Compare commits
20 Commits
1.0.0-rc.3
...
2.0
Author | SHA1 | Date | |
---|---|---|---|
1bfd9a0e7c | |||
7846177471 | |||
6f65be125b | |||
5d0ebc0777 | |||
4fdbfa6189 | |||
7dbc85a312 | |||
03031a1e92 | |||
54eb89ae96 | |||
51ab8022f9 | |||
b78be8cba3 | |||
fd05dd0419 | |||
b05582d653 | |||
e76f18ac5b | |||
8e6af2cee9 | |||
a6e77a3d09 | |||
510881b5c6 | |||
1eed163277 | |||
311efa5b26 | |||
c98b493993 | |||
c818b4c810 |
46
.github/workflows/ci.yaml
vendored
Normal file
46
.github/workflows/ci.yaml
vendored
Normal file
@ -0,0 +1,46 @@
|
|||||||
|
name: CI
|
||||||
|
on: [push]
|
||||||
|
|
||||||
|
jobs:
|
||||||
|
build-linux:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v1
|
||||||
|
- name: Build
|
||||||
|
run: |
|
||||||
|
cargo build --verbose --all-features
|
||||||
|
- name: Test
|
||||||
|
run: |
|
||||||
|
cargo test --verbose --all-features
|
||||||
|
|
||||||
|
|
||||||
|
build-windows:
|
||||||
|
runs-on: windows-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v1
|
||||||
|
- name: Build
|
||||||
|
run: |
|
||||||
|
cargo build --verbose --all-features
|
||||||
|
- name: Test
|
||||||
|
run: |
|
||||||
|
cargo test --verbose --all-features
|
||||||
|
|
||||||
|
build-macosx:
|
||||||
|
runs-on: macosx-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v1
|
||||||
|
- name: Build
|
||||||
|
run: |
|
||||||
|
cargo build --verbose --all-features
|
||||||
|
- name: Test
|
||||||
|
run: |
|
||||||
|
cargo test --verbose --all-features
|
||||||
|
|
||||||
|
check-readme:
|
||||||
|
runs-on: ubuntu-latest
|
||||||
|
steps:
|
||||||
|
- uses: actions/checkout@v1
|
||||||
|
- name: Install cargo-sync-readme
|
||||||
|
run: cargo install --force cargo-sync-readme
|
||||||
|
- name: Check
|
||||||
|
run: cargo sync-readme -c
|
29
.travis.yml
29
.travis.yml
@ -1,29 +0,0 @@
|
|||||||
language: rust
|
|
||||||
|
|
||||||
rust:
|
|
||||||
- stable
|
|
||||||
- beta
|
|
||||||
- nightly
|
|
||||||
|
|
||||||
os:
|
|
||||||
- linux
|
|
||||||
- osx
|
|
||||||
|
|
||||||
script:
|
|
||||||
- rustc --version
|
|
||||||
- cargo --version
|
|
||||||
- echo "Testing default crate configuration"
|
|
||||||
- cargo build --verbose
|
|
||||||
- cargo test --verbose
|
|
||||||
- cd examples && cargo check --verbose
|
|
||||||
- echo "Testing feature serialization"
|
|
||||||
- cargo build --verbose --features serialization
|
|
||||||
- cargo test --verbose --features serialization
|
|
||||||
- echo "Building without std"
|
|
||||||
- cargo build --verbose --no-default-features
|
|
||||||
- echo "Testing with cgmath"
|
|
||||||
- cargo build --verbose --features impl-cgmath
|
|
||||||
- cargo test --verbose --features impl-cgmath
|
|
||||||
- echo "Testing with nalgebra"
|
|
||||||
- cargo build --verbose --features impl-nalgebra
|
|
||||||
- cargo test --verbose --features impl-nalgebra
|
|
72
CHANGELOG.md
72
CHANGELOG.md
@ -1,43 +1,79 @@
|
|||||||
## 0.2.3
|
# 2.0.0
|
||||||
|
|
||||||
|
> Mon Sep 24th 2019
|
||||||
|
|
||||||
|
## Major changes
|
||||||
|
|
||||||
|
- Add support for [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
|
||||||
|
- Because of Bézier curves, the `Interpolation` type now has one more type variable to know how we
|
||||||
|
should interpolate with Bézier.
|
||||||
|
|
||||||
|
## Minor changes
|
||||||
|
|
||||||
|
- Add `Spline::get`, `Spline::get_mut` and `Spline::replace`.
|
||||||
|
|
||||||
|
# 1.0
|
||||||
|
|
||||||
|
> Sun Sep 22nd 2019
|
||||||
|
|
||||||
|
## Major changes
|
||||||
|
|
||||||
|
- Make `Spline::clamped_sample` failible via `Option` instead of panicking.
|
||||||
|
- Add support for polymorphic sampling type.
|
||||||
|
|
||||||
|
## Minor changes
|
||||||
|
|
||||||
|
- Add the `std` feature (and hence support for `no_std`).
|
||||||
|
- Add `impl-nalgebra` feature.
|
||||||
|
- Add `impl-cgmath` feature.
|
||||||
|
- Add support for adding keys to splines.
|
||||||
|
- Add support for removing keys from splines.
|
||||||
|
|
||||||
|
## Patch changes
|
||||||
|
|
||||||
|
- Migrate to Rust 2018.
|
||||||
|
- Documentation typo fixes.
|
||||||
|
|
||||||
|
# 0.2.3
|
||||||
|
|
||||||
> Sat 13th October 2018
|
> Sat 13th October 2018
|
||||||
|
|
||||||
- Add the `"impl-nalgebra"` feature gate. It gives access to some implementors for the `nalgebra`
|
- Add the `"impl-nalgebra"` feature gate. It gives access to some implementors for the `nalgebra`
|
||||||
crate.
|
crate.
|
||||||
- Enhance the documentation.
|
- Enhance the documentation.
|
||||||
|
|
||||||
## 0.2.2
|
# 0.2.2
|
||||||
|
|
||||||
> Sun 30th September 2018
|
> Sun 30th September 2018
|
||||||
|
|
||||||
- Bump version numbers (`splines-0.2`) in examples.
|
- Bump version numbers (`splines-0.2`) in examples.
|
||||||
- Fix several typos in the documentation.
|
- Fix several typos in the documentation.
|
||||||
|
|
||||||
## 0.2.1
|
# 0.2.1
|
||||||
|
|
||||||
> Thu 20th September 2018
|
> Thu 20th September 2018
|
||||||
|
|
||||||
- Enhance the features documentation.
|
- Enhance the features documentation.
|
||||||
|
|
||||||
# 0.2
|
# 0.2
|
||||||
|
|
||||||
> Thu 6th September 2018
|
> Thu 6th September 2018
|
||||||
|
|
||||||
- Add the `"std"` feature gate, that can be used to compile with the standard library.
|
- Add the `"std"` feature gate, that can be used to compile with the standard library.
|
||||||
- Add the `"impl-cgmath"` feature gate in order to make optional, if wanted, the `cgmath`
|
- Add the `"impl-cgmath"` feature gate in order to make optional, if wanted, the `cgmath`
|
||||||
dependency.
|
dependency.
|
||||||
- Enhance the documentation.
|
- Enhance the documentation.
|
||||||
|
|
||||||
## 0.1.1
|
# 0.1.1
|
||||||
|
|
||||||
> Wed 8th August 2018
|
> Wed 8th August 2018
|
||||||
|
|
||||||
- Add a feature gate, `"serialization"`, that can be used to automatically derive `Serialize` and
|
- Add a feature gate, `"serialization"`, that can be used to automatically derive `Serialize` and
|
||||||
`Deserialize` from the [serde](https://crates.io/crates/serde) crate.
|
`Deserialize` from the [serde](https://crates.io/crates/serde) crate.
|
||||||
- Enhance the documentation.
|
- Enhance the documentation.
|
||||||
|
|
||||||
# 0.1
|
# 0.1
|
||||||
|
|
||||||
> Sunday 5th August 2018
|
> Sunday 5th August 2018
|
||||||
|
|
||||||
- Initial revision.
|
- Initial revision.
|
||||||
|
@ -1,6 +1,6 @@
|
|||||||
[package]
|
[package]
|
||||||
name = "splines"
|
name = "splines"
|
||||||
version = "1.0.0-rc.3"
|
version = "2.0.0"
|
||||||
license = "BSD-3-Clause"
|
license = "BSD-3-Clause"
|
||||||
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
|
||||||
description = "Spline interpolation made easy"
|
description = "Spline interpolation made easy"
|
||||||
@ -33,3 +33,6 @@ nalgebra = { version = ">=0.14, <0.19", optional = true }
|
|||||||
num-traits = { version = "0.2", optional = true }
|
num-traits = { version = "0.2", optional = true }
|
||||||
serde = { version = "1", optional = true }
|
serde = { version = "1", optional = true }
|
||||||
serde_derive = { version = "1", optional = true }
|
serde_derive = { version = "1", optional = true }
|
||||||
|
|
||||||
|
[package.metadata.docs.rs]
|
||||||
|
all-features = true
|
||||||
|
57
README.md
57
README.md
@ -13,9 +13,9 @@ switch to a cubic Hermite interpolator for the next section.
|
|||||||
|
|
||||||
Most of the crate consists of three types:
|
Most of the crate consists of three types:
|
||||||
|
|
||||||
- [`Key`], which represents the control points by which the spline must pass.
|
- [`Key`], which represents the control points by which the spline must pass.
|
||||||
- [`Interpolation`], the type of possible interpolation for each segment.
|
- [`Interpolation`], the type of possible interpolation for each segment.
|
||||||
- [`Spline`], a spline from which you can *sample* points by interpolation.
|
- [`Spline`], a spline from which you can *sample* points by interpolation.
|
||||||
|
|
||||||
When adding control points, you add new sections. Two control points define a section – i.e.
|
When adding control points, you add new sections. Two control points define a section – i.e.
|
||||||
it’s not possible to define a spline without at least two control points. Every time you add a
|
it’s not possible to define a spline without at least two control points. Every time you add a
|
||||||
@ -40,17 +40,13 @@ key. We use the default one because we don’t care.
|
|||||||
# Interpolate values
|
# Interpolate values
|
||||||
|
|
||||||
The whole purpose of splines is to interpolate discrete values to yield continuous ones. This is
|
The whole purpose of splines is to interpolate discrete values to yield continuous ones. This is
|
||||||
usually done with the `Spline::sample` method. This method expects the interpolation parameter
|
usually done with the [`Spline::sample`] method. This method expects the sampling parameter
|
||||||
(often, this will be the time of your simulation) as argument and will yield an interpolated
|
(often, this will be the time of your simulation) as argument and will yield an interpolated
|
||||||
value.
|
value.
|
||||||
|
|
||||||
If you try to sample in out-of-bounds interpolation parameter, you’ll get no value.
|
If you try to sample in out-of-bounds sampling parameter, you’ll get no value.
|
||||||
|
|
||||||
```
|
```
|
||||||
# use splines::{Interpolation, Key, Spline};
|
|
||||||
# let start = Key::new(0., 0., Interpolation::Linear);
|
|
||||||
# let end = Key::new(1., 10., Interpolation::Linear);
|
|
||||||
# let spline = Spline::from_vec(vec![start, end]);
|
|
||||||
assert_eq!(spline.sample(0.), Some(0.));
|
assert_eq!(spline.sample(0.), Some(0.));
|
||||||
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
assert_eq!(spline.clamped_sample(1.), Some(10.));
|
||||||
assert_eq!(spline.sample(1.1), None);
|
assert_eq!(spline.sample(1.1), None);
|
||||||
@ -61,14 +57,17 @@ important for simulations / animations. Feel free to use the `Spline::clamped_in
|
|||||||
that purpose.
|
that purpose.
|
||||||
|
|
||||||
```
|
```
|
||||||
# use splines::{Interpolation, Key, Spline};
|
|
||||||
# let start = Key::new(0., 0., Interpolation::Linear);
|
|
||||||
# let end = Key::new(1., 10., Interpolation::Linear);
|
|
||||||
# let spline = Spline::from_vec(vec![start, end]);
|
|
||||||
assert_eq!(spline.clamped_sample(-0.9), Some(0.)); // clamped to the first key
|
assert_eq!(spline.clamped_sample(-0.9), Some(0.)); // clamped to the first key
|
||||||
assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
|
assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
|
||||||
```
|
```
|
||||||
|
|
||||||
|
# Polymorphic sampling types
|
||||||
|
|
||||||
|
[`Spline`] curves are parametered both by the carried value (being interpolated) but also the
|
||||||
|
sampling type. It’s very typical to use `f32` or `f64` but really, you can in theory use any
|
||||||
|
kind of type; that type must, however, implement a contract defined by a set of traits to
|
||||||
|
implement. See [the documentation of this module](crate::interpolate) for further details.
|
||||||
|
|
||||||
# Features and customization
|
# Features and customization
|
||||||
|
|
||||||
This crate was written with features baked in and hidden behind feature-gates. The idea is that
|
This crate was written with features baked in and hidden behind feature-gates. The idea is that
|
||||||
@ -84,20 +83,22 @@ not. It’s especially important to see how it copes with the documentation.
|
|||||||
|
|
||||||
So here’s a list of currently supported features and how to enable them:
|
So here’s a list of currently supported features and how to enable them:
|
||||||
|
|
||||||
- **Serialization / deserialization.**
|
- **Serialization / deserialization.**
|
||||||
+ This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
- This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||||
types exported by this crate.
|
types exported by this crate.
|
||||||
+ Enable with the `"serialization"` feature.
|
- Enable with the `"serialization"` feature.
|
||||||
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
||||||
+ Adds some useful implementations of `Interpolate` for some cgmath types.
|
- Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||||
+ Enable with the `"impl-cgmath"` feature.
|
- Enable with the `"impl-cgmath"` feature.
|
||||||
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
||||||
+ Adds some useful implementations of `Interpolate` for some nalgebra types.
|
- Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||||
+ Enable with the `"impl-nalgebra"` feature.
|
- Enable with the `"impl-nalgebra"` feature.
|
||||||
- **Standard library / no standard library.**
|
- **Standard library / no standard library.**
|
||||||
+ It’s possible to compile against the standard library or go on your own without it.
|
- It’s possible to compile against the standard library or go on your own without it.
|
||||||
+ Compiling with the standard library is enabled by default.
|
- Compiling with the standard library is enabled by default.
|
||||||
+ Use `default-features = []` in your `Cargo.toml` to disable.
|
- Use `default-features = []` in your `Cargo.toml` to disable.
|
||||||
+ Enable explicitly with the `"std"` feature.
|
- Enable explicitly with the `"std"` feature.
|
||||||
|
|
||||||
|
[`Interpolation`]: crate::interpolation::Interpolation
|
||||||
|
|
||||||
<!-- cargo-sync-readme end -->
|
<!-- cargo-sync-readme end -->
|
||||||
|
@ -2,7 +2,9 @@ use cgmath::{
|
|||||||
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
|
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
|
||||||
};
|
};
|
||||||
|
|
||||||
use crate::interpolate::{Additive, Interpolate, Linear, One, cubic_hermite_def};
|
use crate::interpolate::{
|
||||||
|
Additive, Interpolate, Linear, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
|
||||||
|
};
|
||||||
|
|
||||||
macro_rules! impl_interpolate_vec {
|
macro_rules! impl_interpolate_vec {
|
||||||
($($t:tt)*) => {
|
($($t:tt)*) => {
|
||||||
@ -29,6 +31,16 @@ macro_rules! impl_interpolate_vec {
|
|||||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||||
cubic_hermite_def(x, a, b, y, t)
|
cubic_hermite_def(x, a, b, y, t)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||||
|
quadratic_bezier_def(a, u, b, t)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||||
|
cubic_bezier_def(a, u, v, b, t)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -61,4 +73,14 @@ where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
|
|||||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||||
cubic_hermite_def(x, a, b, y, t)
|
cubic_hermite_def(x, a, b, y, t)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||||
|
quadratic_bezier_def(a, u, b, t)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||||
|
cubic_bezier_def(a, u, v, b, t)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
|
@ -57,6 +57,12 @@ pub trait Interpolate<T>: Sized + Copy {
|
|||||||
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
|
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
|
||||||
Self::lerp(a.0, b.0, t)
|
Self::lerp(a.0, b.0, t)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Quadratic Bézier interpolation.
|
||||||
|
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
|
||||||
|
|
||||||
|
/// Cubic Bézier interpolation.
|
||||||
|
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Set of types that support additions and subtraction.
|
/// Set of types that support additions and subtraction.
|
||||||
@ -212,6 +218,31 @@ where V: Linear<T>,
|
|||||||
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
|
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Default implementation of [`Interpolate::quadratic_bezier`].
|
||||||
|
///
|
||||||
|
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||||
|
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
|
||||||
|
where V: Linear<T>,
|
||||||
|
T: Additive + Mul<T, Output = T> + One {
|
||||||
|
let one_t = T::one() - t;
|
||||||
|
let one_t_2 = one_t * one_t;
|
||||||
|
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Default implementation of [`Interpolate::cubic_bezier`].
|
||||||
|
///
|
||||||
|
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
|
||||||
|
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
|
||||||
|
where V: Linear<T>,
|
||||||
|
T: Additive + Mul<T, Output = T> + One {
|
||||||
|
let one_t = T::one() - t;
|
||||||
|
let one_t_2 = one_t * one_t;
|
||||||
|
let one_t_3 = one_t_2 * one_t;
|
||||||
|
let three = T::one() + T::one() + T::one();
|
||||||
|
|
||||||
|
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
|
||||||
|
}
|
||||||
|
|
||||||
macro_rules! impl_interpolate_simple {
|
macro_rules! impl_interpolate_simple {
|
||||||
($t:ty) => {
|
($t:ty) => {
|
||||||
impl Interpolate<$t> for $t {
|
impl Interpolate<$t> for $t {
|
||||||
@ -222,6 +253,14 @@ macro_rules! impl_interpolate_simple {
|
|||||||
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
|
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
|
||||||
cubic_hermite_def(x, a, b, y, t)
|
cubic_hermite_def(x, a, b, y, t)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||||
|
quadratic_bezier_def(a, u, b, t)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||||
|
cubic_bezier_def(a, u, v, b, t)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
@ -239,6 +278,14 @@ macro_rules! impl_interpolate_via {
|
|||||||
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
|
||||||
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
|
||||||
|
quadratic_bezier_def(a, u, b, t as $v)
|
||||||
|
}
|
||||||
|
|
||||||
|
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
|
||||||
|
cubic_bezier_def(a, u, v, b, t as $v)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
@ -5,11 +5,11 @@
|
|||||||
/// Available kind of interpolations.
|
/// Available kind of interpolations.
|
||||||
///
|
///
|
||||||
/// Feel free to visit each variant for more documentation.
|
/// Feel free to visit each variant for more documentation.
|
||||||
#[derive(Copy, Clone, Debug)]
|
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||||
pub enum Interpolation<T> {
|
pub enum Interpolation<T, V> {
|
||||||
/// Hold a [`Key<T, _>`] until the sampling value passes the normalized step threshold, in which
|
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
|
||||||
/// case the next key is used.
|
/// case the next key is used.
|
||||||
///
|
///
|
||||||
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
|
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
|
||||||
@ -17,20 +17,36 @@ pub enum Interpolation<T> {
|
|||||||
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
|
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
|
||||||
/// > used.
|
/// > used.
|
||||||
///
|
///
|
||||||
/// [`Key<T, _>`]: crate::key::Key
|
/// [`Key`]: crate::key::Key
|
||||||
Step(T),
|
Step(T),
|
||||||
/// Linear interpolation between a key and the next one.
|
/// Linear interpolation between a key and the next one.
|
||||||
Linear,
|
Linear,
|
||||||
/// Cosine interpolation between a key and the next one.
|
/// Cosine interpolation between a key and the next one.
|
||||||
Cosine,
|
Cosine,
|
||||||
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
|
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
|
||||||
CatmullRom
|
CatmullRom,
|
||||||
|
/// Bézier interpolation.
|
||||||
|
///
|
||||||
|
/// A control point that uses such an interpolation is associated with an extra point. The segmant
|
||||||
|
/// connecting both is called the _tangent_ of this point. The part of the spline defined between
|
||||||
|
/// this control point and the next one will be interpolated across with Bézier interpolation. Two
|
||||||
|
/// cases are possible:
|
||||||
|
///
|
||||||
|
/// - The next control point also has a Bézier interpolation mode. In this case, its tangent is
|
||||||
|
/// used for the interpolation process. This is called _cubic Bézier interpolation_ and it
|
||||||
|
/// kicks ass.
|
||||||
|
/// - The next control point doesn’t have a Bézier interpolation mode set. In this case, the
|
||||||
|
/// tangent used for the next control point is defined as the segment connecting that control
|
||||||
|
/// point and the current control point’s associated point. This is called _quadratic Bézer
|
||||||
|
/// interpolation_ and it kicks ass too, but a bit less than cubic.
|
||||||
|
Bezier(V),
|
||||||
|
#[doc(hidden)]
|
||||||
|
__NonExhaustive
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T> Default for Interpolation<T> {
|
impl<T, V> Default for Interpolation<T, V> {
|
||||||
/// [`Interpolation::Linear`] is the default.
|
/// [`Interpolation::Linear`] is the default.
|
||||||
fn default() -> Self {
|
fn default() -> Self {
|
||||||
Interpolation::Linear
|
Interpolation::Linear
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
@ -17,7 +17,7 @@ use crate::interpolation::Interpolation;
|
|||||||
/// key and the next one – if existing. Have a look at [`Interpolation`] for further details.
|
/// key and the next one – if existing. Have a look at [`Interpolation`] for further details.
|
||||||
///
|
///
|
||||||
/// [`Interpolation`]: crate::interpolation::Interpolation
|
/// [`Interpolation`]: crate::interpolation::Interpolation
|
||||||
#[derive(Copy, Clone, Debug)]
|
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
|
||||||
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
|
||||||
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
|
||||||
pub struct Key<T, V> {
|
pub struct Key<T, V> {
|
||||||
@ -26,12 +26,12 @@ pub struct Key<T, V> {
|
|||||||
/// Carried value.
|
/// Carried value.
|
||||||
pub value: V,
|
pub value: V,
|
||||||
/// Interpolation mode.
|
/// Interpolation mode.
|
||||||
pub interpolation: Interpolation<T>
|
pub interpolation: Interpolation<T, V>
|
||||||
}
|
}
|
||||||
|
|
||||||
impl<T, V> Key<T, V> {
|
impl<T, V> Key<T, V> {
|
||||||
/// Create a new key.
|
/// Create a new key.
|
||||||
pub fn new(t: T, value: V, interpolation: Interpolation<T>) -> Self {
|
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
|
||||||
Key { t, value, interpolation }
|
Key { t, value, interpolation }
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
22
src/lib.rs
22
src/lib.rs
@ -85,20 +85,22 @@
|
|||||||
//! So here’s a list of currently supported features and how to enable them:
|
//! So here’s a list of currently supported features and how to enable them:
|
||||||
//!
|
//!
|
||||||
//! - **Serialization / deserialization.**
|
//! - **Serialization / deserialization.**
|
||||||
//! + This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
//! - This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
|
||||||
//! types exported by this crate.
|
//! types exported by this crate.
|
||||||
//! + Enable with the `"serialization"` feature.
|
//! - Enable with the `"serialization"` feature.
|
||||||
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
|
||||||
//! + Adds some useful implementations of `Interpolate` for some cgmath types.
|
//! - Adds some useful implementations of `Interpolate` for some cgmath types.
|
||||||
//! + Enable with the `"impl-cgmath"` feature.
|
//! - Enable with the `"impl-cgmath"` feature.
|
||||||
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
|
||||||
//! + Adds some useful implementations of `Interpolate` for some nalgebra types.
|
//! - Adds some useful implementations of `Interpolate` for some nalgebra types.
|
||||||
//! + Enable with the `"impl-nalgebra"` feature.
|
//! - Enable with the `"impl-nalgebra"` feature.
|
||||||
//! - **Standard library / no standard library.**
|
//! - **Standard library / no standard library.**
|
||||||
//! + It’s possible to compile against the standard library or go on your own without it.
|
//! - It’s possible to compile against the standard library or go on your own without it.
|
||||||
//! + Compiling with the standard library is enabled by default.
|
//! - Compiling with the standard library is enabled by default.
|
||||||
//! + Use `default-features = []` in your `Cargo.toml` to disable.
|
//! - Use `default-features = []` in your `Cargo.toml` to disable.
|
||||||
//! + Enable explicitly with the `"std"` feature.
|
//! - Enable explicitly with the `"std"` feature.
|
||||||
|
//!
|
||||||
|
//! [`Interpolation`]: crate::interpolation::Interpolation
|
||||||
|
|
||||||
#![cfg_attr(not(feature = "std"), no_std)]
|
#![cfg_attr(not(feature = "std"), no_std)]
|
||||||
#![cfg_attr(not(feature = "std"), feature(alloc))]
|
#![cfg_attr(not(feature = "std"), feature(alloc))]
|
||||||
|
@ -3,7 +3,9 @@ use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vect
|
|||||||
use num_traits as nt;
|
use num_traits as nt;
|
||||||
use std::ops::Mul;
|
use std::ops::Mul;
|
||||||
|
|
||||||
use crate::interpolate::{Interpolate, Linear, Additive, One, cubic_hermite_def};
|
use crate::interpolate::{
|
||||||
|
Interpolate, Linear, Additive, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
|
||||||
|
};
|
||||||
|
|
||||||
macro_rules! impl_interpolate_vector {
|
macro_rules! impl_interpolate_vector {
|
||||||
($($t:tt)*) => {
|
($($t:tt)*) => {
|
||||||
@ -40,6 +42,16 @@ macro_rules! impl_interpolate_vector {
|
|||||||
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
|
||||||
cubic_hermite_def(x, a, b, y, t)
|
cubic_hermite_def(x, a, b, y, t)
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
|
||||||
|
quadratic_bezier_def(a, u, b, t)
|
||||||
|
}
|
||||||
|
|
||||||
|
#[inline(always)]
|
||||||
|
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
|
||||||
|
cubic_bezier_def(a, u, v, b, t)
|
||||||
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
121
src/spline.rs
121
src/spline.rs
@ -28,12 +28,17 @@ use crate::key::Key;
|
|||||||
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
|
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
|
||||||
|
|
||||||
impl<T, V> Spline<T, V> {
|
impl<T, V> Spline<T, V> {
|
||||||
|
/// Internal sort to ensure invariant of sorting keys is valid.
|
||||||
|
fn internal_sort(&mut self) where T: PartialOrd {
|
||||||
|
self.0.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
||||||
|
}
|
||||||
|
|
||||||
/// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended
|
/// Create a new spline out of keys. The keys don’t have to be sorted even though it’s recommended
|
||||||
/// to provide ascending sorted ones (for performance purposes).
|
/// to provide ascending sorted ones (for performance purposes).
|
||||||
pub fn from_vec(mut keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
|
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
|
||||||
keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
|
let mut spline = Spline(keys);
|
||||||
|
spline.internal_sort();
|
||||||
Spline(keys)
|
spline
|
||||||
}
|
}
|
||||||
|
|
||||||
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys don’t have to be
|
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys don’t have to be
|
||||||
@ -42,7 +47,7 @@ impl<T, V> Spline<T, V> {
|
|||||||
/// # Note on iterators
|
/// # Note on iterators
|
||||||
///
|
///
|
||||||
/// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
|
/// It’s valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
|
||||||
/// use [`Spline::from_vec`] if you are passing a [`Vec`]. This will remove dynamic allocations.
|
/// use [`Spline::from_vec`] if you are passing a [`Vec`].
|
||||||
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
|
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
|
||||||
Self::from_vec(iter.collect())
|
Self::from_vec(iter.collect())
|
||||||
}
|
}
|
||||||
@ -52,6 +57,18 @@ impl<T, V> Spline<T, V> {
|
|||||||
&self.0
|
&self.0
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Number of keys.
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn len(&self) -> usize {
|
||||||
|
self.0.len()
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Check whether the spline has no key.
|
||||||
|
#[inline(always)]
|
||||||
|
pub fn is_empty(&self) -> bool {
|
||||||
|
self.0.is_empty()
|
||||||
|
}
|
||||||
|
|
||||||
/// Sample a spline at a given time.
|
/// Sample a spline at a given time.
|
||||||
///
|
///
|
||||||
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
/// The current implementation, based on immutability, cannot perform in constant time. This means
|
||||||
@ -76,13 +93,13 @@ impl<T, V> Spline<T, V> {
|
|||||||
|
|
||||||
match cp0.interpolation {
|
match cp0.interpolation {
|
||||||
Interpolation::Step(threshold) => {
|
Interpolation::Step(threshold) => {
|
||||||
let cp1 = &keys[i+1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
Some(if nt < threshold { cp0.value } else { cp1.value })
|
Some(if nt < threshold { cp0.value } else { cp1.value })
|
||||||
}
|
}
|
||||||
|
|
||||||
Interpolation::Linear => {
|
Interpolation::Linear => {
|
||||||
let cp1 = &keys[i+1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
|
||||||
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
|
||||||
@ -90,7 +107,7 @@ impl<T, V> Spline<T, V> {
|
|||||||
|
|
||||||
Interpolation::Cosine => {
|
Interpolation::Cosine => {
|
||||||
let two_t = T::one() + T::one();
|
let two_t = T::one() + T::one();
|
||||||
let cp1 = &keys[i+1];
|
let cp1 = &keys[i + 1];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
|
||||||
|
|
||||||
@ -103,14 +120,33 @@ impl<T, V> Spline<T, V> {
|
|||||||
if i == 0 || i >= keys.len() - 2 {
|
if i == 0 || i >= keys.len() - 2 {
|
||||||
None
|
None
|
||||||
} else {
|
} else {
|
||||||
let cp1 = &keys[i+1];
|
let cp1 = &keys[i + 1];
|
||||||
let cpm0 = &keys[i-1];
|
let cpm0 = &keys[i - 1];
|
||||||
let cpm1 = &keys[i+2];
|
let cpm1 = &keys[i + 2];
|
||||||
let nt = normalize_time(t, cp0, cp1);
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
|
||||||
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
Interpolation::Bezier(u) => {
|
||||||
|
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
|
||||||
|
let cp1 = &keys[i + 1];
|
||||||
|
let nt = normalize_time(t, cp0, cp1);
|
||||||
|
|
||||||
|
if let Interpolation::Bezier(v) = cp1.interpolation {
|
||||||
|
Some(Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt))
|
||||||
|
//let one_nt = T::one() - nt;
|
||||||
|
//let one_nt_2 = one_nt * one_nt;
|
||||||
|
//let one_nt_3 = one_nt_2 * one_nt;
|
||||||
|
//let three_one_nt_2 = one_nt_2 + one_nt_2 + one_nt_2; // one_nt_2 * 3
|
||||||
|
//let r = cp0.value * one_nt_3;
|
||||||
|
} else {
|
||||||
|
Some(Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
Interpolation::__NonExhaustive => unreachable!(),
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
@ -146,6 +182,69 @@ impl<T, V> Spline<T, V> {
|
|||||||
}
|
}
|
||||||
})
|
})
|
||||||
}
|
}
|
||||||
|
|
||||||
|
/// Add a key into the spline.
|
||||||
|
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
|
||||||
|
self.0.push(key);
|
||||||
|
self.internal_sort();
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Remove a key from the spline.
|
||||||
|
pub fn remove(&mut self, index: usize) -> Option<Key<T, V>> {
|
||||||
|
if index >= self.0.len() {
|
||||||
|
None
|
||||||
|
} else {
|
||||||
|
Some(self.0.remove(index))
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Update a key and return the key already present.
|
||||||
|
///
|
||||||
|
/// The key is updated — if present — with the provided function.
|
||||||
|
///
|
||||||
|
/// # Notes
|
||||||
|
///
|
||||||
|
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
|
||||||
|
/// your key. If you just want to change the interpolation mode or the carried value, consider
|
||||||
|
/// using the [`Spline::get_mut`] method instead as it will be way faster.
|
||||||
|
pub fn replace<F>(
|
||||||
|
&mut self,
|
||||||
|
index: usize,
|
||||||
|
f: F
|
||||||
|
) -> Option<Key<T, V>>
|
||||||
|
where
|
||||||
|
F: FnOnce(&Key<T, V>) -> Key<T, V>,
|
||||||
|
T: PartialOrd
|
||||||
|
{
|
||||||
|
let key = self.remove(index)?;
|
||||||
|
self.add(f(&key));
|
||||||
|
Some(key)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Get a key at a given index.
|
||||||
|
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
|
||||||
|
self.0.get(index)
|
||||||
|
}
|
||||||
|
|
||||||
|
/// Mutably get a key at a given index.
|
||||||
|
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
|
||||||
|
self.0.get_mut(index).map(|key| KeyMut {
|
||||||
|
value: &mut key.value,
|
||||||
|
interpolation: &mut key.interpolation
|
||||||
|
})
|
||||||
|
}
|
||||||
|
}
|
||||||
|
|
||||||
|
/// A mutable [`Key`].
|
||||||
|
///
|
||||||
|
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
|
||||||
|
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
|
||||||
|
/// want to achieve this, you’re advised to use [`Spline::replace`].
|
||||||
|
pub struct KeyMut<'a, T, V> {
|
||||||
|
/// Carried value.
|
||||||
|
pub value: &'a mut V,
|
||||||
|
/// Interpolation mode to use for that key.
|
||||||
|
pub interpolation: &'a mut Interpolation<T, V>,
|
||||||
}
|
}
|
||||||
|
|
||||||
// Normalize a time ([0;1]) given two control points.
|
// Normalize a time ([0;1]) given two control points.
|
||||||
|
48
tests/mod.rs
48
tests/mod.rs
@ -172,3 +172,51 @@ fn nalgebra_vector_interpolation() {
|
|||||||
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
|
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
|
||||||
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
|
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn add_key_empty() {
|
||||||
|
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
|
||||||
|
spline.add(Key::new(0., 0., Interpolation::Linear));
|
||||||
|
|
||||||
|
assert_eq!(spline.keys(), &[Key::new(0., 0., Interpolation::Linear)]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn add_key() {
|
||||||
|
let start = Key::new(0., 0., Interpolation::Step(0.5));
|
||||||
|
let k1 = Key::new(1., 5., Interpolation::Linear);
|
||||||
|
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
|
||||||
|
let k3 = Key::new(3., 1., Interpolation::Linear);
|
||||||
|
let k4 = Key::new(10., 2., Interpolation::Linear);
|
||||||
|
let end = Key::new(11., 4., Interpolation::default());
|
||||||
|
let new = Key::new(2.4, 40., Interpolation::Linear);
|
||||||
|
let mut spline = Spline::from_vec(vec![start, k1, k2.clone(), k3, k4, end]);
|
||||||
|
|
||||||
|
assert_eq!(spline.keys(), &[start, k1, k2, k3, k4, end]);
|
||||||
|
spline.add(new);
|
||||||
|
assert_eq!(spline.keys(), &[start, k1, k2, new, k3, k4, end]);
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn remove_element_empty() {
|
||||||
|
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
|
||||||
|
let removed = spline.remove(0);
|
||||||
|
|
||||||
|
assert_eq!(removed, None);
|
||||||
|
assert!(spline.is_empty());
|
||||||
|
}
|
||||||
|
|
||||||
|
#[test]
|
||||||
|
fn remove_element() {
|
||||||
|
let start = Key::new(0., 0., Interpolation::Step(0.5));
|
||||||
|
let k1 = Key::new(1., 5., Interpolation::Linear);
|
||||||
|
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
|
||||||
|
let k3 = Key::new(3., 1., Interpolation::Linear);
|
||||||
|
let k4 = Key::new(10., 2., Interpolation::Linear);
|
||||||
|
let end = Key::new(11., 4., Interpolation::default());
|
||||||
|
let mut spline = Spline::from_vec(vec![start, k1, k2.clone(), k3, k4, end]);
|
||||||
|
let removed = spline.remove(2);
|
||||||
|
|
||||||
|
assert_eq!(removed, Some(k2));
|
||||||
|
assert_eq!(spline.len(), 5);
|
||||||
|
}
|
||||||
|
Reference in New Issue
Block a user