is used.
|
/// case the next key is used.
|
||||||
///
|
///
|
||||||
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
|
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
|
||||||
@ -17,20 +17,48 @@ pub enum Interpolation<T> {
|
|||||||
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
|
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
|
||||||
/// > used.
|
/// > used.
|
||||||
///
|
///
|
||||||
/// [`Key<T, _>`]: crate::key::Key
|
/// [`Key`]: crate::key::Key
|
||||||
Step(T),
|
Step(T),
|
||||||
/// Linear interpolation between a key and the next one.
|
/// Linear interpolation between a key and the next one.
|
||||||
Linear,
|
Linear,
|
||||||
/// Cosine interpolation between a key and the next one.
|
/// Cosine interpolation between a key and the next one.
|
||||||
Cosine,
|
Cosine,
|
||||||
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
|
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
|
||||||
CatmullRom
|
CatmullRom,
|
||||||
|
/// Bézier interpolation.
|
||||||
|
///
|
||||||
|
/// A control point that uses such an interpolation is associated with an extra point. The segmant
|
||||||
|
/// connecting both is called the _tangent_ of this point. The part of the spline defined between
|
||||||
|
/// this control point and the next one will be interpolated across with Bézier interpolation. Two
|
||||||
|
/// cases are possible:
|
||||||
|
///
|
||||||
|
/// - The next control point also has a Bézier interpolation mode. In this case, its tangent is
|
||||||
|
/// used for the interpolation process. This is called _cubic Bézier interpolation_ and it
|
||||||
|
/// kicks ass.
|
||||||
|
/// - The next control point doesn’t have a Bézier interpolation mode set. In this case, the
|
||||||
|
/// tangent used for the next control point is defined as the segment connecting that control
|
||||||
|
/// point and the current control point’s associated point. This is called _quadratic Bézer
|
||||||
|
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
||||||
|
Bezier(V),
|
||||||
|
/// A special Bézier interpolation using an _input tangent_ and an _output tangent_.
|
||||||
|
///
|
||||||
|
/// With this kind of interpolation, a control point has an input tangent, which has the same role
|
||||||
|
/// as the one defined by [`Interpolation::Bezier`], and an output tangent, which has the same
|
||||||
|
/// role defined by the next key’s [`Interpolation::Bezier`] if present, normally.
|
||||||
|
///
|
||||||
|
/// What it means is that instead of setting the output tangent as the next key’s Bézier tangent,
|
||||||
|
/// this interpolation mode allows you to manually set the output tangent. That will yield more
|
||||||
|
/// control on the tangents but might generate discontinuities. Use with care.
|
||||||
|
///
|
||||||
|
/// Stroke Bézier interpolation is always a cubic Bézier interpolation by default.
|
||||||
|
StrokeBezier(V, V),
|
||||||
|
#[doc(hidden)]
|
||||||
|
__NonExhaustive
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T> Default for Interpolation<T> {
|
impl<T, V> Default for Interpolation<T, V> {
|
||||||
/// [`Interpolation::Linear`] is the default.
|
/// [`Interpolation::Linear`] is the default.
|
||||||
fn default() -> Self {
|
fn default() -> Self {
|
||||||
Interpolation::Linear
|
Interpolation::Linear
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -26,12 +26,12 @@ pub struct Key<T, V> {
|
|||||||
/// Carried value.
|
/// Carried value.
|
||||||
pub value: V,
|
pub value: V,
|
||||||
/// Interpolation mode.
|
/// Interpolation mode.
|
||||||
pub interpolation: Interpolation<T>
|
pub interpolation: Interpolation<T, V>
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T, V> Key<T, V> {
|
impl<T, V> Key<T, V> {
|
||||||
/// Create a new key.
|
/// Create a new key.
|
||||||
pub fn new(t: T, value: V, interpolation: Interpolation<T>) -> Self {
|
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
|
||||||
Key { t, value, interpolation }
|
Key { t, value, interpolation }
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
22
src/lib.rs
22
src/lib.rs
@ -85,20 +85,22 @@
|
|||||||
//! So here’s a list of currently supported features and how to enable them:
|
//! So here’s a list of currently supported features and how to enable them:
|
||||||
//!
|
//!
|
||||||
//! - **Serialization / deserialization.**
|
//! - **Serialization / deserialization.**
|
||||||
//! + This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
//! - This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||||
//! types exported by this crate.
|
//! types exported by this crate.
|
||||||
//! + Enable with the `"serialization"` feature.
|
//! - Enable with the `"serialization"` feature.
|
||||||
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
||||||
//! + Adds some useful implementations of `Interpolate` for some cgmath types.
|
//! - Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||||
//! + Enable with the `"impl-cgmath"` feature.
|
//! - Enable with the `"impl-cgmath"` feature.
|
||||||
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
||||||
//! + Adds some useful implementations of `Interpolate` for some nalgebra types.
|
//! - Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||||
//! + Enable with the `"impl-nalgebra"` feature.
|
//! - Enable with the `"impl-nalgebra"` feature.
|
||||||
//! - **Standard library / no standard library.**
|
//! - **Standard library / no standard library.**
|
||||||
//! + It’s possible to compile against the standard library or go on your own without it.
|
//! - It’s possible to compile against the standard library or go on your own without it.
|
||||||
//! + Compiling with the standard library is enabled by default.
|
//! - Compiling with the standard library is enabled by default.
|
||||||
//! + Use `default-features = []` in your `Cargo.toml` to disable.
|
//! - Use `default-features = []` in your `Cargo.toml` to disable.
|
||||||
//! + Enable explicitly with the `"std"` feature.
|
//! - Enable explicitly with the `"std"` feature.
|
||||||
|
//!
|
||||||
|
//! [`Interpolation`]: crate::interpolation::Interpolation
|
||||||
|
|
||||||
#![cfg_attr(not(feature = "std"), no_std)]
|
#![cfg_attr(not(feature = "std"), no_std)]
|
||||||
#![cfg_attr(not(feature = "std"), feature(alloc))]
|
#![cfg_attr(not(feature = "std"), feature(alloc))]
|
||||||
|
@ -3,7 +3,9 @@ use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vect
|
|||||||
use num_traits as nt;
|
use num_traits as nt;
|
||||||
use std::ops::Mul;
|
use std::ops::Mul;
|
||||||
|
|
||||||
use crate::interpolate::{Interpolate, Linear, Additive, One, cubic_hermite_def};
|
use crate::interpolate::{
|
||||||
|
Interpolate, Linear, Additive, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
|
||||||
|
};
|
||||||
|
|
||||||
macro_rules! impl_interpolate_vector {
|
macro_rules! impl_interpolate_vector {
|
||||||
($($t:tt)*) => {
|
($($t:tt)*) => {
|
||||||
@ -40,6 +42,16 @@ macro_rules! impl_interpolate_vector {
|
|||||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||||
cubic_hermite_def(x, a, b, y, t)
|
cubic_hermite_def(x, a, b, y, t)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||||
|
quadratic_bezier_def(a, u, b, t)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||||
|
cubic_bezier_def(a, u, v, b, t)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
131
src/spline.rs
131
src/spline.rs
@ -69,7 +69,8 @@ impl<T, V> Spline<T, V> {
|
|||||||
self.0.is_empty()
|
self.0.is_empty()
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Sample a spline at a given time.
|
/// Sample a spline at a given time, returning the interpolated value along with its associated
|
||||||
|
/// key.
|
||||||
///
|
///
|
||||||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||||||
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
||||||
@ -83,8 +84,7 @@ impl<T, V> Spline<T, V> {
|
|||||||
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
|
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
|
||||||
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
||||||
/// the sampling.
|
/// the sampling.
|
||||||
///
|
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||||
pub fn sample(&self, t: T) -> Option<V>
|
|
||||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||||
V: Interpolate<T> {
|
V: Interpolate<T> {
|
||||||
let keys = &self.0;
|
let keys = &self.0;
|
||||||
@ -93,25 +93,29 @@ impl<T, V> Spline<T, V> {
|
|||||||
|
|
||||||
match cp0.interpolation {
|
match cp0.interpolation {
|
||||||
Interpolation::Step(threshold) => {
|
Interpolation::Step(threshold) => {
|
||||||
let cp1 = &keys[i+1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
Some(if nt < threshold { cp0.value } else { cp1.value })
|
let value = if nt < threshold { cp0.value } else { cp1.value };
|
||||||
|
|
||||||
|
Some((value, cp0, Some(cp1)))
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::Linear => {
|
Interpolation::Linear => {
|
||||||
let cp1 = &keys[i+1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
|
||||||
|
|
||||||
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
Some((value, cp0, Some(cp1)))
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::Cosine => {
|
Interpolation::Cosine => {
|
||||||
let two_t = T::one() + T::one();
|
let two_t = T::one() + T::one();
|
||||||
let cp1 = &keys[i+1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
||||||
|
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
|
||||||
|
|
||||||
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
Some((value, cp0, Some(cp1)))
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::CatmullRom => {
|
Interpolation::CatmullRom => {
|
||||||
@ -120,18 +124,53 @@ impl<T, V> Spline<T, V> {
|
|||||||
if i == 0 || i >= keys.len() - 2 {
|
if i == 0 || i >= keys.len() - 2 {
|
||||||
None
|
None
|
||||||
} else {
|
} else {
|
||||||
let cp1 = &keys[i+1];
|
let cp1 = &keys[i + 1];
|
||||||
let cpm0 = &keys[i-1];
|
let cpm0 = &keys[i - 1];
|
||||||
let cpm1 = &keys[i+2];
|
let cpm1 = &keys[i + 2];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
let value = Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt);
|
||||||
|
|
||||||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
Some((value, cp0, Some(cp1)))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Interpolation::Bezier(u) => {
|
||||||
|
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
|
||||||
|
let cp1 = &keys[i + 1];
|
||||||
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
|
||||||
|
let value =
|
||||||
|
if let Interpolation::Bezier(v) = cp1.interpolation {
|
||||||
|
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
|
||||||
|
} else {
|
||||||
|
Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt)
|
||||||
|
};
|
||||||
|
|
||||||
|
Some((value, cp0, Some(cp1)))
|
||||||
|
}
|
||||||
|
|
||||||
|
Interpolation::StrokeBezier(input, output) => {
|
||||||
|
let cp1 = &keys[i + 1];
|
||||||
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
let value = Interpolate::cubic_bezier(cp0.value, input, output, cp1.value, nt);
|
||||||
|
|
||||||
|
Some((value, cp0, Some(cp1)))
|
||||||
|
}
|
||||||
|
|
||||||
|
Interpolation::__NonExhaustive => unreachable!(),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Sample a spline at a given time with clamping.
|
/// Sample a spline at a given time.
|
||||||
|
///
|
||||||
|
pub fn sample(&self, t: T) -> Option<V>
|
||||||
|
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||||
|
V: Interpolate<T> {
|
||||||
|
self.sample_with_key(t).map(|(v, _, _)| v)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
|
||||||
|
/// associated key.
|
||||||
///
|
///
|
||||||
/// # Return
|
/// # Return
|
||||||
///
|
///
|
||||||
@ -141,22 +180,23 @@ impl<T, V> Spline<T, V> {
|
|||||||
/// # Error
|
/// # Error
|
||||||
///
|
///
|
||||||
/// This function returns [`None`] if you have no key.
|
/// This function returns [`None`] if you have no key.
|
||||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
|
||||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||||
V: Interpolate<T> {
|
V: Interpolate<T> {
|
||||||
if self.0.is_empty() {
|
if self.0.is_empty() {
|
||||||
return None;
|
return None;
|
||||||
}
|
}
|
||||||
|
|
||||||
self.sample(t).or_else(move || {
|
self.sample_with_key(t).or_else(move || {
|
||||||
let first = self.0.first().unwrap();
|
let first = self.0.first().unwrap();
|
||||||
if t <= first.t {
|
if t <= first.t {
|
||||||
Some(first.value)
|
let second = if self.0.len() >= 2 { Some(&self.0[1]) } else { None };
|
||||||
|
Some((first.value, &first, second))
|
||||||
} else {
|
} else {
|
||||||
let last = self.0.last().unwrap();
|
let last = self.0.last().unwrap();
|
||||||
|
|
||||||
if t >= last.t {
|
if t >= last.t {
|
||||||
Some(last.value)
|
Some((last.value, &last, None))
|
||||||
} else {
|
} else {
|
||||||
None
|
None
|
||||||
}
|
}
|
||||||
@ -164,6 +204,13 @@ impl<T, V> Spline<T, V> {
|
|||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Sample a spline at a given time with clamping.
|
||||||
|
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||||
|
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||||
|
V: Interpolate<T> {
|
||||||
|
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
|
||||||
|
}
|
||||||
|
|
||||||
/// Add a key into the spline.
|
/// Add a key into the spline.
|
||||||
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
|
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
|
||||||
self.0.push(key);
|
self.0.push(key);
|
||||||
@ -178,6 +225,54 @@ impl<T, V> Spline<T, V> {
|
|||||||
Some(self.0.remove(index))
|
Some(self.0.remove(index))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Update a key and return the key already present.
|
||||||
|
///
|
||||||
|
/// The key is updated — if present — with the provided function.
|
||||||
|
///
|
||||||
|
/// # Notes
|
||||||
|
///
|
||||||
|
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
|
||||||
|
/// your key. If you just want to change the interpolation mode or the carried value, consider
|
||||||
|
/// using the [`Spline::get_mut`] method instead as it will be way faster.
|
||||||
|
pub fn replace<F>(
|
||||||
|
&mut self,
|
||||||
|
index: usize,
|
||||||
|
f: F
|
||||||
|
) -> Option<Key<T, V>>
|
||||||
|
where
|
||||||
|
F: FnOnce(&Key<T, V>) -> Key<T, V>,
|
||||||
|
T: PartialOrd
|
||||||
|
{
|
||||||
|
let key = self.remove(index)?;
|
||||||
|
self.add(f(&key));
|
||||||
|
Some(key)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get a key at a given index.
|
||||||
|
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
|
||||||
|
self.0.get(index)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Mutably get a key at a given index.
|
||||||
|
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
|
||||||
|
self.0.get_mut(index).map(|key| KeyMut {
|
||||||
|
value: &mut key.value,
|
||||||
|
interpolation: &mut key.interpolation
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A mutable [`Key`].
|
||||||
|
///
|
||||||
|
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
|
||||||
|
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
|
||||||
|
/// want to achieve this, you’re advised to use [`Spline::replace`].
|
||||||
|
pub struct KeyMut<'a, T, V> {
|
||||||
|
/// Carried value.
|
||||||
|
pub value: &'a mut V,
|
||||||
|
/// Interpolation mode to use for that key.
|
||||||
|
pub interpolation: &'a mut Interpolation<T, V>,
|
||||||
}
|
}
|
||||||
|
|
||||||
// Normalize a time ([0;1]) given two control points.
|
// Normalize a time ([0;1]) given two control points.
|
||||||
|
@ -16,6 +16,8 @@ fn step_interpolation_f32() {
|
|||||||
assert_eq!(spline.sample(0.9), Some(10.));
|
assert_eq!(spline.sample(0.9), Some(10.));
|
||||||
assert_eq!(spline.sample(1.), None);
|
assert_eq!(spline.sample(1.), None);
|
||||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||||
|
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||||
|
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
@ -31,6 +33,8 @@ fn step_interpolation_f64() {
|
|||||||
assert_eq!(spline.sample(0.9), Some(10.));
|
assert_eq!(spline.sample(0.9), Some(10.));
|
||||||
assert_eq!(spline.sample(1.), None);
|
assert_eq!(spline.sample(1.), None);
|
||||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||||
|
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
|
||||||
|
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
|
||||||
}
|
}
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
|
Reference in New Issue
Block a user