Compare commits
151 Commits
Author | SHA1 | Date | |
---|---|---|---|
35881a8122 | |||
|
f6fa4ecbce | ||
|
e2f220ec15 | ||
|
c3670d6b0a | ||
|
c6ba8476f2 | ||
|
389f4d182d | ||
|
8af9151dac | ||
|
a82cf85619 | ||
|
37d3cc5f29 | ||
|
1e70ab882c | ||
|
2179c8300f | ||
|
e7a9723ae0 | ||
|
eca09f1baf | ||
|
e1b78070c6 | ||
|
cdc48a49a7 | ||
|
decd85dba2 | ||
|
df9815a464 | ||
|
ca8e797932 | ||
|
5b746aaf57 | ||
|
88a7ee7a8d | ||
|
5463fd11d6 | ||
|
d9770ad60b | ||
|
3dfea81856 | ||
|
604dcc6e27 | ||
|
8c952ae242 | ||
|
b52643b5d7 | ||
|
dc6ef0a5cc | ||
|
043a8608c3 | ||
|
295043e5af | ||
|
1c249215c9 | ||
|
5a7e74d79c | ||
|
2012105a72 | ||
|
f25ebb2c64 | ||
|
e9c1de389f | ||
|
bdeaefd9f9 | ||
|
ace0f4ec50 | ||
|
b056a4e9a7 | ||
|
042253ab9c | ||
|
270f225394 | ||
|
138828e798 | ||
|
0ca1c5aa48 | ||
|
f4c8be33b9 | ||
|
26bd5c88eb | ||
|
a4cd49fd20 | ||
|
09bc7069b2 | ||
|
8dc8606bf0 | ||
|
fc2f53200f | ||
|
b3836975c3 | ||
|
322d271499 | ||
|
e64298dc88 | ||
|
32e5122339 | ||
|
1be94935cf | ||
|
06f6e4b578 | ||
|
87e27e732d | ||
|
fb678f9613 | ||
|
ee4230340b | ||
|
f585119883 | ||
|
25d5c5217e | ||
|
355178f5fa | ||
|
b92c28cfbb | ||
|
695caf0cca | ||
|
3e85a1f026 | ||
|
0ccc3c0956 | ||
|
3d43e4c644 | ||
|
29833f0ebb | ||
|
80fb6fbe28 | ||
|
cc3ac349b4 | ||
|
395dff34ee | ||
|
469a785767 | ||
|
dd7ae34670 | ||
|
b0a6e3d5e9 | ||
|
e1998fda56 | ||
|
e7c3003dcf | ||
|
cf6ae61859 | ||
|
3640078d12 | ||
|
c0d9a0b540 | ||
|
4f0bf51b5c | ||
|
cc2b9c75a0 | ||
|
60952acb73 | ||
|
fb67b32959 | ||
|
ab543b61e8 | ||
|
73df77380b | ||
|
08bcf902a4 | ||
|
bfb1cc14bb | ||
|
5836f778f4 | ||
|
7b5c08d9fa | ||
|
fe78bf2eb6 | ||
|
4b3a06d66e | ||
|
c50a9274a5 | ||
|
3ffe6106ec | ||
|
45244628ac | ||
|
69c166e630 | ||
|
da4c02202a | ||
|
05a3862e30 | ||
|
37ca7b1e2d | ||
|
680c863ce1 | ||
|
209d4fc7c5 | ||
|
51769e1b12 | ||
|
c32edbd4cb | ||
|
a175e86db7 | ||
|
ebfc15d8af | ||
|
5b92d7b715 | ||
|
8f7cc9e711 | ||
|
9d930d6f16 | ||
|
0afebc3319 | ||
|
4a2f349954 | ||
|
85ac489636 | ||
|
aea9011296 | ||
|
04247d8706 | ||
|
0fcdbacaf3 | ||
|
89dfb61272 | ||
|
1bcf1de99e | ||
|
4630f44d6c | ||
|
efe9272816 | ||
|
036d7df3eb | ||
|
a33dbf9fde | ||
|
dfa1e6a745 | ||
|
f04ea0fefa | ||
|
8ceb8d768c | ||
|
c93109e28b | ||
|
d80de42d2f | ||
|
2e6a5a0dfb | ||
|
62147d5348 | ||
|
2dfc11c908 | ||
|
0c23df7bf0 | ||
|
3b6ddc5ea6 | ||
|
824afef513 | ||
|
f2b356b78d | ||
|
955050ecee | ||
|
22e75c6901 | ||
|
425433cd5b | ||
|
cc0a9580ab | ||
|
05e131baad | ||
|
0a15fb48a3 | ||
|
ebc6e16aef | ||
|
cae599e0d7 | ||
|
336c1c7e80 | ||
|
ea29e08836 | ||
|
3ab98420c8 | ||
|
1bfd9a0e7c | ||
|
7846177471 | ||
|
6f65be125b | ||
|
5d0ebc0777 | ||
|
4fdbfa6189 | ||
|
7dbc85a312 | ||
|
03031a1e92 | ||
|
54eb89ae96 | ||
|
51ab8022f9 | ||
|
b78be8cba3 | ||
|
fd05dd0419 | ||
|
b05582d653 |
25
.github/dependabot.yml
vendored
Normal file
25
.github/dependabot.yml
vendored
Normal file
@ -0,0 +1,25 @@
|
||||
version: 2
|
||||
updates:
|
||||
- package-ecosystem: cargo
|
||||
directory: "/."
|
||||
schedule:
|
||||
interval: daily
|
||||
time: "04:00"
|
||||
open-pull-requests-limit: 10
|
||||
target-branch: master
|
||||
reviewers:
|
||||
- phaazon
|
||||
assignees:
|
||||
- phaazon
|
||||
labels:
|
||||
- dependency-update
|
||||
ignore:
|
||||
- dependency-name: glam
|
||||
versions:
|
||||
- 0.13.0
|
||||
- dependency-name: nalgebra
|
||||
versions:
|
||||
- 0.25.0
|
||||
- dependency-name: cgmath
|
||||
versions:
|
||||
- 0.18.0
|
31
.github/workflows/ci.yaml
vendored
31
.github/workflows/ci.yaml
vendored
@ -1,39 +1,38 @@
|
||||
name: CI
|
||||
on: [push]
|
||||
on: [push, pull_request]
|
||||
|
||||
jobs:
|
||||
build-linux:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Build
|
||||
run: cargo build --verbose
|
||||
- name: Test
|
||||
run: cargo test --verbose
|
||||
run: cargo test --verbose --all-features
|
||||
|
||||
build-windows:
|
||||
runs-on: windows-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Build
|
||||
run: cargo build --verbose
|
||||
- name: Test
|
||||
run: cargo test --verbose
|
||||
run: cargo test --verbose --all-features
|
||||
|
||||
build-macosx:
|
||||
runs-on: macosx-latest
|
||||
runs-on: macOS-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Build
|
||||
run: cargo build --verbose
|
||||
- name: Test
|
||||
run: cargo test --verbose
|
||||
run: cargo test --verbose --all-features
|
||||
|
||||
check-readme:
|
||||
quality:
|
||||
runs-on: ubuntu-latest
|
||||
steps:
|
||||
- uses: actions/checkout@v1
|
||||
- name: Install cargo-sync-readme
|
||||
run: cargo install --force cargo-sync-readme
|
||||
- name: Check
|
||||
run: cargo sync-readme -c
|
||||
- name: Install dependencies
|
||||
run: |
|
||||
cargo install --force cargo-sync-readme
|
||||
rustup component add rustfmt
|
||||
- name: cargo sync-readme
|
||||
run: |
|
||||
cargo sync-readme -c
|
||||
- name: rustfmt
|
||||
run: cargo fmt -- --check
|
||||
|
259
CHANGELOG.md
259
CHANGELOG.md
@ -1,6 +1,263 @@
|
||||
# Changelog
|
||||
|
||||
* [4.3.1](#431)
|
||||
* [4.3](#43)
|
||||
* [4.2](#42)
|
||||
* [4.1.1](#411)
|
||||
* [4.1](#41)
|
||||
* [4.0.3](#403)
|
||||
* [4.0.2](#402)
|
||||
* [4.0.1](#401)
|
||||
* [4.0](#40)
|
||||
* [Major changes](#major-changes)
|
||||
* [Patch changes](#patch-changes)
|
||||
* [3.5.4](#354)
|
||||
* [3.5.3](#353)
|
||||
* [3.5.2](#352)
|
||||
* [3.5.1](#351)
|
||||
* [3.5](#35)
|
||||
* [3.4.2](#342)
|
||||
* [3.4.1](#341)
|
||||
* [3.4](#34)
|
||||
* [3.3](#33)
|
||||
* [3.2](#32)
|
||||
* [3.1](#31)
|
||||
* [3.0](#30)
|
||||
* [Major changes](#major-changes-1)
|
||||
* [Patch changes](#patch-changes-1)
|
||||
* [2.2](#22)
|
||||
* [2.1.1](#211)
|
||||
* [2.1](#21)
|
||||
* [2.0.1](#201)
|
||||
* [2.0](#20)
|
||||
* [Major changes](#major-changes-2)
|
||||
* [Minor changes](#minor-changes)
|
||||
* [1.0](#10)
|
||||
* [Major changes](#major-changes-3)
|
||||
* [Minor changes](#minor-changes-1)
|
||||
* [Patch changes](#patch-changes-2)
|
||||
* [0.2.3](#023)
|
||||
* [0.2.2](#022)
|
||||
* [0.2.1](#021)
|
||||
* [0.2](#02)
|
||||
* [0.1.1](#011)
|
||||
* [0.1](#01)
|
||||
|
||||
# 4.3.1
|
||||
|
||||
> Nov 22, 2023
|
||||
|
||||
- Add `Default` implementation for `Spline`. [c6ba847](https://github.com/phaazon/splines/commit/c6ba847)
|
||||
|
||||
# 4.3
|
||||
|
||||
> Sep 23, 2023
|
||||
|
||||
- Add support for `glam-0.23` and `glam-0.24`. [cdc48a4](https://github.com/phaazon/splines/commit/cdc48a4)
|
||||
- Add `Spline::clear` to clear a spline keys without deallocating its internal storage. [eca09f1](https://github.com/phaazon/splines/commit/eca09f1)
|
||||
|
||||
# 4.2
|
||||
|
||||
> Feb 1, 2023
|
||||
|
||||
- Add support for `glam-0.22`.
|
||||
- Add support for `nalgebra-0.32`.
|
||||
- Add deprecation lints for `impl-*` feature gates. Those shouldn’t be used anymore and the `*` variant should be
|
||||
preferred. For instance, if you used `impl-cgmath`, you should just use the `cgmath` feature gate now.
|
||||
|
||||
# 4.1.1
|
||||
|
||||
> Jul 27, 2022
|
||||
|
||||
- Internal enhancement of sampling splines by looking for control points. That brings the lookup from _O(N)_ to
|
||||
_O(log(N))_. That is super embarassing because it should have been the default from the very first commit. Sorry
|
||||
about that.
|
||||
- Fix hermite cubic interpolation.
|
||||
- Add support for `glam-0.21`.
|
||||
- Add support for `nalgebra-0.31`.
|
||||
|
||||
# 4.1
|
||||
|
||||
> Mar 28, 2022
|
||||
|
||||
- Support for edition 2021.
|
||||
- Bump `float-cmp` dependency.
|
||||
- Bump `glam` dependency.
|
||||
- Bump `nalgebra` dependency.
|
||||
- Simplify the CI.
|
||||
|
||||
# 4.0.3
|
||||
|
||||
> Jul 11, 2021
|
||||
|
||||
- Add more implementors for `Interpolate`.
|
||||
|
||||
# 4.0.2
|
||||
|
||||
> Jul 11, 2021
|
||||
|
||||
- **Yanked.**
|
||||
|
||||
# 4.0.1
|
||||
|
||||
> Jul 11, 2021
|
||||
|
||||
- Add support up to `glam-0.17`.
|
||||
- Add support up to `nalgebra-0.27`.
|
||||
- Replace the name of some feature gates:
|
||||
- `serialization` becomes `serde`.
|
||||
- `impl-*` becomes `*`.
|
||||
- The previous feature gates are kept around to prevent a breaking change but will eventually be removed in the next
|
||||
major update.
|
||||
|
||||
# 4.0
|
||||
|
||||
> Mar 05, 2021
|
||||
|
||||
## Major changes
|
||||
|
||||
- Switch the `Interpolation` enum to `#[non_exhaustive]` to allow adding more interpolation modes (if any) in the
|
||||
future.
|
||||
- Introduce `SampledWithKey`, which is a more elegant / typed way to access a sample along with its associated key
|
||||
index.
|
||||
- Refactor the `Interpolate` trait and add the `Interpolator` trait.
|
||||
|
||||
## Patch changes
|
||||
|
||||
- Highly simplify the various implementors (`cgmath`, `nalgebra` and `glam`) so that maintenance is easy.
|
||||
- Expose the `impl_Interpolate` macro, allowing to implement the API all at once if a type implements the various
|
||||
`std::ops:*` traits. Since most of the crates do, this macro makes it really easy to add support for a crate.
|
||||
- Drop `simba` as a direct dependency.
|
||||
- Drop `num-traits` as a direct dependency.
|
||||
|
||||
# 3.5.4
|
||||
|
||||
> Feb 27, 2021
|
||||
|
||||
- Support of `cgmath-0.18`.
|
||||
|
||||
# 3.5.3
|
||||
|
||||
> Jan 16, 2021
|
||||
|
||||
- Resynchronize and fix links in the README (fix in `cargo sync-readme`).
|
||||
|
||||
# 3.5.2
|
||||
|
||||
> Fri Jan 01, 2021
|
||||
|
||||
- Support of `nalgebra-0.24`.
|
||||
|
||||
# 3.5.1
|
||||
|
||||
> Dec 5th, 2020
|
||||
|
||||
- Support of `glam-0.11`.
|
||||
|
||||
# 3.5
|
||||
|
||||
> Nov 23rd, 2020
|
||||
|
||||
- Add support for [glam](https://crates.io/crates/glam) via the `"impl-glam"` feature gate.
|
||||
- Support of `nalgebra-0.23`.
|
||||
|
||||
# 3.4.2
|
||||
|
||||
> Oct 24th, 2020
|
||||
|
||||
- Support of `simba-0.3`.
|
||||
|
||||
# 3.4.1
|
||||
|
||||
> Sep 5th, 2020
|
||||
|
||||
- Support of `simba-0.2`.
|
||||
- Support of `nalgebra-0.22`.
|
||||
|
||||
# 3.4
|
||||
|
||||
> Thu May 21st 2020
|
||||
|
||||
- Add support for `float-cmp-0.7` and `float-cmp-0.8`. Because this uses a SemVer range, if you
|
||||
already have a `Cargo.lock`, don’t forget to update `splines` with `cargo update --aggressive`.
|
||||
|
||||
# 3.3
|
||||
|
||||
> Thu Apr 10th 2020
|
||||
|
||||
- Add support for `nalgebra-0.21`.
|
||||
|
||||
# 3.2
|
||||
|
||||
> Thu Mar 19th 2020
|
||||
|
||||
- Add support for `nalgebra-0.20`.
|
||||
- Add support for `float-cmp-0.6`.
|
||||
|
||||
# 3.1
|
||||
|
||||
> Sat Jan 26th 2020
|
||||
|
||||
- Add support for `nalgebra-0.19`.
|
||||
|
||||
# 3.0
|
||||
|
||||
> Tue Oct 22th 2019
|
||||
|
||||
## Major changes
|
||||
|
||||
- Sampling now requires the value of the key to be `Linear<T>` for `Interpolate<T>`. That is needed
|
||||
to ease some interpolation mode (especially Bézier).
|
||||
|
||||
## Patch changes
|
||||
|
||||
- Fix Bézier interpolation when the next key is Bézier too.
|
||||
|
||||
# 2.2
|
||||
|
||||
> Mon Oct 17th 2019
|
||||
|
||||
- Add `Interpolation::StrokeBezier`.
|
||||
|
||||
# 2.1.1
|
||||
|
||||
> Mon Oct 17th 2019
|
||||
|
||||
- Licensing support in the crate.
|
||||
|
||||
# 2.1
|
||||
|
||||
> Mon Sep 30th 2019
|
||||
|
||||
- Add `Spline::sample_with_key` and `Spline::clamped_sample_with_key`. Those methods allow one to
|
||||
perform the regular `Spline::sample` and `Spline::clamped_sample` but also retreive the base
|
||||
key that was used to perform the interpolation. The key can be inspected to get the base time,
|
||||
interpolation, etc. The next key is also returned, if present.
|
||||
|
||||
# 2.0.1
|
||||
|
||||
> Tue Sep 24th 2019
|
||||
|
||||
- Fix the cubic Bézier curve interpolation. The “output” tangent is now taken by mirroring the
|
||||
next key’s tangent around its control point.
|
||||
|
||||
# 2.0
|
||||
|
||||
> Mon Sep 23rd 2019
|
||||
|
||||
## Major changes
|
||||
|
||||
- Add support for [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
|
||||
- Because of Bézier curves, the `Interpolation` type now has one more type variable to know how we
|
||||
should interpolate with Bézier.
|
||||
|
||||
## Minor changes
|
||||
|
||||
- Add `Spline::get`, `Spline::get_mut` and `Spline::replace`.
|
||||
|
||||
# 1.0
|
||||
|
||||
> Sun Sep 22th 2019
|
||||
> Sun Sep 22nd 2019
|
||||
|
||||
## Major changes
|
||||
|
||||
|
40
Cargo.toml
40
Cargo.toml
@ -1,6 +1,6 @@
|
||||
[package]
|
||||
name = "splines"
|
||||
version = "1.0.0"
|
||||
version = "4.3.1"
|
||||
license = "BSD-3-Clause"
|
||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||
description = "Spline interpolation made easy"
|
||||
@ -11,28 +11,32 @@ repository = "https://github.com/phaazon/splines"
|
||||
documentation = "https://docs.rs/splines"
|
||||
readme = "README.md"
|
||||
|
||||
edition = "2018"
|
||||
|
||||
[badges]
|
||||
travis-ci = { repository = "phaazon/splines", branch = "master" }
|
||||
is-it-maintained-issue-resolution = { repository = "phaazon/splines" }
|
||||
is-it-maintained-open-issues = { repository = "phaazon/splines" }
|
||||
maintenance = { status = "actively-developed" }
|
||||
edition = "2021"
|
||||
|
||||
[features]
|
||||
default = ["std"]
|
||||
impl-cgmath = ["cgmath"]
|
||||
impl-nalgebra = ["alga", "nalgebra", "num-traits"]
|
||||
serialization = ["serde", "serde_derive"]
|
||||
std = []
|
||||
impl-glam = ["glam"]
|
||||
impl-nalgebra = ["nalgebra"]
|
||||
serialization = ["serde"]
|
||||
std = ["nalgebra/std"]
|
||||
|
||||
[dependencies]
|
||||
alga = { version = "0.9", optional = true }
|
||||
cgmath = { version = "0.17", optional = true }
|
||||
nalgebra = { version = ">=0.14, <0.19", optional = true }
|
||||
num-traits = { version = "0.2", optional = true }
|
||||
serde = { version = "1", optional = true }
|
||||
serde_derive = { version = "1", optional = true }
|
||||
cgmath = { version = ">=0.17, <0.19", optional = true }
|
||||
glam = { version = ">=0.10, <0.25", optional = true }
|
||||
nalgebra = { version = ">=0.21, <0.33", default-features = false, optional = true }
|
||||
serde = { version = "1", features = ["derive"], optional = true }
|
||||
|
||||
[dev-dependencies]
|
||||
float-cmp = ">=0.6, < 0.10"
|
||||
serde_json = "1"
|
||||
|
||||
[package.metadata.docs.rs]
|
||||
all-features = true
|
||||
features = ["std", "cgmath", "glam", "nalgebra", "serde"]
|
||||
|
||||
[[example]]
|
||||
name = "hello-world"
|
||||
|
||||
[[example]]
|
||||
name = "serialization"
|
||||
required-features = ["serde"]
|
||||
|
30
LICENSE
Normal file
30
LICENSE
Normal file
@ -0,0 +1,30 @@
|
||||
Copyright (c) 2019, Dimitri Sabadie <dimitri.sabadie@gmail.com>
|
||||
|
||||
All rights reserved.
|
||||
|
||||
Redistribution and use in source and binary forms, with or without
|
||||
modification, are permitted provided that the following conditions are met:
|
||||
|
||||
* Redistributions of source code must retain the above copyright
|
||||
notice, this list of conditions and the following disclaimer.
|
||||
|
||||
* Redistributions in binary form must reproduce the above
|
||||
copyright notice, this list of conditions and the following
|
||||
disclaimer in the documentation and/or other materials provided
|
||||
with the distribution.
|
||||
|
||||
* Neither the name of Dimitri Sabadie <dimitri.sabadie@gmail.com> nor the names of other
|
||||
contributors may be used to endorse or promote products derived
|
||||
from this software without specific prior written permission.
|
||||
|
||||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
|
||||
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
|
||||
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
|
||||
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
|
||||
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
|
||||
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
|
||||
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
|
||||
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
|
||||
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
|
||||
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
|
||||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
|
35
README.md
35
README.md
@ -24,7 +24,7 @@ is picked from its lower control point.
|
||||
|
||||
# Quickly create splines
|
||||
|
||||
```
|
||||
```rust
|
||||
use splines::{Interpolation, Key, Spline};
|
||||
|
||||
let start = Key::new(0., 0., Interpolation::Linear);
|
||||
@ -46,7 +46,7 @@ value.
|
||||
|
||||
If you try to sample in out-of-bounds sampling parameter, you’ll get no value.
|
||||
|
||||
```
|
||||
```rust
|
||||
assert_eq!(spline.sample(0.), Some(0.));
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(spline.sample(1.1), None);
|
||||
@ -56,7 +56,7 @@ It’s possible that you want to get a value even if you’re out-of-bounds. Thi
|
||||
important for simulations / animations. Feel free to use the `Spline::clamped_interpolation` for
|
||||
that purpose.
|
||||
|
||||
```
|
||||
```rust
|
||||
assert_eq!(spline.clamped_sample(-0.9), Some(0.)); // clamped to the first key
|
||||
assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
|
||||
```
|
||||
@ -66,7 +66,7 @@ assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
|
||||
[`Spline`] curves are parametered both by the carried value (being interpolated) but also the
|
||||
sampling type. It’s very typical to use `f32` or `f64` but really, you can in theory use any
|
||||
kind of type; that type must, however, implement a contract defined by a set of traits to
|
||||
implement. See [the documentation of this module](crate::interpolate) for further details.
|
||||
implement. See [the documentation of this module](https://docs.rs/splines/latest/splines/interpolate/) for further details.
|
||||
|
||||
# Features and customization
|
||||
|
||||
@ -83,20 +83,25 @@ not. It’s especially important to see how it copes with the documentation.
|
||||
|
||||
So here’s a list of currently supported features and how to enable them:
|
||||
|
||||
- **Serialization / deserialization.**
|
||||
+ This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||
- **Serde.**
|
||||
- This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||
types exported by this crate.
|
||||
+ Enable with the `"serialization"` feature.
|
||||
- Enable with the `"serde"` feature.
|
||||
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
||||
+ Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||
+ Enable with the `"impl-cgmath"` feature.
|
||||
- Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||
- Enable with the `"cgmath"` feature.
|
||||
- **[glam](https://crates.io/crates/glam) implementors.**
|
||||
- Adds some useful implementations of `Interpolate` for some glam types.
|
||||
- Enable with the `"glam"` feature.
|
||||
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
||||
+ Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||
+ Enable with the `"impl-nalgebra"` feature.
|
||||
- Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||
- Enable with the `"nalgebra"` feature.
|
||||
- **Standard library / no standard library.**
|
||||
+ It’s possible to compile against the standard library or go on your own without it.
|
||||
+ Compiling with the standard library is enabled by default.
|
||||
+ Use `default-features = []` in your `Cargo.toml` to disable.
|
||||
+ Enable explicitly with the `"std"` feature.
|
||||
- It’s possible to compile against the standard library or go on your own without it.
|
||||
- Compiling with the standard library is enabled by default.
|
||||
- Use `default-features = []` in your `Cargo.toml` to disable.
|
||||
- Enable explicitly with the `"std"` feature.
|
||||
|
||||
[`Interpolation`]: crate::interpolation::Interpolation
|
||||
|
||||
<!-- cargo-sync-readme end -->
|
||||
|
@ -1,7 +0,0 @@
|
||||
[package]
|
||||
name = "hello-world"
|
||||
version = "0.2.0"
|
||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||
|
||||
[dependencies]
|
||||
splines = "1.0.0-rc.2"
|
@ -1,8 +0,0 @@
|
||||
[package]
|
||||
name = "serialization"
|
||||
version = "0.2.0"
|
||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||
|
||||
[dependencies]
|
||||
serde_json = "1"
|
||||
splines = { version = "1.0.0-rc.2", features = ["serialization"] }
|
@ -1,9 +0,0 @@
|
||||
[workspace]
|
||||
|
||||
members = [
|
||||
"01-hello-world",
|
||||
"02-serialization"
|
||||
]
|
||||
|
||||
[patch.crates-io]
|
||||
splines = { path = ".." }
|
@ -3,7 +3,10 @@ extern crate splines;
|
||||
use splines::{Interpolation, Key, Spline};
|
||||
|
||||
fn main() {
|
||||
let keys = vec![Key::new(0., 0., Interpolation::default()), Key::new(5., 1., Interpolation::default())];
|
||||
let keys = vec![
|
||||
Key::new(0., 0., Interpolation::default()),
|
||||
Key::new(5., 1., Interpolation::default()),
|
||||
];
|
||||
let spline = Spline::from_vec(keys);
|
||||
|
||||
println!("value at 0: {:?}", spline.clamped_sample(0.));
|
@ -1,11 +1,12 @@
|
||||
#[macro_use] extern crate serde_json;
|
||||
#[macro_use]
|
||||
extern crate serde_json;
|
||||
extern crate splines;
|
||||
|
||||
use serde_json::from_value;
|
||||
use splines::Spline;
|
||||
|
||||
fn main() {
|
||||
let value = json!{
|
||||
let value = json! {
|
||||
[
|
||||
{
|
||||
"t": 0,
|
15
rustfmt.toml
Normal file
15
rustfmt.toml
Normal file
@ -0,0 +1,15 @@
|
||||
edition = "2018"
|
||||
|
||||
fn_params_layout = "Tall"
|
||||
force_explicit_abi = true
|
||||
hard_tabs = false
|
||||
max_width = 100
|
||||
merge_derives = true
|
||||
newline_style = "Unix"
|
||||
remove_nested_parens = true
|
||||
reorder_imports = true
|
||||
reorder_modules = true
|
||||
tab_spaces = 2
|
||||
use_field_init_shorthand = true
|
||||
use_small_heuristics = "Default"
|
||||
use_try_shorthand = true
|
@ -1,64 +1,15 @@
|
||||
use cgmath::{
|
||||
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
|
||||
};
|
||||
use crate::impl_Interpolate;
|
||||
|
||||
use crate::interpolate::{Additive, Interpolate, Linear, One, cubic_hermite_def};
|
||||
use cgmath::{Quaternion, Vector1, Vector2, Vector3, Vector4};
|
||||
|
||||
macro_rules! impl_interpolate_vec {
|
||||
($($t:tt)*) => {
|
||||
impl<T> Linear<T> for $($t)*<T> where T: BaseNum {
|
||||
#[inline(always)]
|
||||
fn outer_mul(self, t: T) -> Self {
|
||||
self * t
|
||||
}
|
||||
impl_Interpolate!(f32, Vector1<f32>, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vector2<f32>, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vector3<f32>, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vector4<f32>, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Quaternion<f32>, std::f32::consts::PI);
|
||||
|
||||
#[inline(always)]
|
||||
fn outer_div(self, t: T) -> Self {
|
||||
self / t
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Interpolate<T> for $($t)*<T>
|
||||
where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
|
||||
#[inline(always)]
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
a.lerp(b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_interpolate_vec!(Vector1);
|
||||
impl_interpolate_vec!(Vector2);
|
||||
impl_interpolate_vec!(Vector3);
|
||||
impl_interpolate_vec!(Vector4);
|
||||
|
||||
impl<T> Linear<T> for Quaternion<T> where T: BaseFloat {
|
||||
#[inline(always)]
|
||||
fn outer_mul(self, t: T) -> Self {
|
||||
self * t
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn outer_div(self, t: T) -> Self {
|
||||
self / t
|
||||
}
|
||||
}
|
||||
|
||||
impl<T> Interpolate<T> for Quaternion<T>
|
||||
where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
|
||||
#[inline(always)]
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
a.nlerp(b, t)
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
}
|
||||
impl_Interpolate!(f64, Vector1<f64>, std::f64::consts::PI);
|
||||
impl_Interpolate!(f64, Vector2<f64>, std::f64::consts::PI);
|
||||
impl_Interpolate!(f64, Vector3<f64>, std::f64::consts::PI);
|
||||
impl_Interpolate!(f64, Vector4<f64>, std::f64::consts::PI);
|
||||
impl_Interpolate!(f64, Quaternion<f64>, std::f64::consts::PI);
|
||||
|
8
src/glam.rs
Normal file
8
src/glam.rs
Normal file
@ -0,0 +1,8 @@
|
||||
use crate::impl_Interpolate;
|
||||
use glam::{Quat, Vec2, Vec3, Vec3A, Vec4};
|
||||
|
||||
impl_Interpolate!(f32, Vec2, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vec3, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vec3A, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vec4, std::f32::consts::PI);
|
||||
impl_Interpolate!(f32, Quat, std::f32::consts::PI);
|
@ -28,220 +28,220 @@
|
||||
//! [`Trigo`]: crate::interpolate::Trigo
|
||||
//! [num-traits]: https://crates.io/crates/num-traits
|
||||
|
||||
#[cfg(feature = "std")] use std::f32;
|
||||
#[cfg(not(feature = "std"))] use core::f32;
|
||||
#[cfg(not(feature = "std"))] use core::intrinsics::cosf32;
|
||||
#[cfg(feature = "std")] use std::f64;
|
||||
#[cfg(not(feature = "std"))] use core::f64;
|
||||
#[cfg(not(feature = "std"))] use core::intrinsics::cosf64;
|
||||
#[cfg(feature = "std")] use std::ops::{Add, Mul, Sub};
|
||||
#[cfg(not(feature = "std"))] use core::ops::{Add, Mul, Sub};
|
||||
#[cfg(not(feature = "std"))]
|
||||
use core::f32;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use core::f64;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use core::intrinsics::cosf32;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use core::intrinsics::cosf64;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use core::ops::{Add, Mul, Sub};
|
||||
#[cfg(feature = "std")]
|
||||
use std::f32;
|
||||
#[cfg(feature = "std")]
|
||||
use std::f64;
|
||||
|
||||
/// Keys that can be interpolated in between. Implementing this trait is required to perform
|
||||
/// sampling on splines.
|
||||
/// Types that can be used as interpolator in splines.
|
||||
///
|
||||
/// `T` is the variable used to sample with. Typical implementations use [`f32`] or [`f64`], but
|
||||
/// you’re free to use the ones you like. Feel free to have a look at [`Spline::sample`] for
|
||||
/// instance to know which trait your type must implement to be usable.
|
||||
/// An interpolator value is like the fabric on which control keys (and sampled values) live on.
|
||||
pub trait Interpolator: Sized + Copy + PartialOrd {
|
||||
/// Normalize the interpolator.
|
||||
fn normalize(self, start: Self, end: Self) -> Self;
|
||||
}
|
||||
|
||||
macro_rules! impl_Interpolator {
|
||||
($t:ty) => {
|
||||
impl Interpolator for $t {
|
||||
fn normalize(self, start: Self, end: Self) -> Self {
|
||||
(self - start) / (end - start)
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_Interpolator!(f32);
|
||||
impl_Interpolator!(f64);
|
||||
|
||||
/// Values that can be interpolated. Implementing this trait is required to perform sampling on splines.
|
||||
///
|
||||
/// [`Spline::sample`]: crate::spline::Spline::sample
|
||||
/// `T` is the interpolator used to sample with. Typical implementations use [`f32`] or [`f64`], but
|
||||
/// you’re free to use the ones you like.
|
||||
pub trait Interpolate<T>: Sized + Copy {
|
||||
/// Step interpolation.
|
||||
fn step(t: T, threshold: T, a: Self, b: Self) -> Self;
|
||||
|
||||
/// Linear interpolation.
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self;
|
||||
fn lerp(t: T, a: Self, b: Self) -> Self;
|
||||
|
||||
/// Cosine interpolation.
|
||||
fn cosine(t: T, a: Self, b: Self) -> Self;
|
||||
|
||||
/// Cubic hermite interpolation.
|
||||
fn cubic_hermite(t: T, x: (T, Self), a: (T, Self), b: (T, Self), y: (T, Self)) -> Self;
|
||||
|
||||
/// Quadratic Bézier interpolation.
|
||||
///
|
||||
/// Default to [`lerp`].
|
||||
/// `a` is the first point; `b` is the second point and `u` is the tangent of `a` to the curve.
|
||||
fn quadratic_bezier(t: T, a: Self, u: Self, b: Self) -> Self;
|
||||
|
||||
/// Cubic Bézier interpolation.
|
||||
///
|
||||
/// [`lerp`]: Interpolate::lerp
|
||||
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
|
||||
Self::lerp(a.0, b.0, t)
|
||||
}
|
||||
/// `a` is the first point; `b` is the second point; `u` is the output tangent of `a` to the curve and `v` is the
|
||||
/// input tangent of `b` to the curve.
|
||||
fn cubic_bezier(t: T, a: Self, u: Self, v: Self, b: Self) -> Self;
|
||||
|
||||
/// Cubic Bézier interpolation – special case for non-explicit second tangent.
|
||||
///
|
||||
/// This version does the same computation as [`Interpolate::cubic_bezier`] but computes the second tangent by
|
||||
/// inversing it (typical when the next point uses a Bézier interpolation, where input and output tangents are
|
||||
/// mirrored for the same key).
|
||||
fn cubic_bezier_mirrored(t: T, a: Self, u: Self, v: Self, b: Self) -> Self;
|
||||
}
|
||||
|
||||
/// Set of types that support additions and subtraction.
|
||||
///
|
||||
/// The [`Copy`] trait is also a supertrait as it’s likely to be used everywhere.
|
||||
pub trait Additive:
|
||||
Copy +
|
||||
Add<Self, Output = Self> +
|
||||
Sub<Self, Output = Self> {
|
||||
}
|
||||
|
||||
impl<T> Additive for T
|
||||
where T: Copy +
|
||||
Add<Self, Output = Self> +
|
||||
Sub<Self, Output = Self> {
|
||||
}
|
||||
|
||||
/// Set of additive types that support outer multiplication and division, making them linear.
|
||||
pub trait Linear<T>: Additive {
|
||||
/// Apply an outer multiplication law.
|
||||
fn outer_mul(self, t: T) -> Self;
|
||||
|
||||
/// Apply an outer division law.
|
||||
fn outer_div(self, t: T) -> Self;
|
||||
}
|
||||
|
||||
macro_rules! impl_linear_simple {
|
||||
($t:ty) => {
|
||||
impl Linear<$t> for $t {
|
||||
fn outer_mul(self, t: $t) -> Self {
|
||||
self * t
|
||||
#[macro_export]
|
||||
macro_rules! impl_Interpolate {
|
||||
($t:ty, $v:ty, $pi:expr) => {
|
||||
impl $crate::interpolate::Interpolate<$t> for $v {
|
||||
fn step(t: $t, threshold: $t, a: Self, b: Self) -> Self {
|
||||
if t < threshold {
|
||||
a
|
||||
} else {
|
||||
b
|
||||
}
|
||||
}
|
||||
|
||||
/// Apply an outer division law.
|
||||
fn outer_div(self, t: $t) -> Self {
|
||||
self / t
|
||||
#[cfg(feature = "std")]
|
||||
fn cosine(t: $t, a: Self, b: Self) -> Self {
|
||||
let cos_nt = (1. - (t * $pi).cos()) * 0.5;
|
||||
<Self as $crate::interpolate::Interpolate<$t>>::lerp(cos_nt, a, b)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_linear_simple!(f32);
|
||||
impl_linear_simple!(f64);
|
||||
|
||||
macro_rules! impl_linear_cast {
|
||||
($t:ty, $q:ty) => {
|
||||
impl Linear<$t> for $q {
|
||||
fn outer_mul(self, t: $t) -> Self {
|
||||
self * t as $q
|
||||
#[cfg(not(feature = "std"))]
|
||||
fn cosine(t: $t, a: Self, b: Self) -> Self {
|
||||
unimplemented!();
|
||||
}
|
||||
|
||||
/// Apply an outer division law.
|
||||
fn outer_div(self, t: $t) -> Self {
|
||||
self / t as $q
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_linear_cast!(f32, f64);
|
||||
impl_linear_cast!(f64, f32);
|
||||
|
||||
/// Types with a neutral element for multiplication.
|
||||
pub trait One {
|
||||
/// The neutral element for the multiplicative monoid — typically called `1`.
|
||||
fn one() -> Self;
|
||||
}
|
||||
|
||||
macro_rules! impl_one_float {
|
||||
($t:ty) => {
|
||||
impl One for $t {
|
||||
#[inline(always)]
|
||||
fn one() -> Self {
|
||||
1.
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_one_float!(f32);
|
||||
impl_one_float!(f64);
|
||||
|
||||
/// Types with a sane definition of π and cosine.
|
||||
pub trait Trigo {
|
||||
/// π.
|
||||
fn pi() -> Self;
|
||||
|
||||
/// Cosine of the argument.
|
||||
fn cos(self) -> Self;
|
||||
}
|
||||
|
||||
impl Trigo for f32 {
|
||||
#[inline(always)]
|
||||
fn pi() -> Self {
|
||||
f32::consts::PI
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cos(self) -> Self {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
self.cos()
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "std"))]
|
||||
{
|
||||
unsafe { cosf32(self) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl Trigo for f64 {
|
||||
#[inline(always)]
|
||||
fn pi() -> Self {
|
||||
f64::consts::PI
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cos(self) -> Self {
|
||||
#[cfg(feature = "std")]
|
||||
{
|
||||
self.cos()
|
||||
}
|
||||
|
||||
#[cfg(not(feature = "std"))]
|
||||
{
|
||||
unsafe { cosf64(self) }
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
/// Default implementation of [`Interpolate::cubic_hermite`].
|
||||
///
|
||||
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||
pub fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
|
||||
where V: Linear<T>,
|
||||
T: Additive + Mul<T, Output = T> + One {
|
||||
// some stupid generic constants, because Rust doesn’t have polymorphic literals…
|
||||
let one_t = T::one();
|
||||
let two_t = one_t + one_t; // lolololol
|
||||
let three_t = two_t + one_t; // megalol
|
||||
|
||||
// sampler stuff
|
||||
let t2 = t * t;
|
||||
let t3 = t2 * t;
|
||||
let two_t3 = t3 * two_t;
|
||||
let three_t2 = t2 * three_t;
|
||||
|
||||
// tangents
|
||||
let m0 = (b.0 - x.0).outer_div(b.1 - x.1);
|
||||
let m1 = (y.0 - a.0).outer_div(y.1 - a.1);
|
||||
|
||||
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
|
||||
}
|
||||
|
||||
macro_rules! impl_interpolate_simple {
|
||||
($t:ty) => {
|
||||
impl Interpolate<$t> for $t {
|
||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
fn lerp(t: $t, a: Self, b: Self) -> Self {
|
||||
a * (1. - t) + b * t
|
||||
}
|
||||
|
||||
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
fn cubic_hermite(t: $t, x: ($t, Self), a: ($t, Self), b: ($t, Self), y: ($t, Self)) -> Self {
|
||||
// sampler stuff
|
||||
let two_t = t * 2.;
|
||||
let three_t = t * 3.;
|
||||
let t2 = t * t;
|
||||
let t3 = t2 * t;
|
||||
let two_t3 = t2 * two_t;
|
||||
let two_t2 = t * two_t;
|
||||
let three_t2 = t * three_t;
|
||||
|
||||
// tangents
|
||||
let m0 = (b.1 - x.1) / (b.0 - x.0) * (b.0 - a.0);
|
||||
let m1 = (y.1 - a.1) / (y.0 - a.0) * (b.0 - a.0);
|
||||
|
||||
a.1 * (two_t3 - three_t2 + 1.)
|
||||
+ m0 * (t3 - two_t2 + t)
|
||||
+ b.1 * (three_t2 - two_t3)
|
||||
+ m1 * (t3 - t2)
|
||||
}
|
||||
|
||||
fn quadratic_bezier(t: $t, a: Self, u: Self, b: Self) -> Self {
|
||||
let one_t = 1. - t;
|
||||
let one_t2 = one_t * one_t;
|
||||
|
||||
u + (a - u) * one_t2 + (b - u) * t * t
|
||||
}
|
||||
|
||||
fn cubic_bezier(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
|
||||
let one_t = 1. - t;
|
||||
let one_t2 = one_t * one_t;
|
||||
let one_t3 = one_t2 * one_t;
|
||||
let t2 = t * t;
|
||||
|
||||
a * one_t3 + (u * one_t2 * t + v * one_t * t2) * 3. + b * t2 * t
|
||||
}
|
||||
|
||||
fn cubic_bezier_mirrored(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
|
||||
<Self as $crate::interpolate::Interpolate<$t>>::cubic_bezier(t, a, u, b + b - v, b)
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_interpolate_simple!(f32);
|
||||
impl_interpolate_simple!(f64);
|
||||
|
||||
macro_rules! impl_interpolate_via {
|
||||
($t:ty, $v:ty) => {
|
||||
impl Interpolate<$t> for $v {
|
||||
fn lerp(a: Self, b: Self, t: $t) -> Self {
|
||||
a * (1. - t as $v) + b * t as $v
|
||||
#[macro_export]
|
||||
macro_rules! impl_InterpolateT {
|
||||
($t:ty, $v:ty, $pi:expr) => {
|
||||
impl $crate::interpolate::Interpolate<$t> for $v {
|
||||
fn step(t: $t, threshold: $t, a: Self, b: Self) -> Self {
|
||||
if t < threshold {
|
||||
a
|
||||
} else {
|
||||
b
|
||||
}
|
||||
}
|
||||
|
||||
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
||||
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
||||
#[cfg(feature = "std")]
|
||||
fn cosine(t: $t, a: Self, b: Self) -> Self {
|
||||
let cos_nt = (1. - (t * $pi).cos()) * 0.5;
|
||||
<Self as $crate::interpolate::Interpolate<$t>>::lerp(cos_nt, a, b)
|
||||
}
|
||||
#[cfg(not(feature = "std"))]
|
||||
fn cosine(t: $t, a: Self, b: Self) -> Self {
|
||||
unimplemented!()
|
||||
}
|
||||
|
||||
fn lerp(t: $t, a: Self, b: Self) -> Self {
|
||||
let t = Self::from(t);
|
||||
a * (1. - t) + b * t
|
||||
}
|
||||
|
||||
fn cubic_hermite(t: $t, x: ($t, Self), a: ($t, Self), b: ($t, Self), y: ($t, Self)) -> Self {
|
||||
// sampler stuff
|
||||
let t = Self::from(t);
|
||||
let two_t = t * 2.;
|
||||
let three_t = t * 3.;
|
||||
let t2 = t * t;
|
||||
let t3 = t2 * t;
|
||||
let two_t3 = t2 * two_t;
|
||||
let two_t2 = t * two_t;
|
||||
let three_t2 = t * three_t;
|
||||
|
||||
// tangents
|
||||
let m0 = (b.1 - x.1) / (Self::from(b.0 - x.0)) * (Self::from(b.0 - a.0));
|
||||
let m1 = (y.1 - a.1) / (Self::from(y.0 - a.0)) * (Self::from(b.0 - a.0));
|
||||
|
||||
a.1 * (two_t3 - three_t2 + 1.)
|
||||
+ m0 * (t3 - two_t2 + t)
|
||||
+ b.1 * (three_t2 - two_t3)
|
||||
+ m1 * (t3 - t2)
|
||||
}
|
||||
|
||||
fn quadratic_bezier(t: $t, a: Self, u: Self, b: Self) -> Self {
|
||||
let t = Self::from(t);
|
||||
let one_t = 1. - t;
|
||||
let one_t2 = one_t * one_t;
|
||||
|
||||
u + (a - u) * one_t2 + (b - u) * t * t
|
||||
}
|
||||
|
||||
fn cubic_bezier(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
|
||||
let t = Self::from(t);
|
||||
let one_t = 1. - t;
|
||||
let one_t2 = one_t * one_t;
|
||||
let one_t3 = one_t2 * one_t;
|
||||
let t2 = t * t;
|
||||
|
||||
a * one_t3 + (u * one_t2 * t + v * one_t * t2) * 3. + b * t2 * t
|
||||
}
|
||||
|
||||
fn cubic_bezier_mirrored(t: $t, a: Self, u: Self, v: Self, b: Self) -> Self {
|
||||
<Self as $crate::interpolate::Interpolate<$t>>::cubic_bezier(t, a, u, b + b - v, b)
|
||||
}
|
||||
}
|
||||
}
|
||||
};
|
||||
}
|
||||
|
||||
impl_interpolate_via!(f32, f64);
|
||||
impl_interpolate_via!(f64, f32);
|
||||
impl_Interpolate!(f32, f32, f32::consts::PI);
|
||||
impl_Interpolate!(f64, f64, f64::consts::PI);
|
||||
impl_InterpolateT!(f32, f64, f32::consts::PI);
|
||||
|
@ -1,15 +1,20 @@
|
||||
//! Available interpolation modes.
|
||||
|
||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
||||
#[cfg(any(feature = "serialization", feature = "serde"))]
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
/// Available kind of interpolations.
|
||||
///
|
||||
/// Feel free to visit each variant for more documentation.
|
||||
#[non_exhaustive]
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
pub enum Interpolation<T> {
|
||||
/// Hold a [`Key<T, _>`] until the sampling value passes the normalized step threshold, in which
|
||||
#[cfg_attr(
|
||||
any(feature = "serialization", feature = "serde"),
|
||||
derive(Deserialize, Serialize),
|
||||
serde(rename_all = "snake_case")
|
||||
)]
|
||||
pub enum Interpolation<T, V> {
|
||||
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
|
||||
/// case the next key is used.
|
||||
///
|
||||
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
|
||||
@ -17,20 +22,51 @@ pub enum Interpolation<T> {
|
||||
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
|
||||
/// > used.
|
||||
///
|
||||
/// [`Key<T, _>`]: crate::key::Key
|
||||
/// [`Key`]: crate::key::Key
|
||||
Step(T),
|
||||
|
||||
/// Linear interpolation between a key and the next one.
|
||||
Linear,
|
||||
|
||||
/// Cosine interpolation between a key and the next one.
|
||||
Cosine,
|
||||
|
||||
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
|
||||
CatmullRom
|
||||
CatmullRom,
|
||||
|
||||
/// Bézier interpolation.
|
||||
///
|
||||
/// A control point that uses such an interpolation is associated with an extra point. The segmant
|
||||
/// connecting both is called the _tangent_ of this point. The part of the spline defined between
|
||||
/// this control point and the next one will be interpolated across with Bézier interpolation. Two
|
||||
/// cases are possible:
|
||||
///
|
||||
/// - The next control point also has a Bézier interpolation mode. In this case, its tangent is
|
||||
/// used for the interpolation process. This is called _cubic Bézier interpolation_ and it
|
||||
/// kicks ass.
|
||||
/// - The next control point doesn’t have a Bézier interpolation mode set. In this case, the
|
||||
/// tangent used for the next control point is defined as the segment connecting that control
|
||||
/// point and the current control point’s associated point. This is called _quadratic Bézer
|
||||
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
||||
Bezier(V),
|
||||
|
||||
/// A special Bézier interpolation using an _input tangent_ and an _output tangent_.
|
||||
///
|
||||
/// With this kind of interpolation, a control point has an input tangent, which has the same role
|
||||
/// as the one defined by [`Interpolation::Bezier`], and an output tangent, which has the same
|
||||
/// role defined by the next key’s [`Interpolation::Bezier`] if present, normally.
|
||||
///
|
||||
/// What it means is that instead of setting the output tangent as the next key’s Bézier tangent,
|
||||
/// this interpolation mode allows you to manually set the output tangent. That will yield more
|
||||
/// control on the tangents but might generate discontinuities. Use with care.
|
||||
///
|
||||
/// Stroke Bézier interpolation is always a cubic Bézier interpolation by default.
|
||||
StrokeBezier(V, V),
|
||||
}
|
||||
|
||||
impl<T> Default for Interpolation<T> {
|
||||
impl<T, V> Default for Interpolation<T, V> {
|
||||
/// [`Interpolation::Linear`] is the default.
|
||||
fn default() -> Self {
|
||||
Interpolation::Linear
|
||||
}
|
||||
}
|
||||
|
||||
|
14
src/iter.rs
14
src/iter.rs
@ -11,9 +11,13 @@ use crate::{Key, Spline};
|
||||
/// Iterator over spline keys.
|
||||
///
|
||||
/// This iterator type is guaranteed to iterate over sorted keys.
|
||||
pub struct Iter<'a, T, V> where T: 'a, V: 'a {
|
||||
pub struct Iter<'a, T, V>
|
||||
where
|
||||
T: 'a,
|
||||
V: 'a,
|
||||
{
|
||||
spline: &'a Spline<T, V>,
|
||||
i: usize
|
||||
i: usize,
|
||||
}
|
||||
|
||||
impl<'a, T, V> Iterator for Iter<'a, T, V> {
|
||||
@ -35,10 +39,6 @@ impl<'a, T, V> IntoIterator for &'a Spline<T, V> {
|
||||
type IntoIter = Iter<'a, T, V>;
|
||||
|
||||
fn into_iter(self) -> Self::IntoIter {
|
||||
Iter {
|
||||
spline: self,
|
||||
i: 0
|
||||
}
|
||||
Iter { spline: self, i: 0 }
|
||||
}
|
||||
}
|
||||
|
||||
|
23
src/key.rs
23
src/key.rs
@ -1,14 +1,14 @@
|
||||
//! Spline control points.
|
||||
//!
|
||||
//! A control point associates to a “sampling value” (a.k.a. time) a carriede value that can be
|
||||
//! A control point associates to a “sampling value” (a.k.a. time) a carried value that can be
|
||||
//! interpolated along the curve made by the control points.
|
||||
//!
|
||||
//! Splines constructed with this crate have the property that it’s possible to change the
|
||||
//! interpolation mode on a key-based way, allowing you to implement and encode complex curves.
|
||||
|
||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
||||
|
||||
use crate::interpolation::Interpolation;
|
||||
#[cfg(any(feature = "serialization", feature = "serde"))]
|
||||
use serde::{Deserialize, Serialize};
|
||||
|
||||
/// A spline control point.
|
||||
///
|
||||
@ -18,20 +18,27 @@ use crate::interpolation::Interpolation;
|
||||
///
|
||||
/// [`Interpolation`]: crate::interpolation::Interpolation
|
||||
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||
#[cfg_attr(
|
||||
any(feature = "serialization", feature = "serde"),
|
||||
derive(Deserialize, Serialize),
|
||||
serde(rename_all = "snake_case")
|
||||
)]
|
||||
pub struct Key<T, V> {
|
||||
/// Interpolation parameter at which the [`Key`] should be reached.
|
||||
pub t: T,
|
||||
/// Carried value.
|
||||
pub value: V,
|
||||
/// Interpolation mode.
|
||||
pub interpolation: Interpolation<T>
|
||||
pub interpolation: Interpolation<T, V>,
|
||||
}
|
||||
|
||||
impl<T, V> Key<T, V> {
|
||||
/// Create a new key.
|
||||
pub fn new(t: T, value: V, interpolation: Interpolation<T>) -> Self {
|
||||
Key { t, value, interpolation }
|
||||
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
|
||||
Key {
|
||||
t,
|
||||
value,
|
||||
interpolation,
|
||||
}
|
||||
}
|
||||
}
|
||||
|
49
src/lib.rs
49
src/lib.rs
@ -84,34 +84,55 @@
|
||||
//!
|
||||
//! So here’s a list of currently supported features and how to enable them:
|
||||
//!
|
||||
//! - **Serialization / deserialization.**
|
||||
//! + This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||
//! - **Serde.**
|
||||
//! - This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||
//! types exported by this crate.
|
||||
//! + Enable with the `"serialization"` feature.
|
||||
//! - Enable with the `"serde"` feature.
|
||||
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
||||
//! + Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||
//! + Enable with the `"impl-cgmath"` feature.
|
||||
//! - Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||
//! - Enable with the `"cgmath"` feature.
|
||||
//! - **[glam](https://crates.io/crates/glam) implementors.**
|
||||
//! - Adds some useful implementations of `Interpolate` for some glam types.
|
||||
//! - Enable with the `"glam"` feature.
|
||||
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
||||
//! + Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||
//! + Enable with the `"impl-nalgebra"` feature.
|
||||
//! - Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||
//! - Enable with the `"nalgebra"` feature.
|
||||
//! - **Standard library / no standard library.**
|
||||
//! + It’s possible to compile against the standard library or go on your own without it.
|
||||
//! + Compiling with the standard library is enabled by default.
|
||||
//! + Use `default-features = []` in your `Cargo.toml` to disable.
|
||||
//! + Enable explicitly with the `"std"` feature.
|
||||
//! - It’s possible to compile against the standard library or go on your own without it.
|
||||
//! - Compiling with the standard library is enabled by default.
|
||||
//! - Use `default-features = []` in your `Cargo.toml` to disable.
|
||||
//! - Enable explicitly with the `"std"` feature.
|
||||
//!
|
||||
//! [`Interpolation`]: crate::interpolation::Interpolation
|
||||
|
||||
#![cfg_attr(not(feature = "std"), no_std)]
|
||||
#![cfg_attr(not(feature = "std"), feature(alloc))]
|
||||
#![cfg_attr(not(feature = "std"), feature(core_intrinsics))]
|
||||
#![cfg_attr(
|
||||
any(
|
||||
feature = "impl-cgmath",
|
||||
feature = "impl-glam",
|
||||
feature = "impl-nalgebra"
|
||||
),
|
||||
deprecated(
|
||||
since = "4.2.0",
|
||||
note = "you are using an impl-* feature gate; please switch to * (e.g. impl-cgmath becomes cgmath)"
|
||||
)
|
||||
)]
|
||||
|
||||
#[cfg(not(feature = "std"))] extern crate alloc;
|
||||
#[cfg(not(feature = "std"))]
|
||||
extern crate alloc;
|
||||
|
||||
#[cfg(feature = "impl-cgmath")] mod cgmath;
|
||||
#[cfg(any(feature = "impl-cgmath", feature = "cgmath"))]
|
||||
mod cgmath;
|
||||
#[cfg(any(feature = "impl-glam", feature = "glam"))]
|
||||
mod glam;
|
||||
pub mod interpolate;
|
||||
pub mod interpolation;
|
||||
pub mod iter;
|
||||
pub mod key;
|
||||
#[cfg(feature = "impl-nalgebra")] mod nalgebra;
|
||||
#[cfg(any(feature = "impl-nalgebra", feature = "nalgebra"))]
|
||||
mod nalgebra;
|
||||
pub mod spline;
|
||||
|
||||
pub use crate::interpolate::Interpolate;
|
||||
|
@ -1,52 +1,27 @@
|
||||
use alga::general::{ClosedAdd, ClosedDiv, ClosedMul, ClosedSub};
|
||||
use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6};
|
||||
use num_traits as nt;
|
||||
use std::ops::Mul;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use core::f32;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use core::f64;
|
||||
#[cfg(feature = "std")]
|
||||
use std::f32;
|
||||
#[cfg(feature = "std")]
|
||||
use std::f64;
|
||||
|
||||
use crate::interpolate::{Interpolate, Linear, Additive, One, cubic_hermite_def};
|
||||
use crate::impl_Interpolate;
|
||||
use nalgebra::{Quaternion, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6};
|
||||
|
||||
macro_rules! impl_interpolate_vector {
|
||||
($($t:tt)*) => {
|
||||
// implement Linear
|
||||
impl<T> Linear<T> for $($t)*<T> where T: Scalar + ClosedAdd + ClosedSub + ClosedMul + ClosedDiv {
|
||||
#[inline(always)]
|
||||
fn outer_mul(self, t: T) -> Self {
|
||||
self * t
|
||||
}
|
||||
impl_Interpolate!(f32, Vector1<f32>, f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vector2<f32>, f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vector3<f32>, f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vector4<f32>, f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vector5<f32>, f32::consts::PI);
|
||||
impl_Interpolate!(f32, Vector6<f32>, f32::consts::PI);
|
||||
impl_Interpolate!(f32, Quaternion<f32>, f32::consts::PI);
|
||||
|
||||
#[inline(always)]
|
||||
fn outer_div(self, t: T) -> Self {
|
||||
self / t
|
||||
}
|
||||
}
|
||||
|
||||
impl<T, V> Interpolate<T> for $($t)*<V>
|
||||
where Self: Linear<T>,
|
||||
T: Additive + One + Mul<T, Output = T>,
|
||||
V: nt::One +
|
||||
nt::Zero +
|
||||
Additive +
|
||||
Scalar +
|
||||
ClosedAdd +
|
||||
ClosedMul +
|
||||
ClosedSub +
|
||||
Interpolate<T> {
|
||||
#[inline(always)]
|
||||
fn lerp(a: Self, b: Self, t: T) -> Self {
|
||||
Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
|
||||
}
|
||||
|
||||
#[inline(always)]
|
||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||
cubic_hermite_def(x, a, b, y, t)
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
impl_interpolate_vector!(Vector1);
|
||||
impl_interpolate_vector!(Vector2);
|
||||
impl_interpolate_vector!(Vector3);
|
||||
impl_interpolate_vector!(Vector4);
|
||||
impl_interpolate_vector!(Vector5);
|
||||
impl_interpolate_vector!(Vector6);
|
||||
impl_Interpolate!(f64, Vector1<f64>, f64::consts::PI);
|
||||
impl_Interpolate!(f64, Vector2<f64>, f64::consts::PI);
|
||||
impl_Interpolate!(f64, Vector3<f64>, f64::consts::PI);
|
||||
impl_Interpolate!(f64, Vector4<f64>, f64::consts::PI);
|
||||
impl_Interpolate!(f64, Vector5<f64>, f64::consts::PI);
|
||||
impl_Interpolate!(f64, Vector6<f64>, f64::consts::PI);
|
||||
impl_Interpolate!(f64, Quaternion<f64>, f64::consts::PI);
|
||||
|
277
src/spline.rs
277
src/spline.rs
@ -1,15 +1,19 @@
|
||||
//! Spline curves and operations.
|
||||
|
||||
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
|
||||
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
|
||||
#[cfg(feature = "std")] use std::cmp::Ordering;
|
||||
#[cfg(feature = "std")] use std::ops::{Div, Mul};
|
||||
#[cfg(not(feature = "std"))] use core::ops::{Div, Mul};
|
||||
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
|
||||
|
||||
use crate::interpolate::{Interpolate, Additive, One, Trigo};
|
||||
// #[cfg(feature = "std")]
|
||||
use crate::interpolate::{Interpolate, Interpolator};
|
||||
use crate::interpolation::Interpolation;
|
||||
use crate::key::Key;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use alloc::vec::Vec;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use core::cmp::Ordering;
|
||||
#[cfg(not(feature = "std"))]
|
||||
use core::ops::{Div, Mul};
|
||||
#[cfg(any(feature = "serialization", feature = "serde"))]
|
||||
use serde::{Deserialize, Serialize};
|
||||
#[cfg(feature = "std")]
|
||||
use std::cmp::Ordering;
|
||||
|
||||
/// Spline curve used to provide interpolation between control points (keys).
|
||||
///
|
||||
@ -23,24 +27,42 @@ use crate::key::Key;
|
||||
/// for the required interpolation mode, you get `None`.
|
||||
/// - [`Spline::clamped_sample`]: behaves like [`Spline::sample`] but will return either the first
|
||||
/// or last key if out of bound; it will return `None` if not enough key.
|
||||
#[derive(Debug, Clone)]
|
||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||
#[derive(Debug, Clone, Default)]
|
||||
#[cfg_attr(
|
||||
any(feature = "serialization", feature = "serde"),
|
||||
derive(Deserialize, Serialize)
|
||||
)]
|
||||
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
|
||||
|
||||
impl<T, V> Spline<T, V> {
|
||||
/// Internal sort to ensure invariant of sorting keys is valid.
|
||||
fn internal_sort(&mut self) where T: PartialOrd {
|
||||
self.0.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||||
fn internal_sort(&mut self)
|
||||
where
|
||||
T: PartialOrd,
|
||||
{
|
||||
self
|
||||
.0
|
||||
.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||||
}
|
||||
|
||||
/// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended
|
||||
/// to provide ascending sorted ones (for performance purposes).
|
||||
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
|
||||
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self
|
||||
where
|
||||
T: PartialOrd,
|
||||
{
|
||||
let mut spline = Spline(keys);
|
||||
spline.internal_sort();
|
||||
spline
|
||||
}
|
||||
|
||||
/// Clear the spline by removing all keys. Keeps the underlying allocated storage, so adding
|
||||
/// new keys should be faster than creating a new [`Spline`]
|
||||
#[inline]
|
||||
pub fn clear(&mut self) {
|
||||
self.0.clear()
|
||||
}
|
||||
|
||||
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys don’t have to be
|
||||
/// sorted.
|
||||
///
|
||||
@ -48,7 +70,11 @@ impl<T, V> Spline<T, V> {
|
||||
///
|
||||
/// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
|
||||
/// use [`Spline::from_vec`] if you are passing a [`Vec`].
|
||||
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
|
||||
pub fn from_iter<I>(iter: I) -> Self
|
||||
where
|
||||
I: Iterator<Item = Key<T, V>>,
|
||||
T: PartialOrd,
|
||||
{
|
||||
Self::from_vec(iter.collect())
|
||||
}
|
||||
|
||||
@ -69,7 +95,8 @@ impl<T, V> Spline<T, V> {
|
||||
self.0.is_empty()
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time.
|
||||
/// Sample a spline at a given time, returning the interpolated value along with its associated
|
||||
/// key.
|
||||
///
|
||||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||||
/// that sampling’s processing complexity is currently *O(log n)*. It’s possible to achieve *O(1)*
|
||||
@ -83,35 +110,38 @@ impl<T, V> Spline<T, V> {
|
||||
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
|
||||
/// you’re near the beginning of the spline or its end, ensure you have enough keys around to make
|
||||
/// the sampling.
|
||||
///
|
||||
pub fn sample(&self, t: T) -> Option<V>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
pub fn sample_with_key(&self, t: T) -> Option<SampledWithKey<V>>
|
||||
where
|
||||
T: Interpolator,
|
||||
V: Interpolate<T>,
|
||||
{
|
||||
let keys = &self.0;
|
||||
let i = search_lower_cp(keys, t)?;
|
||||
let cp0 = &keys[i];
|
||||
|
||||
match cp0.interpolation {
|
||||
let value = match cp0.interpolation {
|
||||
Interpolation::Step(threshold) => {
|
||||
let cp1 = &keys[i+1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
Some(if nt < threshold { cp0.value } else { cp1.value })
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = t.normalize(cp0.t, cp1.t);
|
||||
let value = V::step(nt, threshold, cp0.value, cp1.value);
|
||||
|
||||
Some(value)
|
||||
}
|
||||
|
||||
Interpolation::Linear => {
|
||||
let cp1 = &keys[i+1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = t.normalize(cp0.t, cp1.t);
|
||||
let value = V::lerp(nt, cp0.value, cp1.value);
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
||||
Some(value)
|
||||
}
|
||||
|
||||
Interpolation::Cosine => {
|
||||
let two_t = T::one() + T::one();
|
||||
let cp1 = &keys[i+1];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = t.normalize(cp0.t, cp1.t);
|
||||
let value = V::cosine(nt, cp0.value, cp1.value);
|
||||
|
||||
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
|
||||
Some(value)
|
||||
}
|
||||
|
||||
Interpolation::CatmullRom => {
|
||||
@ -120,18 +150,54 @@ impl<T, V> Spline<T, V> {
|
||||
if i == 0 || i >= keys.len() - 2 {
|
||||
None
|
||||
} else {
|
||||
let cp1 = &keys[i+1];
|
||||
let cpm0 = &keys[i-1];
|
||||
let cpm1 = &keys[i+2];
|
||||
let nt = normalize_time(t, cp0, cp1);
|
||||
let cp1 = &keys[i + 1];
|
||||
let cpm0 = &keys[i - 1];
|
||||
let cpm1 = &keys[i + 2];
|
||||
let nt = t.normalize(cp0.t, cp1.t);
|
||||
let value = V::cubic_hermite(
|
||||
nt,
|
||||
(cpm0.t, cpm0.value),
|
||||
(cp0.t, cp0.value),
|
||||
(cp1.t, cp1.value),
|
||||
(cpm1.t, cpm1.value),
|
||||
);
|
||||
|
||||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
||||
Some(value)
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Interpolation::Bezier(u) | Interpolation::StrokeBezier(_, u) => {
|
||||
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
|
||||
let cp1 = &keys[i + 1];
|
||||
let nt = t.normalize(cp0.t, cp1.t);
|
||||
|
||||
let value = match cp1.interpolation {
|
||||
Interpolation::Bezier(v) => V::cubic_bezier_mirrored(nt, cp0.value, u, v, cp1.value),
|
||||
|
||||
Interpolation::StrokeBezier(v, _) => V::cubic_bezier(nt, cp0.value, u, v, cp1.value),
|
||||
|
||||
_ => V::quadratic_bezier(nt, cp0.value, u, cp1.value),
|
||||
};
|
||||
|
||||
Some(value)
|
||||
}
|
||||
};
|
||||
|
||||
value.map(|value| SampledWithKey { value, key: i })
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping.
|
||||
/// Sample a spline at a given time.
|
||||
///
|
||||
pub fn sample(&self, t: T) -> Option<V>
|
||||
where
|
||||
T: Interpolator,
|
||||
V: Interpolate<T>,
|
||||
{
|
||||
self.sample_with_key(t).map(|sampled| sampled.value)
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
|
||||
/// associated key.
|
||||
///
|
||||
/// # Return
|
||||
///
|
||||
@ -141,22 +207,33 @@ impl<T, V> Spline<T, V> {
|
||||
/// # Error
|
||||
///
|
||||
/// This function returns [`None`] if you have no key.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
|
||||
V: Interpolate<T> {
|
||||
pub fn clamped_sample_with_key(&self, t: T) -> Option<SampledWithKey<V>>
|
||||
where
|
||||
T: Interpolator,
|
||||
V: Interpolate<T>,
|
||||
{
|
||||
if self.0.is_empty() {
|
||||
return None;
|
||||
}
|
||||
|
||||
self.sample(t).or_else(move || {
|
||||
self.sample_with_key(t).or_else(move || {
|
||||
let first = self.0.first().unwrap();
|
||||
|
||||
if t <= first.t {
|
||||
Some(first.value)
|
||||
let sampled = SampledWithKey {
|
||||
value: first.value,
|
||||
key: 0,
|
||||
};
|
||||
Some(sampled)
|
||||
} else {
|
||||
let last = self.0.last().unwrap();
|
||||
|
||||
if t >= last.t {
|
||||
Some(last.value)
|
||||
let sampled = SampledWithKey {
|
||||
value: last.value,
|
||||
key: self.0.len() - 1,
|
||||
};
|
||||
Some(sampled)
|
||||
} else {
|
||||
None
|
||||
}
|
||||
@ -164,8 +241,20 @@ impl<T, V> Spline<T, V> {
|
||||
})
|
||||
}
|
||||
|
||||
/// Sample a spline at a given time with clamping.
|
||||
pub fn clamped_sample(&self, t: T) -> Option<V>
|
||||
where
|
||||
T: Interpolator,
|
||||
V: Interpolate<T>,
|
||||
{
|
||||
self.clamped_sample_with_key(t).map(|sampled| sampled.value)
|
||||
}
|
||||
|
||||
/// Add a key into the spline.
|
||||
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
|
||||
pub fn add(&mut self, key: Key<T, V>)
|
||||
where
|
||||
T: PartialOrd,
|
||||
{
|
||||
self.0.push(key);
|
||||
self.internal_sort();
|
||||
}
|
||||
@ -178,48 +267,78 @@ impl<T, V> Spline<T, V> {
|
||||
Some(self.0.remove(index))
|
||||
}
|
||||
}
|
||||
|
||||
/// Update a key and return the key already present.
|
||||
///
|
||||
/// The key is updated — if present — with the provided function.
|
||||
///
|
||||
/// # Notes
|
||||
///
|
||||
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
|
||||
/// your key. If you just want to change the interpolation mode or the carried value, consider
|
||||
/// using the [`Spline::get_mut`] method instead as it will be way faster.
|
||||
pub fn replace<F>(&mut self, index: usize, f: F) -> Option<Key<T, V>>
|
||||
where
|
||||
F: FnOnce(&Key<T, V>) -> Key<T, V>,
|
||||
T: PartialOrd,
|
||||
{
|
||||
let key = self.remove(index)?;
|
||||
self.add(f(&key));
|
||||
Some(key)
|
||||
}
|
||||
|
||||
/// Get a key at a given index.
|
||||
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
|
||||
self.0.get(index)
|
||||
}
|
||||
|
||||
/// Mutably get a key at a given index.
|
||||
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
|
||||
self.0.get_mut(index).map(|key| KeyMut {
|
||||
value: &mut key.value,
|
||||
interpolation: &mut key.interpolation,
|
||||
})
|
||||
}
|
||||
}
|
||||
|
||||
// Normalize a time ([0;1]) given two control points.
|
||||
#[inline(always)]
|
||||
pub(crate) fn normalize_time<T, V>(
|
||||
t: T,
|
||||
cp: &Key<T, V>,
|
||||
cp1: &Key<T, V>
|
||||
) -> T where T: Additive + Div<T, Output = T> + PartialEq {
|
||||
assert!(cp1.t != cp.t, "overlapping keys");
|
||||
(t - cp.t) / (cp1.t - cp.t)
|
||||
/// A sampled value along with its key index.
|
||||
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
|
||||
pub struct SampledWithKey<V> {
|
||||
/// Sampled value.
|
||||
pub value: V,
|
||||
|
||||
/// Key index.
|
||||
pub key: usize,
|
||||
}
|
||||
|
||||
/// A mutable [`Key`].
|
||||
///
|
||||
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
|
||||
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
|
||||
/// want to achieve this, you’re advised to use [`Spline::replace`].
|
||||
#[derive(Debug)]
|
||||
pub struct KeyMut<'a, T, V> {
|
||||
/// Carried value.
|
||||
pub value: &'a mut V,
|
||||
/// Interpolation mode to use for that key.
|
||||
pub interpolation: &'a mut Interpolation<T, V>,
|
||||
}
|
||||
|
||||
// Find the lower control point corresponding to a given time.
|
||||
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize> where T: PartialOrd {
|
||||
let mut i = 0;
|
||||
// It has the property to have a timestamp smaller or equal to t
|
||||
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize>
|
||||
where
|
||||
T: PartialOrd,
|
||||
{
|
||||
let len = cps.len();
|
||||
|
||||
if len < 2 {
|
||||
return None;
|
||||
}
|
||||
|
||||
loop {
|
||||
let cp = &cps[i];
|
||||
let cp1 = &cps[i+1];
|
||||
|
||||
if t >= cp1.t {
|
||||
if i >= len - 2 {
|
||||
return None;
|
||||
}
|
||||
|
||||
i += 1;
|
||||
} else if t < cp.t {
|
||||
if i == 0 {
|
||||
return None;
|
||||
}
|
||||
|
||||
i -= 1;
|
||||
} else {
|
||||
break; // found
|
||||
}
|
||||
match cps.binary_search_by(|key| key.t.partial_cmp(&t).unwrap()) {
|
||||
Err(i) if i >= len => None,
|
||||
Err(i) if i == 0 => None,
|
||||
Err(i) => Some(i - 1),
|
||||
Ok(i) if i == len - 1 => None,
|
||||
Ok(i) => Some(i),
|
||||
}
|
||||
|
||||
Some(i)
|
||||
}
|
||||
|
43
tests/cgmath.rs
Normal file
43
tests/cgmath.rs
Normal file
@ -0,0 +1,43 @@
|
||||
#![cfg(feature = "cgmath")]
|
||||
|
||||
use cgmath as cg;
|
||||
use splines::{Interpolation, Key, Spline};
|
||||
|
||||
#[test]
|
||||
fn cgmath_vector_interpolation() {
|
||||
use splines::Interpolate;
|
||||
|
||||
let start = cg::Vector2::new(0.0, 0.0);
|
||||
let mid = cg::Vector2::new(0.5, 0.5);
|
||||
let end = cg::Vector2::new(1.0, 1.0);
|
||||
|
||||
assert_eq!(Interpolate::lerp(0., start, end), start);
|
||||
assert_eq!(Interpolate::lerp(1., start, end), end);
|
||||
assert_eq!(Interpolate::lerp(0.5, start, end), mid);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn stroke_bezier_straight() {
|
||||
use float_cmp::approx_eq;
|
||||
|
||||
let keys = vec![
|
||||
Key::new(
|
||||
0.0,
|
||||
cg::Vector2::new(0., 1.),
|
||||
Interpolation::StrokeBezier(cg::Vector2::new(0., 1.), cg::Vector2::new(0., 1.)),
|
||||
),
|
||||
Key::new(
|
||||
5.0,
|
||||
cg::Vector2::new(5., 1.),
|
||||
Interpolation::StrokeBezier(cg::Vector2::new(5., 1.), cg::Vector2::new(5., 1.)),
|
||||
),
|
||||
];
|
||||
let spline = Spline::from_vec(keys);
|
||||
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(0.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(1.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(2.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(3.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(4.0).unwrap().y, 1.));
|
||||
assert!(approx_eq!(f32, spline.clamped_sample(5.0).unwrap().y, 1.));
|
||||
}
|
@ -1,7 +1,4 @@
|
||||
use splines::{Interpolation, Key, Spline};
|
||||
|
||||
#[cfg(feature = "impl-cgmath")] use cgmath as cg;
|
||||
#[cfg(feature = "impl-nalgebra")] use nalgebra as na;
|
||||
use splines::{spline::SampledWithKey, Interpolation, Key, Spline};
|
||||
|
||||
#[test]
|
||||
fn step_interpolation_f32() {
|
||||
@ -16,6 +13,14 @@ fn step_interpolation_f32() {
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(
|
||||
spline.sample_with_key(0.2),
|
||||
Some(SampledWithKey { value: 10., key: 0 })
|
||||
);
|
||||
assert_eq!(
|
||||
spline.clamped_sample_with_key(1.),
|
||||
Some(SampledWithKey { value: 10., key: 1 })
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -31,6 +36,14 @@ fn step_interpolation_f64() {
|
||||
assert_eq!(spline.sample(0.9), Some(10.));
|
||||
assert_eq!(spline.sample(1.), None);
|
||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||
assert_eq!(
|
||||
spline.sample_with_key(0.2),
|
||||
Some(SampledWithKey { value: 10., key: 0 })
|
||||
);
|
||||
assert_eq!(
|
||||
spline.clamped_sample_with_key(1.),
|
||||
Some(SampledWithKey { value: 10., key: 1 })
|
||||
);
|
||||
}
|
||||
|
||||
#[test]
|
||||
@ -145,34 +158,6 @@ fn several_interpolations_several_keys() {
|
||||
assert_eq!(spline.clamped_sample(11.), Some(4.));
|
||||
}
|
||||
|
||||
#[cfg(feature = "impl-cgmath")]
|
||||
#[test]
|
||||
fn cgmath_vector_interpolation() {
|
||||
use splines::Interpolate;
|
||||
|
||||
let start = cg::Vector2::new(0.0, 0.0);
|
||||
let mid = cg::Vector2::new(0.5, 0.5);
|
||||
let end = cg::Vector2::new(1.0, 1.0);
|
||||
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
|
||||
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
|
||||
}
|
||||
|
||||
#[cfg(feature = "impl-nalgebra")]
|
||||
#[test]
|
||||
fn nalgebra_vector_interpolation() {
|
||||
use splines::Interpolate;
|
||||
|
||||
let start = na::Vector2::new(0.0, 0.0);
|
||||
let mid = na::Vector2::new(0.5, 0.5);
|
||||
let end = na::Vector2::new(1.0, 1.0);
|
||||
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
|
||||
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
|
||||
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
|
||||
}
|
||||
|
||||
#[test]
|
||||
fn add_key_empty() {
|
||||
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
|
16
tests/nalgebra.rs
Normal file
16
tests/nalgebra.rs
Normal file
@ -0,0 +1,16 @@
|
||||
#![cfg(feature = "nalgebra")]
|
||||
|
||||
use nalgebra as na;
|
||||
|
||||
#[test]
|
||||
fn nalgebra_vector_interpolation() {
|
||||
use splines::Interpolate;
|
||||
|
||||
let start = na::Vector2::new(0.0, 0.0);
|
||||
let mid = na::Vector2::new(0.5, 0.5);
|
||||
let end = na::Vector2::new(1.0, 1.0);
|
||||
|
||||
assert_eq!(Interpolate::lerp(0., start, end), start);
|
||||
assert_eq!(Interpolate::lerp(1., start, end), end);
|
||||
assert_eq!(Interpolate::lerp(0.5, start, end), mid);
|
||||
}
|
Loading…
x
Reference in New Issue
Block a user