67 Commits
0.1 ... 2.0

Author SHA1 Message Date
1bfd9a0e7c Merge pull request #29 from phaazon/release/2.0.0
2.0.0.
2019-09-24 10:59:00 +02:00
7846177471 Fix CI. 2019-09-24 10:44:45 +02:00
6f65be125b 2.0.0. 2019-09-24 10:42:03 +02:00
5d0ebc0777 Merge pull request #28 from phaazon/feature/mutation
Feature/mutation
2019-09-23 21:12:06 +02:00
4fdbfa6189 Fix 1.1. 2019-09-23 20:56:56 +02:00
7dbc85a312 Add key getters (immutable & mutable). 2019-09-23 20:34:39 +02:00
03031a1e92 Yank notation. 2019-09-23 19:53:52 +02:00
54eb89ae96 Merge pull request #27 from phaazon/feature/extra-splines
Feature/extra splines
2019-09-23 17:13:22 +02:00
51ab8022f9 Fix CI. 2019-09-23 17:10:40 +02:00
b78be8cba3 Prepare 1.1. 2019-09-23 17:09:09 +02:00
fd05dd0419 Update readme. 2019-09-23 17:08:32 +02:00
b05582d653 Add Bézier curves. 2019-09-23 17:06:32 +02:00
e76f18ac5b 1.0.0. 2019-09-22 19:15:57 +02:00
8e6af2cee9 Merge pull request #26 from phaazon/feature/add-key
Implement Spline::add.
2019-09-22 19:05:15 +02:00
a6e77a3d09 Remove Travis CI. 2019-09-22 18:22:12 +02:00
510881b5c6 Implement Spline::add.
Fixes #23.
2019-09-22 18:21:20 +02:00
1eed163277 Doc typo. 2019-09-22 18:13:52 +02:00
311efa5b26 Synchronize README. 2019-09-21 14:42:08 +02:00
c98b493993 Add support for removing a key. #24 2019-09-21 14:42:08 +02:00
c818b4c810 Add GitHub CI. 2019-09-21 14:19:21 +02:00
7644177398 1.0.0-rc.3. 2019-04-25 11:37:49 +02:00
3d0a0c570e Fix nalgebra implementor.
Point must be removed because it is not additive.
2019-04-25 11:37:49 +02:00
bdb9a68c3b 1.0.0-rc.2. 2019-04-23 18:43:30 +02:00
e7ecc9819a Documentation, step 4. 2019-04-23 18:43:30 +02:00
e88da58a87 Step 3 of doc cleanup. 2019-04-23 18:43:30 +02:00
6ae3918eb1 Second pass of doc cleanup. 2019-04-23 18:43:30 +02:00
dcd82f7301 First doc cleanup. 2019-04-23 18:43:30 +02:00
8de0f10572 1.0.0-rc.1. 2019-04-21 19:20:15 +02:00
476f762c5f Bump cgmath dependency. 2019-04-21 19:05:51 +02:00
6ee68b4d56 Build without std but do not test (yet). 2019-04-21 18:51:43 +02:00
609ebb0f37 Cleanup. 2019-04-21 18:51:43 +02:00
305ce7ac93 Align and reformat. 2019-04-21 18:51:43 +02:00
70d6cf2081 Implement impl-cgmath. 2019-04-21 18:51:43 +02:00
9d5971a5f7 Remove nalgebra point interpolation. 2019-04-21 18:51:43 +02:00
65a713c51b Implement impl-nalgebra feature. 2019-04-21 18:51:43 +02:00
427895ab10 The cubic_hermite_def function is a bit fucked as impossible to use. 2019-04-21 18:51:43 +02:00
99068fb2d0 Refactor all types in their own modules. 2019-04-21 18:51:43 +02:00
935565ca22 Add f64-key unit test. #12 2019-04-19 13:07:55 +02:00
f4a90b82bc Fix unit tests. 2019-04-19 13:04:55 +02:00
5b70d6921c Refactor polymorphic sampling code. 2019-04-19 13:04:55 +02:00
48623701a7 Fix some documentation. 2019-04-19 13:04:55 +02:00
b548566802 Add support for std/no_std num-traits. 2019-04-19 13:04:55 +02:00
f3bd7cee24 Add support for polymorphic sampling type. 2019-04-19 13:04:55 +02:00
2b5aac42dd Fix example for clamped_sample change. 2019-04-16 17:40:08 +02:00
55e792a98b Make Spline<T>::clamped_sample return Option<T> instead. #9 2019-04-16 17:40:08 +02:00
bc329fe736 Migrate to Rust 2018. 2019-04-13 21:54:17 +02:00
ed222e001d Fix a typo in the top-level documentation. 2019-04-13 21:54:17 +02:00
a3a2919eb4 0.2.3. 2018-10-13 03:31:44 +02:00
37cf89b566 Fix the nalgebra dependency to accept 0.14, 0.15 and 0.16. 2018-10-13 01:05:13 +02:00
77ccf0a47b Add support for nalgebra along with some tests.
Feature-gated with impl-nalgebra.
2018-10-13 01:05:13 +02:00
766066d9ed 0.2.2. 2018-09-30 21:38:49 +02:00
882b9e7b34 minor corrections in README.md 2018-09-30 21:32:59 +02:00
0dcfe48415 minor spelling corrections 2018-09-30 21:32:59 +02:00
24cd0d7fca bumped version numbers in examples for splines dependancy 2018-09-30 21:32:22 +02:00
3cd65dce54 Fix feature documentation in both README and lib.rs. 2018-09-20 11:56:57 +02:00
11791bed70 0.2. 2018-09-06 15:58:10 +02:00
820839abc0 Update the documentation. 2018-09-06 15:55:11 +02:00
865c855ac5 Remove cgmath implementors on no_std. 2018-09-06 15:55:11 +02:00
393a8c2f15 Add the std / no_std feature. 2018-08-09 01:38:43 +02:00
a24826b879 Enhance the documentation about serialization. 2018-08-09 00:22:00 +02:00
243f4ece9f Add the serialization example. 2018-08-09 00:22:00 +02:00
39c4dffe36 Add support for serde serialization / deserialization. 2018-08-09 00:22:00 +02:00
e0c44b8a59 Add the changelog. 2018-08-08 12:10:48 +02:00
dd51eb42a4 0.1.1. 2018-08-08 12:10:21 +02:00
169711c638 Add all target/ build dir to the .gitignore. 2018-08-07 01:28:45 +02:00
c977ec37da Add a simple example. 2018-08-07 01:28:12 +02:00
12c6968ffe Also test the documentation on cargo test. 2018-08-07 01:16:38 +02:00
20 changed files with 1362 additions and 371 deletions

46
.github/workflows/ci.yaml vendored Normal file
View File

@ -0,0 +1,46 @@
name: CI
on: [push]
jobs:
build-linux:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: |
cargo build --verbose --all-features
- name: Test
run: |
cargo test --verbose --all-features
build-windows:
runs-on: windows-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: |
cargo build --verbose --all-features
- name: Test
run: |
cargo test --verbose --all-features
build-macosx:
runs-on: macosx-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: |
cargo build --verbose --all-features
- name: Test
run: |
cargo test --verbose --all-features
check-readme:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v1
- name: Install cargo-sync-readme
run: cargo install --force cargo-sync-readme
- name: Check
run: cargo sync-readme -c

2
.gitignore vendored
View File

@ -1,3 +1,3 @@
/target
**/target
**/*.rs.bk
Cargo.lock

View File

@ -1,17 +0,0 @@
language: rust
rust:
- stable
- beta
- nightly
os:
- linux
- osx
script:
- rustc --version
- cargo --version
- cargo build --verbose
- cargo test --lib --verbose
- cd examples && cargo check --verbose

79
CHANGELOG.md Normal file
View File

@ -0,0 +1,79 @@
# 2.0.0
> Mon Sep 24th 2019
## Major changes
- Add support for [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
- Because of Bézier curves, the `Interpolation` type now has one more type variable to know how we
should interpolate with Bézier.
## Minor changes
- Add `Spline::get`, `Spline::get_mut` and `Spline::replace`.
# 1.0
> Sun Sep 22nd 2019
## Major changes
- Make `Spline::clamped_sample` failible via `Option` instead of panicking.
- Add support for polymorphic sampling type.
## Minor changes
- Add the `std` feature (and hence support for `no_std`).
- Add `impl-nalgebra` feature.
- Add `impl-cgmath` feature.
- Add support for adding keys to splines.
- Add support for removing keys from splines.
## Patch changes
- Migrate to Rust 2018.
- Documentation typo fixes.
# 0.2.3
> Sat 13th October 2018
- Add the `"impl-nalgebra"` feature gate. It gives access to some implementors for the `nalgebra`
crate.
- Enhance the documentation.
# 0.2.2
> Sun 30th September 2018
- Bump version numbers (`splines-0.2`) in examples.
- Fix several typos in the documentation.
# 0.2.1
> Thu 20th September 2018
- Enhance the features documentation.
# 0.2
> Thu 6th September 2018
- Add the `"std"` feature gate, that can be used to compile with the standard library.
- Add the `"impl-cgmath"` feature gate in order to make optional, if wanted, the `cgmath`
dependency.
- Enhance the documentation.
# 0.1.1
> Wed 8th August 2018
- Add a feature gate, `"serialization"`, that can be used to automatically derive `Serialize` and
`Deserialize` from the [serde](https://crates.io/crates/serde) crate.
- Enhance the documentation.
# 0.1
> Sunday 5th August 2018
- Initial revision.

View File

@ -1,6 +1,6 @@
[package]
name = "splines"
version = "0.1.0"
version = "2.0.0"
license = "BSD-3-Clause"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
description = "Spline interpolation made easy"
@ -11,11 +11,28 @@ repository = "https://github.com/phaazon/splines"
documentation = "https://docs.rs/splines"
readme = "README.md"
edition = "2018"
[badges]
travis-ci = { repository = "phaazon/splines", branch = "master" }
is-it-maintained-issue-resolution = { repository = "phaazon/splines" }
is-it-maintained-open-issues = { repository = "phaazon/splines" }
maintenance = { status = "actively-developed" }
[features]
default = ["std"]
impl-cgmath = ["cgmath"]
impl-nalgebra = ["alga", "nalgebra", "num-traits"]
serialization = ["serde", "serde_derive"]
std = []
[dependencies]
cgmath = "0.16"
alga = { version = "0.9", optional = true }
cgmath = { version = "0.17", optional = true }
nalgebra = { version = ">=0.14, <0.19", optional = true }
num-traits = { version = "0.2", optional = true }
serde = { version = "1", optional = true }
serde_derive = { version = "1", optional = true }
[package.metadata.docs.rs]
all-features = true

100
README.md
View File

@ -2,3 +2,103 @@ This crate provides [splines](https://en.wikipedia.org/wiki/Spline_(mathematics)
defined piecewise through control keys a.k.a. knots.
Feel free to dig in the [online documentation](https://docs.rs/splines) for further information.
<!-- cargo-sync-readme start -->
# Spline interpolation made easy.
This crate exposes splines for which each sections can be interpolated independently of each
other i.e. its possible to interpolate with a linear interpolator on one section and then
switch to a cubic Hermite interpolator for the next section.
Most of the crate consists of three types:
- [`Key`], which represents the control points by which the spline must pass.
- [`Interpolation`], the type of possible interpolation for each segment.
- [`Spline`], a spline from which you can *sample* points by interpolation.
When adding control points, you add new sections. Two control points define a section i.e.
its not possible to define a spline without at least two control points. Every time you add a
new control point, a new section is created. Each section is assigned an interpolation mode that
is picked from its lower control point.
# Quickly create splines
```
use splines::{Interpolation, Key, Spline};
let start = Key::new(0., 0., Interpolation::Linear);
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
```
You will notice that we used `Interpolation::Linear` for the first key. The first key `start`s
interpolation will be used for the whole segment defined by those two keys. The `end`s
interpolation wont be used. You can in theory use any [`Interpolation`] you want for the last
key. We use the default one because we dont care.
# Interpolate values
The whole purpose of splines is to interpolate discrete values to yield continuous ones. This is
usually done with the [`Spline::sample`] method. This method expects the sampling parameter
(often, this will be the time of your simulation) as argument and will yield an interpolated
value.
If you try to sample in out-of-bounds sampling parameter, youll get no value.
```
assert_eq!(spline.sample(0.), Some(0.));
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(spline.sample(1.1), None);
```
Its possible that you want to get a value even if youre out-of-bounds. This is especially
important for simulations / animations. Feel free to use the `Spline::clamped_interpolation` for
that purpose.
```
assert_eq!(spline.clamped_sample(-0.9), Some(0.)); // clamped to the first key
assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
```
# Polymorphic sampling types
[`Spline`] curves are parametered both by the carried value (being interpolated) but also the
sampling type. Its very typical to use `f32` or `f64` but really, you can in theory use any
kind of type; that type must, however, implement a contract defined by a set of traits to
implement. See [the documentation of this module](crate::interpolate) for further details.
# Features and customization
This crate was written with features baked in and hidden behind feature-gates. The idea is that
the default configuration (i.e. you just add `"splines = …"` to your `Cargo.toml`) will always
give you the minimal, core and raw concepts of what splines, keys / knots and interpolation
modes are. However, you might want more. Instead of letting other people do the extra work to
add implementations for very famous and useful traits and do it in less efficient way, because
they wouldnt have access to the internals of this crate, its possible to enable features in an
ad hoc way.
This mechanism is not final and this is currently an experiment to see how people like it or
not. Its especially important to see how it copes with the documentation.
So heres a list of currently supported features and how to enable them:
- **Serialization / deserialization.**
- This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
types exported by this crate.
- Enable with the `"serialization"` feature.
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
- Adds some useful implementations of `Interpolate` for some cgmath types.
- Enable with the `"impl-cgmath"` feature.
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
- Adds some useful implementations of `Interpolate` for some nalgebra types.
- Enable with the `"impl-nalgebra"` feature.
- **Standard library / no standard library.**
- Its possible to compile against the standard library or go on your own without it.
- Compiling with the standard library is enabled by default.
- Use `default-features = []` in your `Cargo.toml` to disable.
- Enable explicitly with the `"std"` feature.
[`Interpolation`]: crate::interpolation::Interpolation
<!-- cargo-sync-readme end -->

View File

@ -0,0 +1,7 @@
[package]
name = "hello-world"
version = "0.2.0"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
[dependencies]
splines = "1.0.0-rc.2"

View File

@ -0,0 +1,11 @@
extern crate splines;
use splines::{Interpolation, Key, Spline};
fn main() {
let keys = vec![Key::new(0., 0., Interpolation::default()), Key::new(5., 1., Interpolation::default())];
let spline = Spline::from_vec(keys);
println!("value at 0: {:?}", spline.clamped_sample(0.));
println!("value at 3: {:?}", spline.clamped_sample(3.));
}

View File

@ -0,0 +1,8 @@
[package]
name = "serialization"
version = "0.2.0"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
[dependencies]
serde_json = "1"
splines = { version = "1.0.0-rc.2", features = ["serialization"] }

View File

@ -0,0 +1,30 @@
#[macro_use] extern crate serde_json;
extern crate splines;
use serde_json::from_value;
use splines::Spline;
fn main() {
let value = json!{
[
{
"t": 0,
"interpolation": "linear",
"value": 0
},
{
"t": 1,
"interpolation": { "step": 0.5 },
"value": 1
},
{
"t": 5,
"interpolation": "cosine",
"value": 10
},
]
};
let spline = from_value::<Spline<f32, f32>>(value);
println!("{:?}", spline);
}

9
examples/Cargo.toml Normal file
View File

@ -0,0 +1,9 @@
[workspace]
members = [
"01-hello-world",
"02-serialization"
]
[patch.crates-io]
splines = { path = ".." }

86
src/cgmath.rs Normal file
View File

@ -0,0 +1,86 @@
use cgmath::{
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace
};
use crate::interpolate::{
Additive, Interpolate, Linear, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
};
macro_rules! impl_interpolate_vec {
($($t:tt)*) => {
impl<T> Linear<T> for $($t)*<T> where T: BaseNum {
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T> Interpolate<T> for $($t)*<T>
where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
a.lerp(b, t)
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
}
}
impl_interpolate_vec!(Vector1);
impl_interpolate_vec!(Vector2);
impl_interpolate_vec!(Vector3);
impl_interpolate_vec!(Vector4);
impl<T> Linear<T> for Quaternion<T> where T: BaseFloat {
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T> Interpolate<T> for Quaternion<T>
where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
a.nlerp(b, t)
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}

294
src/interpolate.rs Normal file
View File

@ -0,0 +1,294 @@
//! The [`Interpolate`] trait and associated symbols.
//!
//! The [`Interpolate`] trait is the central concept of the crate. It enables a spline to be
//! sampled at by interpolating in between control points.
//!
//! In order for a type to be used in [`Spline<K, V>`], some properties must be met about the `K`
//! type must implementing several traits:
//!
//! - [`One`], giving a neutral element for the multiplication monoid.
//! - [`Additive`], making the type additive (i.e. one can add or subtract with it).
//! - [`Linear`], unlocking linear combinations, required for interpolating.
//! - [`Trigo`], a trait giving *π* and *cosine*, required for e.g. cosine interpolation.
//!
//! Feel free to have a look at current implementors for further help.
//!
//! > *Why doesnt this crate use [num-traits] instead of
//! > defining its own traits?*
//!
//! The reason for this is quite simple: this crate provides a `no_std` support, which is not
//! currently available easily with [num-traits]. Also, if something changes in [num-traits] with
//! those traits, it would make this whole crate unstable.
//!
//! [`Interpolate`]: crate::interpolate::Interpolate
//! [`Spline<K, V>`]: crate::spline::Spline
//! [`One`]: crate::interpolate::One
//! [`Additive`]: crate::interpolate::Additive
//! [`Linear`]: crate::interpolate::Linear
//! [`Trigo`]: crate::interpolate::Trigo
//! [num-traits]: https://crates.io/crates/num-traits
#[cfg(feature = "std")] use std::f32;
#[cfg(not(feature = "std"))] use core::f32;
#[cfg(not(feature = "std"))] use core::intrinsics::cosf32;
#[cfg(feature = "std")] use std::f64;
#[cfg(not(feature = "std"))] use core::f64;
#[cfg(not(feature = "std"))] use core::intrinsics::cosf64;
#[cfg(feature = "std")] use std::ops::{Add, Mul, Sub};
#[cfg(not(feature = "std"))] use core::ops::{Add, Mul, Sub};
/// Keys that can be interpolated in between. Implementing this trait is required to perform
/// sampling on splines.
///
/// `T` is the variable used to sample with. Typical implementations use [`f32`] or [`f64`], but
/// youre free to use the ones you like. Feel free to have a look at [`Spline::sample`] for
/// instance to know which trait your type must implement to be usable.
///
/// [`Spline::sample`]: crate::spline::Spline::sample
pub trait Interpolate<T>: Sized + Copy {
/// Linear interpolation.
fn lerp(a: Self, b: Self, t: T) -> Self;
/// Cubic hermite interpolation.
///
/// Default to [`lerp`].
///
/// [`lerp`]: Interpolate::lerp
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
Self::lerp(a.0, b.0, t)
}
/// Quadratic Bézier interpolation.
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
/// Cubic Bézier interpolation.
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
}
/// Set of types that support additions and subtraction.
///
/// The [`Copy`] trait is also a supertrait as its likely to be used everywhere.
pub trait Additive:
Copy +
Add<Self, Output = Self> +
Sub<Self, Output = Self> {
}
impl<T> Additive for T
where T: Copy +
Add<Self, Output = Self> +
Sub<Self, Output = Self> {
}
/// Set of additive types that support outer multiplication and division, making them linear.
pub trait Linear<T>: Additive {
/// Apply an outer multiplication law.
fn outer_mul(self, t: T) -> Self;
/// Apply an outer division law.
fn outer_div(self, t: T) -> Self;
}
macro_rules! impl_linear_simple {
($t:ty) => {
impl Linear<$t> for $t {
fn outer_mul(self, t: $t) -> Self {
self * t
}
/// Apply an outer division law.
fn outer_div(self, t: $t) -> Self {
self / t
}
}
}
}
impl_linear_simple!(f32);
impl_linear_simple!(f64);
macro_rules! impl_linear_cast {
($t:ty, $q:ty) => {
impl Linear<$t> for $q {
fn outer_mul(self, t: $t) -> Self {
self * t as $q
}
/// Apply an outer division law.
fn outer_div(self, t: $t) -> Self {
self / t as $q
}
}
}
}
impl_linear_cast!(f32, f64);
impl_linear_cast!(f64, f32);
/// Types with a neutral element for multiplication.
pub trait One {
/// The neutral element for the multiplicative monoid — typically called `1`.
fn one() -> Self;
}
macro_rules! impl_one_float {
($t:ty) => {
impl One for $t {
#[inline(always)]
fn one() -> Self {
1.
}
}
}
}
impl_one_float!(f32);
impl_one_float!(f64);
/// Types with a sane definition of π and cosine.
pub trait Trigo {
/// π.
fn pi() -> Self;
/// Cosine of the argument.
fn cos(self) -> Self;
}
impl Trigo for f32 {
#[inline(always)]
fn pi() -> Self {
f32::consts::PI
}
#[inline(always)]
fn cos(self) -> Self {
#[cfg(feature = "std")]
{
self.cos()
}
#[cfg(not(feature = "std"))]
{
unsafe { cosf32(self) }
}
}
}
impl Trigo for f64 {
#[inline(always)]
fn pi() -> Self {
f64::consts::PI
}
#[inline(always)]
fn cos(self) -> Self {
#[cfg(feature = "std")]
{
self.cos()
}
#[cfg(not(feature = "std"))]
{
unsafe { cosf64(self) }
}
}
}
/// Default implementation of [`Interpolate::cubic_hermite`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
where V: Linear<T>,
T: Additive + Mul<T, Output = T> + One {
// some stupid generic constants, because Rust doesnt have polymorphic literals…
let one_t = T::one();
let two_t = one_t + one_t; // lolololol
let three_t = two_t + one_t; // megalol
// sampler stuff
let t2 = t * t;
let t3 = t2 * t;
let two_t3 = t3 * two_t;
let three_t2 = t2 * three_t;
// tangents
let m0 = (b.0 - x.0).outer_div(b.1 - x.1);
let m1 = (y.0 - a.0).outer_div(y.1 - a.1);
a.0.outer_mul(two_t3 - three_t2 + one_t) + m0.outer_mul(t3 - t2 * two_t + t) + b.0.outer_mul(three_t2 - two_t3) + m1.outer_mul(t3 - t2)
}
/// Default implementation of [`Interpolate::quadratic_bezier`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
where V: Linear<T>,
T: Additive + Mul<T, Output = T> + One {
let one_t = T::one() - t;
let one_t_2 = one_t * one_t;
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
}
/// Default implementation of [`Interpolate::cubic_bezier`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
where V: Linear<T>,
T: Additive + Mul<T, Output = T> + One {
let one_t = T::one() - t;
let one_t_2 = one_t * one_t;
let one_t_3 = one_t_2 * one_t;
let three = T::one() + T::one() + T::one();
a.outer_mul(one_t_3) + u.outer_mul(three * one_t_2 * t) + v.outer_mul(three * one_t * t * t) + b.outer_mul(t * t * t)
}
macro_rules! impl_interpolate_simple {
($t:ty) => {
impl Interpolate<$t> for $t {
fn lerp(a: Self, b: Self, t: $t) -> Self {
a * (1. - t) + b * t
}
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
quadratic_bezier_def(a, u, b, t)
}
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
}
}
impl_interpolate_simple!(f32);
impl_interpolate_simple!(f64);
macro_rules! impl_interpolate_via {
($t:ty, $v:ty) => {
impl Interpolate<$t> for $v {
fn lerp(a: Self, b: Self, t: $t) -> Self {
a * (1. - t as $v) + b * t as $v
}
fn cubic_hermite((x, xt): (Self, $t), (a, at): (Self, $t), (b, bt): (Self, $t), (y, yt): (Self, $t), t: $t) -> Self {
cubic_hermite_def((x, xt as $v), (a, at as $v), (b, bt as $v), (y, yt as $v), t as $v)
}
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
quadratic_bezier_def(a, u, b, t as $v)
}
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
cubic_bezier_def(a, u, v, b, t as $v)
}
}
}
}
impl_interpolate_via!(f32, f64);
impl_interpolate_via!(f64, f32);

52
src/interpolation.rs Normal file
View File

@ -0,0 +1,52 @@
//! Available interpolation modes.
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
/// Available kind of interpolations.
///
/// Feel free to visit each variant for more documentation.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub enum Interpolation<T, V> {
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
/// case the next key is used.
///
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
/// > between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
/// > used.
///
/// [`Key`]: crate::key::Key
Step(T),
/// Linear interpolation between a key and the next one.
Linear,
/// Cosine interpolation between a key and the next one.
Cosine,
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
CatmullRom,
/// Bézier interpolation.
///
/// A control point that uses such an interpolation is associated with an extra point. The segmant
/// connecting both is called the _tangent_ of this point. The part of the spline defined between
/// this control point and the next one will be interpolated across with Bézier interpolation. Two
/// cases are possible:
///
/// - The next control point also has a Bézier interpolation mode. In this case, its tangent is
/// used for the interpolation process. This is called _cubic Bézier interpolation_ and it
/// kicks ass.
/// - The next control point doesnt have a Bézier interpolation mode set. In this case, the
/// tangent used for the next control point is defined as the segment connecting that control
/// point and the current control points associated point. This is called _quadratic Bézer
/// interpolation_ and it kicks ass too, but a bit less than cubic.
Bezier(V),
#[doc(hidden)]
__NonExhaustive
}
impl<T, V> Default for Interpolation<T, V> {
/// [`Interpolation::Linear`] is the default.
fn default() -> Self {
Interpolation::Linear
}
}

44
src/iter.rs Normal file
View File

@ -0,0 +1,44 @@
//! Spline [`Iterator`], in a nutshell.
//!
//! You can iterate over a [`Spline<K, V>`]s keys with the [`IntoIterator`] trait on
//! `&Spline<K, V>`. This gives you iterated [`Key<K, V>`] keys.
//!
//! [`Spline<K, V>`]: crate::spline::Spline
//! [`Key<K, V>`]: crate::key::Key
use crate::{Key, Spline};
/// Iterator over spline keys.
///
/// This iterator type is guaranteed to iterate over sorted keys.
pub struct Iter<'a, T, V> where T: 'a, V: 'a {
spline: &'a Spline<T, V>,
i: usize
}
impl<'a, T, V> Iterator for Iter<'a, T, V> {
type Item = &'a Key<T, V>;
fn next(&mut self) -> Option<Self::Item> {
let r = self.spline.0.get(self.i);
if let Some(_) = r {
self.i += 1;
}
r
}
}
impl<'a, T, V> IntoIterator for &'a Spline<T, V> {
type Item = &'a Key<T, V>;
type IntoIter = Iter<'a, T, V>;
fn into_iter(self) -> Self::IntoIter {
Iter {
spline: self,
i: 0
}
}
}

37
src/key.rs Normal file
View File

@ -0,0 +1,37 @@
//! Spline control points.
//!
//! A control point associates to a “sampling value” (a.k.a. time) a carriede value that can be
//! interpolated along the curve made by the control points.
//!
//! Splines constructed with this crate have the property that its possible to change the
//! interpolation mode on a key-based way, allowing you to implement and encode complex curves.
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
use crate::interpolation::Interpolation;
/// A spline control point.
///
/// This type associates a value at a given interpolation parameter value. It also contains an
/// interpolation mode used to determine how to interpolate values on the segment defined by this
/// key and the next one if existing. Have a look at [`Interpolation`] for further details.
///
/// [`Interpolation`]: crate::interpolation::Interpolation
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub struct Key<T, V> {
/// Interpolation parameter at which the [`Key`] should be reached.
pub t: T,
/// Carried value.
pub value: V,
/// Interpolation mode.
pub interpolation: Interpolation<T, V>
}
impl<T, V> Key<T, V> {
/// Create a new key.
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
Key { t, value, interpolation }
}
}

View File

@ -33,11 +33,11 @@
//! # Interpolate values
//!
//! The whole purpose of splines is to interpolate discrete values to yield continuous ones. This is
//! usually done with the `Spline::sample` method. This method expects the interpolation parameter
//! usually done with the [`Spline::sample`] method. This method expects the sampling parameter
//! (often, this will be the time of your simulation) as argument and will yield an interpolated
//! value.
//!
//! If you try to sample in out-of-bounds interpolation parameter, youll get no value.
//! If you try to sample in out-of-bounds sampling parameter, youll get no value.
//!
//! ```
//! # use splines::{Interpolation, Key, Spline};
@ -45,7 +45,7 @@
//! # let end = Key::new(1., 10., Interpolation::Linear);
//! # let spline = Spline::from_vec(vec![start, end]);
//! assert_eq!(spline.sample(0.), Some(0.));
//! assert_eq!(spline.clamped_sample(1.), 10.);
//! assert_eq!(spline.clamped_sample(1.), Some(10.));
//! assert_eq!(spline.sample(1.1), None);
//! ```
//!
@ -58,325 +58,65 @@
//! # let start = Key::new(0., 0., Interpolation::Linear);
//! # let end = Key::new(1., 10., Interpolation::Linear);
//! # let spline = Spline::from_vec(vec![start, end]);
//! assert_eq!(spline.clamped_sample(-0.9), 0.); // clamped to the first key
//! assert_eq!(spline.clamped_sample(1.1), 10.); // clamped to the last key
//! assert_eq!(spline.clamped_sample(-0.9), Some(0.)); // clamped to the first key
//! assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
//! ```
//!
//! Feel free to have a look at the rest of the documentation for advanced usage.
//! # Polymorphic sampling types
//!
//! [`Spline`] curves are parametered both by the carried value (being interpolated) but also the
//! sampling type. Its very typical to use `f32` or `f64` but really, you can in theory use any
//! kind of type; that type must, however, implement a contract defined by a set of traits to
//! implement. See [the documentation of this module](crate::interpolate) for further details.
//!
//! # Features and customization
//!
//! This crate was written with features baked in and hidden behind feature-gates. The idea is that
//! the default configuration (i.e. you just add `"splines = …"` to your `Cargo.toml`) will always
//! give you the minimal, core and raw concepts of what splines, keys / knots and interpolation
//! modes are. However, you might want more. Instead of letting other people do the extra work to
//! add implementations for very famous and useful traits and do it in less efficient way, because
//! they wouldnt have access to the internals of this crate, its possible to enable features in an
//! ad hoc way.
//!
//! This mechanism is not final and this is currently an experiment to see how people like it or
//! not. Its especially important to see how it copes with the documentation.
//!
//! So heres a list of currently supported features and how to enable them:
//!
//! - **Serialization / deserialization.**
//! - This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
//! types exported by this crate.
//! - Enable with the `"serialization"` feature.
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
//! - Adds some useful implementations of `Interpolate` for some cgmath types.
//! - Enable with the `"impl-cgmath"` feature.
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
//! - Adds some useful implementations of `Interpolate` for some nalgebra types.
//! - Enable with the `"impl-nalgebra"` feature.
//! - **Standard library / no standard library.**
//! - Its possible to compile against the standard library or go on your own without it.
//! - Compiling with the standard library is enabled by default.
//! - Use `default-features = []` in your `Cargo.toml` to disable.
//! - Enable explicitly with the `"std"` feature.
//!
//! [`Interpolation`]: crate::interpolation::Interpolation
extern crate cgmath;
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(not(feature = "std"), feature(alloc))]
#![cfg_attr(not(feature = "std"), feature(core_intrinsics))]
use cgmath::{InnerSpace, Quaternion, Vector2, Vector3, Vector4};
use std::cmp::Ordering;
use std::f32::consts;
use std::ops::{Add, Div, Mul, Sub};
#[cfg(not(feature = "std"))] extern crate alloc;
/// A spline control point.
///
/// This type associates a value at a given interpolation parameter value. It also contains an
/// interpolation hint used to determine how to interpolate values on the segment defined by this
/// key and the next one if existing.
#[derive(Copy, Clone, Debug)]
pub struct Key<T> {
/// Interpolation parameter at which the [`Key`] should be reached.
pub t: f32,
/// Held value.
pub value: T,
/// Interpolation mode.
pub interpolation: Interpolation
}
#[cfg(feature = "impl-cgmath")] mod cgmath;
pub mod interpolate;
pub mod interpolation;
pub mod iter;
pub mod key;
#[cfg(feature = "impl-nalgebra")] mod nalgebra;
pub mod spline;
impl<T> Key<T> {
/// Create a new key.
pub fn new(t: f32, value: T, interpolation: Interpolation) -> Self {
Key {
t: t,
value: value,
interpolation: interpolation
}
}
}
/// Interpolation mode.
#[derive(Copy, Clone, Debug)]
pub enum Interpolation {
/// Hold a [`Key`] until the time passes the normalized step threshold, in which case the next
/// key is used.
///
/// *Note: if you set the threshold to `0.5`, the first key will be used until the time is half
/// between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
/// first key will be kept until the next key. Set it to `0.` and the first key will never be
/// used.*
Step(f32),
/// Linear interpolation between a key and the next one.
Linear,
/// Cosine interpolation between a key and the next one.
Cosine,
/// Catmull-Rom interpolation.
CatmullRom
}
impl Default for Interpolation {
/// `Interpolation::Linear` is the default.
fn default() -> Self {
Interpolation::Linear
}
}
/// Spline curve used to provide interpolation between control points (keys).
#[derive(Debug, Clone)]
pub struct Spline<T>(Vec<Key<T>>);
impl<T> Spline<T> {
/// Create a new spline out of keys. The keys dont have to be sorted even though its recommended
/// to provide ascending sorted ones (for performance purposes).
pub fn from_vec(mut keys: Vec<Key<T>>) -> Self {
keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
Spline(keys)
}
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys dont have to be
/// sorted.
///
/// # Note on iterators
///
/// Its valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
/// use `Spline::from_vec` if you are passing a `Vec<_>`. This will remove dynamic allocations.
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T>> {
Self::from_vec(iter.collect())
}
/// Retrieve the keys of a spline.
pub fn keys(&self) -> &[Key<T>] {
&self.0
}
/// Sample a spline at a given time.
///
/// The current implementation, based on immutability, cannot perform in constant time. This means
/// that samplings processing complexity is currently *O(log n)*. Its possible to achieve *O(1)*
/// performance by using a slightly different spline type. If you are interested by this feature,
/// an implementation for a dedicated type is foreseen yet not started yet.
///
/// # Return
///
/// `None` if you try to sample a value at a time that has no key associated with. That can also
/// happen if you try to sample between two keys with a specific interpolation mode that make the
/// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If youre
/// near the beginning of the spline or its end, ensure you have enough keys around to make the
/// sampling.
pub fn sample(&self, t: f32) -> Option<T> where T: Interpolate {
let keys = &self.0;
let i = search_lower_cp(keys, t)?;
let cp0 = &keys[i];
match cp0.interpolation {
Interpolation::Step(threshold) => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
Some(if nt < threshold { cp0.value } else { cp1.value })
},
Interpolation::Linear => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
},
Interpolation::Cosine => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
let cos_nt = (1. - f32::cos(nt * consts::PI)) * 0.5;
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
},
Interpolation::CatmullRom => {
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
// None.
if i == 0 || i >= keys.len() - 2 {
None
} else {
let cp1 = &keys[i+1];
let cpm0 = &keys[i-1];
let cpm1 = &keys[i+2];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
}
}
}
}
/// Sample a spline at a given time with clamping.
///
/// # Return
///
/// If you sample before the first key or after the last one, return the first key or the last
/// one, respectively. Otherwise, behave the same way as `Spline::sample`.
///
/// # Panic
///
/// This function panics if you have no key.
pub fn clamped_sample(&self, t: f32) -> T where T: Interpolate {
let first = self.0.first().unwrap();
let last = self.0.last().unwrap();
if t <= first.t {
return first.value;
} else if t >= last.t {
return last.value;
}
self.sample(t).unwrap()
}
}
/// Iterator over spline keys.
///
/// This iterator type assures you to iterate over sorted keys.
pub struct Iter<'a, T> where T: 'a {
anim_param: &'a Spline<T>,
i: usize
}
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a Key<T>;
fn next(&mut self) -> Option<Self::Item> {
let r = self.anim_param.0.get(self.i);
if let Some(_) = r {
self.i += 1;
}
r
}
}
impl<'a, T> IntoIterator for &'a Spline<T> {
type Item = &'a Key<T>;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
Iter {
anim_param: self,
i: 0
}
}
}
/// Keys that can be interpolated in between. Implementing this trait is required to perform
/// sampling on splines.
pub trait Interpolate: Copy {
/// Linear interpolation.
fn lerp(a: Self, b: Self, t: f32) -> Self;
/// Cubic hermite interpolation.
///
/// Default to `Self::lerp`.
fn cubic_hermite(_: (Self, f32), a: (Self, f32), b: (Self, f32), _: (Self, f32), t: f32) -> Self {
Self::lerp(a.0, b.0, t)
}
}
impl Interpolate for f32 {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a * (1. - t) + b * t
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
impl Interpolate for Vector2<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a.lerp(b, t)
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
impl Interpolate for Vector3<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a.lerp(b, t)
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
impl Interpolate for Vector4<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a.lerp(b, t)
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
impl Interpolate for Quaternion<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a.nlerp(b, t)
}
}
// Default implementation of Interpolate::cubic_hermit.
pub(crate) fn cubic_hermite<T>(x: (T, f32), a: (T, f32), b: (T, f32), y: (T, f32), t: f32) -> T
where T: Copy + Add<Output = T> + Sub<Output = T> + Mul<f32, Output = T> + Div<f32, Output = T> {
// time stuff
let t2 = t * t;
let t3 = t2 * t;
let two_t3 = 2. * t3;
let three_t2 = 3. * t2;
// tangents
let m0 = (b.0 - x.0) / (b.1 - x.1);
let m1 = (y.0 - a.0) / (y.1 - a.1);
a.0 * (two_t3 - three_t2 + 1.) + m0 * (t3 - 2. * t2 + t) + b.0 * (-two_t3 + three_t2) + m1 * (t3 - t2)
}
// Normalize a time ([0;1]) given two control points.
#[inline(always)]
pub(crate) fn normalize_time<T>(t: f32, cp: &Key<T>, cp1: &Key<T>) -> f32 {
assert!(cp1.t != cp.t, "overlapping keys");
(t - cp.t) / (cp1.t - cp.t)
}
// Find the lower control point corresponding to a given time.
fn search_lower_cp<T>(cps: &[Key<T>], t: f32) -> Option<usize> {
let mut i = 0;
let len = cps.len();
if len < 2 {
return None;
}
loop {
let cp = &cps[i];
let cp1 = &cps[i+1];
if t >= cp1.t {
if i >= len - 2 {
return None;
}
i += 1;
} else if t < cp.t {
if i == 0 {
return None;
}
i -= 1;
} else {
break; // found
}
}
Some(i)
}
pub use crate::interpolate::Interpolate;
pub use crate::interpolation::Interpolation;
pub use crate::key::Key;
pub use crate::spline::Spline;

64
src/nalgebra.rs Normal file
View File

@ -0,0 +1,64 @@
use alga::general::{ClosedAdd, ClosedDiv, ClosedMul, ClosedSub};
use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6};
use num_traits as nt;
use std::ops::Mul;
use crate::interpolate::{
Interpolate, Linear, Additive, One, cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def
};
macro_rules! impl_interpolate_vector {
($($t:tt)*) => {
// implement Linear
impl<T> Linear<T> for $($t)*<T> where T: Scalar + ClosedAdd + ClosedSub + ClosedMul + ClosedDiv {
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T, V> Interpolate<T> for $($t)*<V>
where Self: Linear<T>,
T: Additive + One + Mul<T, Output = T>,
V: nt::One +
nt::Zero +
Additive +
Scalar +
ClosedAdd +
ClosedMul +
ClosedSub +
Interpolate<T> {
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
}
}
impl_interpolate_vector!(Vector1);
impl_interpolate_vector!(Vector2);
impl_interpolate_vector!(Vector3);
impl_interpolate_vector!(Vector4);
impl_interpolate_vector!(Vector5);
impl_interpolate_vector!(Vector6);

292
src/spline.rs Normal file
View File

@ -0,0 +1,292 @@
//! Spline curves and operations.
#[cfg(feature = "serialization")] use serde_derive::{Deserialize, Serialize};
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
#[cfg(feature = "std")] use std::cmp::Ordering;
#[cfg(feature = "std")] use std::ops::{Div, Mul};
#[cfg(not(feature = "std"))] use core::ops::{Div, Mul};
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
use crate::interpolate::{Interpolate, Additive, One, Trigo};
use crate::interpolation::Interpolation;
use crate::key::Key;
/// Spline curve used to provide interpolation between control points (keys).
///
/// Splines are made out of control points ([`Key`]). When creating a [`Spline`] with
/// [`Spline::from_vec`] or [`Spline::from_iter`], the keys dont have to be sorted (they are sorted
/// automatically by the sampling value).
///
/// You can sample from a spline with several functions:
///
/// - [`Spline::sample`]: allows you to sample from a spline. If not enough keys are available
/// for the required interpolation mode, you get `None`.
/// - [`Spline::clamped_sample`]: behaves like [`Spline::sample`] but will return either the first
/// or last key if out of bound; it will return `None` if not enough key.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
impl<T, V> Spline<T, V> {
/// Internal sort to ensure invariant of sorting keys is valid.
fn internal_sort(&mut self) where T: PartialOrd {
self.0.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
}
/// Create a new spline out of keys. The keys dont have to be sorted even though its recommended
/// to provide ascending sorted ones (for performance purposes).
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self where T: PartialOrd {
let mut spline = Spline(keys);
spline.internal_sort();
spline
}
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys dont have to be
/// sorted.
///
/// # Note on iterators
///
/// Its valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
/// use [`Spline::from_vec`] if you are passing a [`Vec`].
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T, V>>, T: PartialOrd {
Self::from_vec(iter.collect())
}
/// Retrieve the keys of a spline.
pub fn keys(&self) -> &[Key<T, V>] {
&self.0
}
/// Number of keys.
#[inline(always)]
pub fn len(&self) -> usize {
self.0.len()
}
/// Check whether the spline has no key.
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Sample a spline at a given time.
///
/// The current implementation, based on immutability, cannot perform in constant time. This means
/// that samplings processing complexity is currently *O(log n)*. Its possible to achieve *O(1)*
/// performance by using a slightly different spline type. If you are interested by this feature,
/// an implementation for a dedicated type is foreseen yet not started yet.
///
/// # Return
///
/// `None` if you try to sample a value at a time that has no key associated with. That can also
/// happen if you try to sample between two keys with a specific interpolation mode that makes the
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
/// youre near the beginning of the spline or its end, ensure you have enough keys around to make
/// the sampling.
///
pub fn sample(&self, t: T) -> Option<V>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
let keys = &self.0;
let i = search_lower_cp(keys, t)?;
let cp0 = &keys[i];
match cp0.interpolation {
Interpolation::Step(threshold) => {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
Some(if nt < threshold { cp0.value } else { cp1.value })
}
Interpolation::Linear => {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
}
Interpolation::Cosine => {
let two_t = T::one() + T::one();
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
}
Interpolation::CatmullRom => {
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
// None.
if i == 0 || i >= keys.len() - 2 {
None
} else {
let cp1 = &keys[i + 1];
let cpm0 = &keys[i - 1];
let cpm1 = &keys[i + 2];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
}
}
Interpolation::Bezier(u) => {
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
if let Interpolation::Bezier(v) = cp1.interpolation {
Some(Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt))
//let one_nt = T::one() - nt;
//let one_nt_2 = one_nt * one_nt;
//let one_nt_3 = one_nt_2 * one_nt;
//let three_one_nt_2 = one_nt_2 + one_nt_2 + one_nt_2; // one_nt_2 * 3
//let r = cp0.value * one_nt_3;
} else {
Some(Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt))
}
}
Interpolation::__NonExhaustive => unreachable!(),
}
}
/// Sample a spline at a given time with clamping.
///
/// # Return
///
/// If you sample before the first key or after the last one, return the first key or the last
/// one, respectively. Otherwise, behave the same way as [`Spline::sample`].
///
/// # Error
///
/// This function returns [`None`] if you have no key.
pub fn clamped_sample(&self, t: T) -> Option<V>
where T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Interpolate<T> {
if self.0.is_empty() {
return None;
}
self.sample(t).or_else(move || {
let first = self.0.first().unwrap();
if t <= first.t {
Some(first.value)
} else {
let last = self.0.last().unwrap();
if t >= last.t {
Some(last.value)
} else {
None
}
}
})
}
/// Add a key into the spline.
pub fn add(&mut self, key: Key<T, V>) where T: PartialOrd {
self.0.push(key);
self.internal_sort();
}
/// Remove a key from the spline.
pub fn remove(&mut self, index: usize) -> Option<Key<T, V>> {
if index >= self.0.len() {
None
} else {
Some(self.0.remove(index))
}
}
/// Update a key and return the key already present.
///
/// The key is updated — if present — with the provided function.
///
/// # Notes
///
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
/// your key. If you just want to change the interpolation mode or the carried value, consider
/// using the [`Spline::get_mut`] method instead as it will be way faster.
pub fn replace<F>(
&mut self,
index: usize,
f: F
) -> Option<Key<T, V>>
where
F: FnOnce(&Key<T, V>) -> Key<T, V>,
T: PartialOrd
{
let key = self.remove(index)?;
self.add(f(&key));
Some(key)
}
/// Get a key at a given index.
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
self.0.get(index)
}
/// Mutably get a key at a given index.
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
self.0.get_mut(index).map(|key| KeyMut {
value: &mut key.value,
interpolation: &mut key.interpolation
})
}
}
/// A mutable [`Key`].
///
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
/// want to achieve this, youre advised to use [`Spline::replace`].
pub struct KeyMut<'a, T, V> {
/// Carried value.
pub value: &'a mut V,
/// Interpolation mode to use for that key.
pub interpolation: &'a mut Interpolation<T, V>,
}
// Normalize a time ([0;1]) given two control points.
#[inline(always)]
pub(crate) fn normalize_time<T, V>(
t: T,
cp: &Key<T, V>,
cp1: &Key<T, V>
) -> T where T: Additive + Div<T, Output = T> + PartialEq {
assert!(cp1.t != cp.t, "overlapping keys");
(t - cp.t) / (cp1.t - cp.t)
}
// Find the lower control point corresponding to a given time.
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize> where T: PartialOrd {
let mut i = 0;
let len = cps.len();
if len < 2 {
return None;
}
loop {
let cp = &cps[i];
let cp1 = &cps[i+1];
if t >= cp1.t {
if i >= len - 2 {
return None;
}
i += 1;
} else if t < cp.t {
if i == 0 {
return None;
}
i -= 1;
} else {
break; // found
}
}
Some(i)
}

View File

@ -1,12 +1,13 @@
extern crate splines;
use splines::{Interpolation, Key, Spline};
#[cfg(feature = "impl-cgmath")] use cgmath as cg;
#[cfg(feature = "impl-nalgebra")] use nalgebra as na;
#[test]
fn step_interpolation_0() {
let start = Key::new(0., 0., Interpolation::Step(0.));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
fn step_interpolation_f32() {
let start = Key::new(0., 0., Interpolation::Step(0.));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::<f32, _>::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(10.));
assert_eq!(spline.sample(0.1), Some(10.));
@ -14,13 +15,28 @@ fn step_interpolation_0() {
assert_eq!(spline.sample(0.5), Some(10.));
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), 10.);
assert_eq!(spline.clamped_sample(1.), Some(10.));
}
#[test]
fn step_interpolation_f64() {
let start = Key::new(0., 0., Interpolation::Step(0.));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::<f64, _>::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(10.));
assert_eq!(spline.sample(0.1), Some(10.));
assert_eq!(spline.sample(0.2), Some(10.));
assert_eq!(spline.sample(0.5), Some(10.));
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), Some(10.));
}
#[test]
fn step_interpolation_0_5() {
let start = Key::new(0., 0., Interpolation::Step(0.5));
let end = Key::new(1., 10., Interpolation::default());
let start = Key::new(0., 0., Interpolation::Step(0.5));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -29,13 +45,13 @@ fn step_interpolation_0_5() {
assert_eq!(spline.sample(0.5), Some(10.));
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), 10.);
assert_eq!(spline.clamped_sample(1.), Some(10.));
}
#[test]
fn step_interpolation_0_75() {
let start = Key::new(0., 0., Interpolation::Step(0.75));
let end = Key::new(1., 10., Interpolation::default());
let start = Key::new(0., 0., Interpolation::Step(0.75));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -44,13 +60,13 @@ fn step_interpolation_0_75() {
assert_eq!(spline.sample(0.5), Some(0.));
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), 10.);
assert_eq!(spline.clamped_sample(1.), Some(10.));
}
#[test]
fn step_interpolation_1() {
let start = Key::new(0., 0., Interpolation::Step(1.));
let end = Key::new(1., 10., Interpolation::default());
let start = Key::new(0., 0., Interpolation::Step(1.));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -59,13 +75,13 @@ fn step_interpolation_1() {
assert_eq!(spline.sample(0.5), Some(0.));
assert_eq!(spline.sample(0.9), Some(0.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), 10.);
assert_eq!(spline.clamped_sample(1.), Some(10.));
}
#[test]
fn linear_interpolation() {
let start = Key::new(0., 0., Interpolation::Linear);
let end = Key::new(1., 10., Interpolation::default());
let start = Key::new(0., 0., Interpolation::Linear);
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -74,17 +90,17 @@ fn linear_interpolation() {
assert_eq!(spline.sample(0.5), Some(5.));
assert_eq!(spline.sample(0.9), Some(9.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), 10.);
assert_eq!(spline.clamped_sample(1.), Some(10.));
}
#[test]
fn linear_interpolation_several_keys() {
let start = Key::new(0., 0., Interpolation::Linear);
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Linear);
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Linear);
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let spline = Spline::from_vec(vec![start, k1, k2, k3, k4, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -99,17 +115,17 @@ fn linear_interpolation_several_keys() {
assert_eq!(spline.sample(3.), Some(1.));
assert_eq!(spline.sample(6.5), Some(1.5));
assert_eq!(spline.sample(10.), Some(2.));
assert_eq!(spline.clamped_sample(11.), 4.);
assert_eq!(spline.clamped_sample(11.), Some(4.));
}
#[test]
fn several_interpolations_several_keys() {
let start = Key::new(0., 0., Interpolation::Step(0.5));
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let spline = Spline::from_vec(vec![start, k1, k2, k3, k4, end]);
assert_eq!(spline.sample(0.), Some(0.));
@ -121,10 +137,86 @@ fn several_interpolations_several_keys() {
assert_eq!(spline.sample(1.5), Some(2.5));
assert_eq!(spline.sample(2.), Some(0.));
assert_eq!(spline.sample(2.05), Some(0.));
assert_eq!(spline.sample(2.1), Some(0.));
assert_eq!(spline.sample(2.099), Some(0.));
assert_eq!(spline.sample(2.75), Some(1.));
assert_eq!(spline.sample(3.), Some(1.));
assert_eq!(spline.sample(6.5), Some(1.5));
assert_eq!(spline.sample(10.), Some(2.));
assert_eq!(spline.clamped_sample(11.), 4.);
assert_eq!(spline.clamped_sample(11.), Some(4.));
}
#[cfg(feature = "impl-cgmath")]
#[test]
fn cgmath_vector_interpolation() {
use splines::Interpolate;
let start = cg::Vector2::new(0.0, 0.0);
let mid = cg::Vector2::new(0.5, 0.5);
let end = cg::Vector2::new(1.0, 1.0);
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
}
#[cfg(feature = "impl-nalgebra")]
#[test]
fn nalgebra_vector_interpolation() {
use splines::Interpolate;
let start = na::Vector2::new(0.0, 0.0);
let mid = na::Vector2::new(0.5, 0.5);
let end = na::Vector2::new(1.0, 1.0);
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
}
#[test]
fn add_key_empty() {
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
spline.add(Key::new(0., 0., Interpolation::Linear));
assert_eq!(spline.keys(), &[Key::new(0., 0., Interpolation::Linear)]);
}
#[test]
fn add_key() {
let start = Key::new(0., 0., Interpolation::Step(0.5));
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let new = Key::new(2.4, 40., Interpolation::Linear);
let mut spline = Spline::from_vec(vec![start, k1, k2.clone(), k3, k4, end]);
assert_eq!(spline.keys(), &[start, k1, k2, k3, k4, end]);
spline.add(new);
assert_eq!(spline.keys(), &[start, k1, k2, new, k3, k4, end]);
}
#[test]
fn remove_element_empty() {
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
let removed = spline.remove(0);
assert_eq!(removed, None);
assert!(spline.is_empty());
}
#[test]
fn remove_element() {
let start = Key::new(0., 0., Interpolation::Step(0.5));
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let mut spline = Spline::from_vec(vec![start, k1, k2.clone(), k3, k4, end]);
let removed = spline.remove(2);
assert_eq!(removed, Some(k2));
assert_eq!(spline.len(), 5);
}