93 Commits
0.2.3 ... 3.4.1

Author SHA1 Message Date
05a3862e30 Prepare 3.4.1. 2020-09-05 15:25:16 +02:00
37ca7b1e2d Merge pull request #45 from phaazon/dependabot/cargo/master/simba-0.2.0
Update simba requirement from 0.1.2 to 0.2.0
2020-09-05 15:24:24 +02:00
680c863ce1 Merge pull request #46 from phaazon/dependabot/cargo/master/nalgebra-0.22
Update nalgebra requirement from 0.21 to 0.22
2020-09-05 15:24:18 +02:00
209d4fc7c5 Add support for nalgebra-0.22. 2020-09-05 15:16:33 +02:00
51769e1b12 Add support of simba-0.2. 2020-09-05 15:15:28 +02:00
c32edbd4cb Update nalgebra requirement from 0.21 to 0.22
Updates the requirements on [nalgebra](https://github.com/rustsim/nalgebra) to permit the latest version.
- [Release notes](https://github.com/rustsim/nalgebra/releases)
- [Changelog](https://github.com/dimforge/nalgebra/blob/dev/CHANGELOG.md)
- [Commits](https://github.com/rustsim/nalgebra/compare/v0.21.0...v0.22.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-08-25 19:28:24 +00:00
a175e86db7 Update simba requirement from 0.1.2 to 0.2.0
Updates the requirements on [simba](https://github.com/dimforge/simba) to permit the latest version.
- [Release notes](https://github.com/dimforge/simba/releases)
- [Changelog](https://github.com/dimforge/simba/blob/master/CHANGELOG)
- [Commits](https://github.com/dimforge/simba/compare/v0.1.2...v0.2.0)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-08-25 18:46:32 +00:00
ebfc15d8af Prepare 3.4. 2020-05-21 20:11:36 +02:00
5b92d7b715 Merge pull request #43 from phaazon/dependabot/cargo/master/float-cmp-0.8
Update float-cmp requirement from 0.6 to 0.8
2020-05-21 20:04:34 +02:00
8f7cc9e711 Bump float-cmp upper bound to accept float-cmp-0.8. 2020-05-21 19:59:48 +02:00
9d930d6f16 Update float-cmp requirement from 0.6 to 0.8
Updates the requirements on [float-cmp](https://github.com/mikedilger/float-cmp) to permit the latest version.
- [Release notes](https://github.com/mikedilger/float-cmp/releases)
- [Commits](https://github.com/mikedilger/float-cmp/commits)

Signed-off-by: dependabot-preview[bot] <support@dependabot.com>
2020-05-04 22:42:05 +00:00
0afebc3319 Synchronize README. 2020-04-29 03:27:10 +02:00
4a2f349954 Prepare 3.3.0. 2020-04-09 23:51:07 +02:00
85ac489636 Add the dependabot setup. 2020-04-09 22:39:50 +02:00
aea9011296 Merge pull request #41 from alexbool/update-nalgebra-0.21
bump nalgebra
2020-04-09 22:15:50 +02:00
04247d8706 bump nalgebra 2020-04-06 17:17:40 +03:00
0fcdbacaf3 Prepare version 3.2. 2020-03-19 01:36:13 +01:00
89dfb61272 Add rustfmt.toml and reformat. 2020-03-19 01:22:26 +01:00
1bcf1de99e Merge pull request #40 from alexbool/update-nalgebra-0.20
Update nalgebra 0.20 (take 2)
2020-03-19 01:21:59 +01:00
4630f44d6c run rustfmt 2020-03-18 13:59:22 +03:00
efe9272816 minor: unused warning 2020-03-17 13:07:02 +03:00
036d7df3eb fix Copy trait bound with nalgebra 0.20 2020-03-17 13:06:41 +03:00
a33dbf9fde Activate CI for PRs, too. 2020-03-16 16:54:43 +01:00
dfa1e6a745 Update the CI steps. 2020-03-16 16:45:33 +01:00
f04ea0fefa Revert "Merge pull request #39 from alexbool/update-nalgebra-0.20"
This reverts commit 8ceb8d768c, reversing
changes made to d80de42d2f.
2020-03-16 16:43:20 +01:00
8ceb8d768c Merge pull request #39 from alexbool/update-nalgebra-0.20
update nalgebra version
2020-03-16 16:34:12 +01:00
c93109e28b update nalgebra version 2020-03-14 15:28:14 +03:00
d80de42d2f Prepare 3.1.0. 2020-01-26 21:19:25 +01:00
2e6a5a0dfb Merge pull request #38 from alexbool/update-nalgebra
update nalgebra
2020-01-26 21:18:30 +01:00
62147d5348 update nalgebra 2020-01-26 22:42:05 +03:00
2dfc11c908 Fix CHANGELOG entry date. 2019-10-22 21:43:50 +02:00
0c23df7bf0 Merge pull request #35 from phaazon/fix/bézier
Fix Bézier interpolation.
2019-10-22 21:09:15 +02:00
3b6ddc5ea6 Update integration tests for stroke Bézier. 2019-10-22 20:59:46 +02:00
824afef513 Fix Bézier interpolation. 2019-10-22 20:23:36 +02:00
f2b356b78d Working on tests. 2019-10-22 18:13:51 +02:00
955050ecee Fix examples. 2019-10-22 13:34:11 +02:00
22e75c6901 Fix Bézier interpolation. 2019-10-22 13:34:10 +02:00
425433cd5b Merge pull request #33 from phaazon/feature/stroke-bezier
Add Interpolation::StrokeBezier.
2019-10-17 17:26:16 +02:00
cc0a9580ab Add Interpolation::StrokeBezier. 2019-10-17 17:23:46 +02:00
05e131baad 2.1.1 2019-10-17 01:49:34 +02:00
0a15fb48a3 Add missing LICENSE file. 2019-10-17 01:45:53 +02:00
ebc6e16aef Merge pull request #32 from phaazon/feature/sample-key
Add Spline::sample_with_key and Spline::clamped_sample_with_key.
2019-09-30 12:59:11 +02:00
cae599e0d7 Add Spline::sample_with_key and Spline::clamped_sample_with_key. 2019-09-30 12:49:36 +02:00
336c1c7e80 Merge pull request #31 from phaazon/fix/bezier-interpolation
Fix/bezier interpolation
2019-09-24 21:36:04 +02:00
ea29e08836 Fix cubic Bézier interpolation. 2019-09-24 21:31:18 +02:00
3ab98420c8 Remove unneeded comments. 2019-09-24 17:40:01 +02:00
1bfd9a0e7c Merge pull request #29 from phaazon/release/2.0.0
2.0.0.
2019-09-24 10:59:00 +02:00
7846177471 Fix CI. 2019-09-24 10:44:45 +02:00
6f65be125b 2.0.0. 2019-09-24 10:42:03 +02:00
5d0ebc0777 Merge pull request #28 from phaazon/feature/mutation
Feature/mutation
2019-09-23 21:12:06 +02:00
4fdbfa6189 Fix 1.1. 2019-09-23 20:56:56 +02:00
7dbc85a312 Add key getters (immutable & mutable). 2019-09-23 20:34:39 +02:00
03031a1e92 Yank notation. 2019-09-23 19:53:52 +02:00
54eb89ae96 Merge pull request #27 from phaazon/feature/extra-splines
Feature/extra splines
2019-09-23 17:13:22 +02:00
51ab8022f9 Fix CI. 2019-09-23 17:10:40 +02:00
b78be8cba3 Prepare 1.1. 2019-09-23 17:09:09 +02:00
fd05dd0419 Update readme. 2019-09-23 17:08:32 +02:00
b05582d653 Add Bézier curves. 2019-09-23 17:06:32 +02:00
e76f18ac5b 1.0.0. 2019-09-22 19:15:57 +02:00
8e6af2cee9 Merge pull request #26 from phaazon/feature/add-key
Implement Spline::add.
2019-09-22 19:05:15 +02:00
a6e77a3d09 Remove Travis CI. 2019-09-22 18:22:12 +02:00
510881b5c6 Implement Spline::add.
Fixes #23.
2019-09-22 18:21:20 +02:00
1eed163277 Doc typo. 2019-09-22 18:13:52 +02:00
311efa5b26 Synchronize README. 2019-09-21 14:42:08 +02:00
c98b493993 Add support for removing a key. #24 2019-09-21 14:42:08 +02:00
c818b4c810 Add GitHub CI. 2019-09-21 14:19:21 +02:00
7644177398 1.0.0-rc.3. 2019-04-25 11:37:49 +02:00
3d0a0c570e Fix nalgebra implementor.
Point must be removed because it is not additive.
2019-04-25 11:37:49 +02:00
bdb9a68c3b 1.0.0-rc.2. 2019-04-23 18:43:30 +02:00
e7ecc9819a Documentation, step 4. 2019-04-23 18:43:30 +02:00
e88da58a87 Step 3 of doc cleanup. 2019-04-23 18:43:30 +02:00
6ae3918eb1 Second pass of doc cleanup. 2019-04-23 18:43:30 +02:00
dcd82f7301 First doc cleanup. 2019-04-23 18:43:30 +02:00
8de0f10572 1.0.0-rc.1. 2019-04-21 19:20:15 +02:00
476f762c5f Bump cgmath dependency. 2019-04-21 19:05:51 +02:00
6ee68b4d56 Build without std but do not test (yet). 2019-04-21 18:51:43 +02:00
609ebb0f37 Cleanup. 2019-04-21 18:51:43 +02:00
305ce7ac93 Align and reformat. 2019-04-21 18:51:43 +02:00
70d6cf2081 Implement impl-cgmath. 2019-04-21 18:51:43 +02:00
9d5971a5f7 Remove nalgebra point interpolation. 2019-04-21 18:51:43 +02:00
65a713c51b Implement impl-nalgebra feature. 2019-04-21 18:51:43 +02:00
427895ab10 The cubic_hermite_def function is a bit fucked as impossible to use. 2019-04-21 18:51:43 +02:00
99068fb2d0 Refactor all types in their own modules. 2019-04-21 18:51:43 +02:00
935565ca22 Add f64-key unit test. #12 2019-04-19 13:07:55 +02:00
f4a90b82bc Fix unit tests. 2019-04-19 13:04:55 +02:00
5b70d6921c Refactor polymorphic sampling code. 2019-04-19 13:04:55 +02:00
48623701a7 Fix some documentation. 2019-04-19 13:04:55 +02:00
b548566802 Add support for std/no_std num-traits. 2019-04-19 13:04:55 +02:00
f3bd7cee24 Add support for polymorphic sampling type. 2019-04-19 13:04:55 +02:00
2b5aac42dd Fix example for clamped_sample change. 2019-04-16 17:40:08 +02:00
55e792a98b Make Spline<T>::clamped_sample return Option<T> instead. #9 2019-04-16 17:40:08 +02:00
bc329fe736 Migrate to Rust 2018. 2019-04-13 21:54:17 +02:00
ed222e001d Fix a typo in the top-level documentation. 2019-04-13 21:54:17 +02:00
23 changed files with 1548 additions and 558 deletions

12
.dependabot/config.yml Normal file
View File

@ -0,0 +1,12 @@
version: 1
update_configs:
- package_manager: "rust:cargo"
directory: "."
update_schedule: "live"
target_branch: "master"
default_reviewers:
- "phaazon"
default_assignees:
- "phaazon"
default_labels:
- "dependency-update"

54
.github/workflows/ci.yaml vendored Normal file
View File

@ -0,0 +1,54 @@
name: CI
on: [push, pull_request]
jobs:
build-linux:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: |
cargo build --verbose --all-features
- name: Test
run: |
cargo test --verbose --all-features
build-windows:
runs-on: windows-latest
steps:
- uses: actions/checkout@v1
- name: Build
run: |
cargo build --verbose --all-features
- name: Test
run: |
cargo test --verbose --all-features
build-macosx:
runs-on: macOS-latest
steps:
- uses: actions/checkout@v1
- name: Rust requirements
run: curl --proto '=https' --tlsv1.2 -sSf https://sh.rustup.rs | sh -s -- -y --profile=minimal
- name: Build
run: |
. ~/.cargo/env
cargo build --verbose --all-features
- name: Test
run: |
. ~/.cargo/env
cargo test --verbose --all-features
quality:
runs-on: ubuntu-latest
steps:
- uses: actions/checkout@v1
- name: Install dependencies
run: |
cargo install --force cargo-sync-readme
rustup component add rustfmt
- name: cargo sync-readme
run: |
cargo sync-readme -c
- name: rustfmt
run: cargo fmt -- --check

View File

@ -1,24 +0,0 @@
language: rust
rust:
- stable
- beta
- nightly
os:
- linux
- osx
script:
- rustc --version
- cargo --version
- echo "Testing default crate configuration"
- cargo build --verbose
- cargo test --verbose
- cd examples && cargo check --verbose
- echo "Testing feature serialization"
- cargo build --verbose --features serialization
- cargo test --verbose --features serialization
- echo "Testing without std"
- cargo build --verbose --no-default-features
- cargo test --verbose --no-default-features

View File

@ -1,43 +1,185 @@
## 0.2.3
# Changelog
<!-- vim-markdown-toc GFM -->
* [3.4.1](#341)
* [3.4](#34)
* [3.3](#33)
* [3.2](#32)
* [3.1](#31)
* [3.0](#30)
* [Major changes](#major-changes)
* [Patch changes](#patch-changes)
* [2.2](#22)
* [2.1.1](#211)
* [2.1](#21)
* [2.0.1](#201)
* [2.0](#20)
* [Major changes](#major-changes-1)
* [Minor changes](#minor-changes)
* [1.0](#10)
* [Major changes](#major-changes-2)
* [Minor changes](#minor-changes-1)
* [Patch changes](#patch-changes-1)
* [0.2.3](#023)
* [0.2.2](#022)
* [0.2.1](#021)
* [0.2](#02)
* [0.1.1](#011)
* [0.1](#01)
<!-- vim-markdown-toc -->
# 3.4.1
> Sep 05th, 2020
- Support of `simba-0.2`.
- Support of `nalgebra-0.22`.
# 3.4
> Thu May 21st 2020
- Add support for `float-cmp-0.7` and `float-cmp-0.8`. Because this uses a SemVer range, if you
already have a `Cargo.lock`, dont forget to update `splines` with `cargo update --aggressive`.
# 3.3
> Thu Apr 10th 2020
- Add support for `nalgebra-0.21`.
# 3.2
> Thu Mar 19th 2020
- Add support for `nalgebra-0.20`.
- Add support for `float-cmp-0.6`.
# 3.1
> Sat Jan 26th 2020
- Add support for `nalgebra-0.19`.
# 3.0
> Tue Oct 22th 2019
## Major changes
- Sampling now requires the value of the key to be `Linear<T>` for `Interpolate<T>`. That is needed
to ease some interpolation mode (especially Bézier).
## Patch changes
- Fix Bézier interpolation when the next key is Bézier too.
# 2.2
> Mon Oct 17th 2019
- Add `Interpolation::StrokeBezier`.
# 2.1.1
> Mon Oct 17th 2019
- Licensing support in the crate.
# 2.1
> Mon Sep 30th 2019
- Add `Spline::sample_with_key` and `Spline::clamped_sample_with_key`. Those methods allow one to
perform the regular `Spline::sample` and `Spline::clamped_sample` but also retreive the base
key that was used to perform the interpolation. The key can be inspected to get the base time,
interpolation, etc. The next key is also returned, if present.
# 2.0.1
> Tue Sep 24th 2019
- Fix the cubic Bézier curve interpolation. The “output” tangent is now taken by mirroring the
next keys tangent around its control point.
# 2.0
> Mon Sep 23rd 2019
## Major changes
- Add support for [Bézier curves](https://en.wikipedia.org/wiki/B%C3%A9zier_curve).
- Because of Bézier curves, the `Interpolation` type now has one more type variable to know how we
should interpolate with Bézier.
## Minor changes
- Add `Spline::get`, `Spline::get_mut` and `Spline::replace`.
# 1.0
> Sun Sep 22nd 2019
## Major changes
- Make `Spline::clamped_sample` failible via `Option` instead of panicking.
- Add support for polymorphic sampling type.
## Minor changes
- Add the `std` feature (and hence support for `no_std`).
- Add `impl-nalgebra` feature.
- Add `impl-cgmath` feature.
- Add support for adding keys to splines.
- Add support for removing keys from splines.
## Patch changes
- Migrate to Rust 2018.
- Documentation typo fixes.
# 0.2.3
> Sat 13th October 2018
- Add the `"impl-nalgebra"` feature gate. It gives access to some implementors for the `nalgebra`
crate.
- Enhance the documentation.
- Add the `"impl-nalgebra"` feature gate. It gives access to some implementors for the `nalgebra`
crate.
- Enhance the documentation.
## 0.2.2
# 0.2.2
> Sun 30th September 2018
- Bump version numbers (`splines-0.2`) in examples.
- Fix several typos in the documentation.
- Bump version numbers (`splines-0.2`) in examples.
- Fix several typos in the documentation.
## 0.2.1
# 0.2.1
> Thu 20th September 2018
- Enhance the features documentation.
- Enhance the features documentation.
# 0.2
> Thu 6th September 2018
- Add the `"std"` feature gate, that can be used to compile with the standard library.
- Add the `"impl-cgmath"` feature gate in order to make optional, if wanted, the `cgmath`
dependency.
- Enhance the documentation.
- Add the `"std"` feature gate, that can be used to compile with the standard library.
- Add the `"impl-cgmath"` feature gate in order to make optional, if wanted, the `cgmath`
dependency.
- Enhance the documentation.
## 0.1.1
# 0.1.1
> Wed 8th August 2018
- Add a feature gate, `"serialization"`, that can be used to automatically derive `Serialize` and
`Deserialize` from the [serde](https://crates.io/crates/serde) crate.
- Enhance the documentation.
- Add a feature gate, `"serialization"`, that can be used to automatically derive `Serialize` and
`Deserialize` from the [serde](https://crates.io/crates/serde) crate.
- Enhance the documentation.
# 0.1
> Sunday 5th August 2018
- Initial revision.
- Initial revision.

View File

@ -1,6 +1,6 @@
[package]
name = "splines"
version = "0.2.3"
version = "3.4.1"
license = "BSD-3-Clause"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
description = "Spline interpolation made easy"
@ -11,6 +11,8 @@ repository = "https://github.com/phaazon/splines"
documentation = "https://docs.rs/splines"
readme = "README.md"
edition = "2018"
[badges]
travis-ci = { repository = "phaazon/splines", branch = "master" }
is-it-maintained-issue-resolution = { repository = "phaazon/splines" }
@ -18,24 +20,30 @@ is-it-maintained-open-issues = { repository = "phaazon/splines" }
maintenance = { status = "actively-developed" }
[features]
default = ["std", "impl-cgmath"]
default = ["std"]
impl-cgmath = ["cgmath"]
impl-nalgebra = ["nalgebra", "num-traits", "simba"]
serialization = ["serde", "serde_derive"]
std = []
impl-cgmath = ["cgmath"]
impl-nalgebra = ["nalgebra"]
[dependencies.nalgebra]
version = ">=0.14, <0.17"
optional = true
[dependencies]
cgmath = { version = "0.17", optional = true }
nalgebra = { version = ">=0.21, <0.23", optional = true }
num-traits = { version = "0.2", optional = true }
serde = { version = "1", optional = true }
serde_derive = { version = "1", optional = true }
simba = { version = ">=0.1.2, <0.3", optional = true }
[dependencies.cgmath]
version = "0.16"
optional = true
[dev-dependencies]
float-cmp = ">=0.6, < 0.9"
serde_json = "1"
[dependencies.serde]
version = "1"
optional = true
[package.metadata.docs.rs]
all-features = true
[dependencies.serde_derive]
version = "1"
optional = true
[[example]]
name = "hello-world"
[[example]]
name = "serialization"
required-features = ["serialization"]

30
LICENSE Normal file
View File

@ -0,0 +1,30 @@
Copyright (c) 2019, Dimitri Sabadie <dimitri.sabadie@gmail.com>
All rights reserved.
Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:
* Redistributions of source code must retain the above copyright
notice, this list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above
copyright notice, this list of conditions and the following
disclaimer in the documentation and/or other materials provided
with the distribution.
* Neither the name of Dimitri Sabadie <dimitri.sabadie@gmail.com> nor the names of other
contributors may be used to endorse or promote products derived
from this software without specific prior written permission.
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
"AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR
A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT
OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL,
SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT
LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE,
DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY
THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

106
README.md
View File

@ -1,26 +1,104 @@
# splines
This crate provides [splines](https://en.wikipedia.org/wiki/Spline_(mathematics)), mathematic curves
defined piecewise through control keys a.k.a. knots.
Feel free to dig in the [online documentation](https://docs.rs/splines) for further information.
## A note on features
<!-- cargo-sync-readme start -->
This crate has features! Heres a comprehensive list of what you can enable:
# Spline interpolation made easy.
This crate exposes splines for which each sections can be interpolated independently of each
other i.e. its possible to interpolate with a linear interpolator on one section and then
switch to a cubic Hermite interpolator for the next section.
Most of the crate consists of three types:
- [`Key`], which represents the control points by which the spline must pass.
- [`Interpolation`], the type of possible interpolation for each segment.
- [`Spline`], a spline from which you can *sample* points by interpolation.
When adding control points, you add new sections. Two control points define a section i.e.
its not possible to define a spline without at least two control points. Every time you add a
new control point, a new section is created. Each section is assigned an interpolation mode that
is picked from its lower control point.
# Quickly create splines
```rust
use splines::{Interpolation, Key, Spline};
let start = Key::new(0., 0., Interpolation::Linear);
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
```
You will notice that we used `Interpolation::Linear` for the first key. The first key `start`s
interpolation will be used for the whole segment defined by those two keys. The `end`s
interpolation wont be used. You can in theory use any [`Interpolation`] you want for the last
key. We use the default one because we dont care.
# Interpolate values
The whole purpose of splines is to interpolate discrete values to yield continuous ones. This is
usually done with the [`Spline::sample`] method. This method expects the sampling parameter
(often, this will be the time of your simulation) as argument and will yield an interpolated
value.
If you try to sample in out-of-bounds sampling parameter, youll get no value.
```rust
assert_eq!(spline.sample(0.), Some(0.));
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(spline.sample(1.1), None);
```
Its possible that you want to get a value even if youre out-of-bounds. This is especially
important for simulations / animations. Feel free to use the `Spline::clamped_interpolation` for
that purpose.
```rust
assert_eq!(spline.clamped_sample(-0.9), Some(0.)); // clamped to the first key
assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
```
# Polymorphic sampling types
[`Spline`] curves are parametered both by the carried value (being interpolated) but also the
sampling type. Its very typical to use `f32` or `f64` but really, you can in theory use any
kind of type; that type must, however, implement a contract defined by a set of traits to
implement. See [the documentation of this module](crate::interpolate) for further details.
# Features and customization
This crate was written with features baked in and hidden behind feature-gates. The idea is that
the default configuration (i.e. you just add `"splines = …"` to your `Cargo.toml`) will always
give you the minimal, core and raw concepts of what splines, keys / knots and interpolation
modes are. However, you might want more. Instead of letting other people do the extra work to
add implementations for very famous and useful traits and do it in less efficient way, because
they wouldnt have access to the internals of this crate, its possible to enable features in an
ad hoc way.
This mechanism is not final and this is currently an experiment to see how people like it or
not. Its especially important to see how it copes with the documentation.
So heres a list of currently supported features and how to enable them:
- **Serialization / deserialization.**
+ This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
- This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
types exported by this crate.
+ Enable with the `"serialization"` feature.
- Enable with the `"serialization"` feature.
- **[cgmath](https://crates.io/crates/cgmath) implementors.**
+ Adds some useful implementations of `Interpolate` for some cgmath types.
+ Enable with the `"impl-cgmath"` feature.
- Adds some useful implementations of `Interpolate` for some cgmath types.
- Enable with the `"impl-cgmath"` feature.
- **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
+ Adds some useful implementations of `Interpolate` for some nalgebra types.
+ Enable with the `"impl-nalgebra"` feature.
- Adds some useful implementations of `Interpolate` for some nalgebra types.
- Enable with the `"impl-nalgebra"` feature.
- **Standard library / no standard library.**
+ Its possible to compile against the standard library or go on your own without it.
+ Compiling with the standard library is enabled by default.
+ Use `default-features = []` in your `Cargo.toml` to disable.
+ Enable explicitly with the `"std"` feature.
- Its possible to compile against the standard library or go on your own without it.
- Compiling with the standard library is enabled by default.
- Use `default-features = []` in your `Cargo.toml` to disable.
- Enable explicitly with the `"std"` feature.
[`Interpolation`]: crate::interpolation::Interpolation
<!-- cargo-sync-readme end -->

View File

@ -1,7 +0,0 @@
[package]
name = "hello-world"
version = "0.2.0"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
[dependencies]
splines = "0.2"

View File

@ -1,11 +0,0 @@
extern crate splines;
use splines::{Interpolation, Key, Spline};
fn main() {
let keys = vec![Key::new(0., 0., Interpolation::default()), Key::new(5., 1., Interpolation::default())];
let spline = Spline::from_vec(keys);
println!("value at 0: {}", spline.clamped_sample(0.));
println!("value at 3: {}", spline.clamped_sample(3.));
}

View File

@ -1,11 +0,0 @@
[package]
name = "serialization"
version = "0.2.0"
authors = ["Dimitri Sabadie <dimitri.sabadie@gmail.com>"]
[dependencies]
serde_json = "1"
[dependencies.splines]
version = "0.2"
features = ["serialization"]

View File

@ -1,9 +0,0 @@
[workspace]
members = [
"01-hello-world",
"02-serialization"
]
[patch.crates-io]
splines = { path = ".." }

14
examples/hello-world.rs Normal file
View File

@ -0,0 +1,14 @@
extern crate splines;
use splines::{Interpolation, Key, Spline};
fn main() {
let keys = vec![
Key::new(0., 0., Interpolation::default()),
Key::new(5., 1., Interpolation::default()),
];
let spline = Spline::from_vec(keys);
println!("value at 0: {:?}", spline.clamped_sample(0.));
println!("value at 3: {:?}", spline.clamped_sample(3.));
}

View File

@ -1,11 +1,12 @@
#[macro_use] extern crate serde_json;
#[macro_use]
extern crate serde_json;
extern crate splines;
use serde_json::{Value, from_value};
use serde_json::from_value;
use splines::Spline;
fn main() {
let value = json!{
let value = json! {
[
{
"t": 0,
@ -25,6 +26,6 @@ fn main() {
]
};
let spline = from_value::<Spline<f32>>(value);
let spline = from_value::<Spline<f32, f32>>(value);
println!("{:?}", spline);
}

15
rustfmt.toml Normal file
View File

@ -0,0 +1,15 @@
edition = "2018"
fn_args_layout = "Tall"
force_explicit_abi = true
hard_tabs = false
max_width = 100
merge_derives = true
newline_style = "Unix"
remove_nested_parens = true
reorder_imports = true
reorder_modules = true
tab_spaces = 2
use_field_init_shorthand = true
use_small_heuristics = "Default"
use_try_shorthand = true

92
src/cgmath.rs Normal file
View File

@ -0,0 +1,92 @@
use cgmath::{
BaseFloat, BaseNum, InnerSpace, Quaternion, Vector1, Vector2, Vector3, Vector4, VectorSpace,
};
use crate::interpolate::{
cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def, Additive, Interpolate, Linear, One,
};
macro_rules! impl_interpolate_vec {
($($t:tt)*) => {
impl<T> Linear<T> for $($t)*<T> where T: BaseNum {
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T> Interpolate<T> for $($t)*<T>
where Self: InnerSpace<Scalar = T>, T: Additive + BaseFloat + One {
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
a.lerp(b, t)
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
}
}
impl_interpolate_vec!(Vector1);
impl_interpolate_vec!(Vector2);
impl_interpolate_vec!(Vector3);
impl_interpolate_vec!(Vector4);
impl<T> Linear<T> for Quaternion<T>
where
T: BaseFloat,
{
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T> Interpolate<T> for Quaternion<T>
where
Self: InnerSpace<Scalar = T>,
T: Additive + BaseFloat + One,
{
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
a.nlerp(b, t)
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}

318
src/interpolate.rs Normal file
View File

@ -0,0 +1,318 @@
//! The [`Interpolate`] trait and associated symbols.
//!
//! The [`Interpolate`] trait is the central concept of the crate. It enables a spline to be
//! sampled at by interpolating in between control points.
//!
//! In order for a type to be used in [`Spline<K, V>`], some properties must be met about the `K`
//! type must implementing several traits:
//!
//! - [`One`], giving a neutral element for the multiplication monoid.
//! - [`Additive`], making the type additive (i.e. one can add or subtract with it).
//! - [`Linear`], unlocking linear combinations, required for interpolating.
//! - [`Trigo`], a trait giving *π* and *cosine*, required for e.g. cosine interpolation.
//!
//! Feel free to have a look at current implementors for further help.
//!
//! > *Why doesnt this crate use [num-traits] instead of
//! > defining its own traits?*
//!
//! The reason for this is quite simple: this crate provides a `no_std` support, which is not
//! currently available easily with [num-traits]. Also, if something changes in [num-traits] with
//! those traits, it would make this whole crate unstable.
//!
//! [`Interpolate`]: crate::interpolate::Interpolate
//! [`Spline<K, V>`]: crate::spline::Spline
//! [`One`]: crate::interpolate::One
//! [`Additive`]: crate::interpolate::Additive
//! [`Linear`]: crate::interpolate::Linear
//! [`Trigo`]: crate::interpolate::Trigo
//! [num-traits]: https://crates.io/crates/num-traits
#[cfg(not(feature = "std"))]
use core::f32;
#[cfg(not(feature = "std"))]
use core::f64;
#[cfg(not(feature = "std"))]
use core::intrinsics::cosf32;
#[cfg(not(feature = "std"))]
use core::intrinsics::cosf64;
#[cfg(not(feature = "std"))]
use core::ops::{Add, Mul, Sub};
#[cfg(feature = "std")]
use std::f32;
#[cfg(feature = "std")]
use std::f64;
#[cfg(feature = "std")]
use std::ops::{Add, Mul, Sub};
/// Keys that can be interpolated in between. Implementing this trait is required to perform
/// sampling on splines.
///
/// `T` is the variable used to sample with. Typical implementations use [`f32`] or [`f64`], but
/// youre free to use the ones you like. Feel free to have a look at [`Spline::sample`] for
/// instance to know which trait your type must implement to be usable.
///
/// [`Spline::sample`]: crate::spline::Spline::sample
pub trait Interpolate<T>: Sized + Copy + Linear<T> {
/// Linear interpolation.
fn lerp(a: Self, b: Self, t: T) -> Self;
/// Cubic hermite interpolation.
///
/// Default to [`lerp`].
///
/// [`lerp`]: Interpolate::lerp
fn cubic_hermite(_: (Self, T), a: (Self, T), b: (Self, T), _: (Self, T), t: T) -> Self {
Self::lerp(a.0, b.0, t)
}
/// Quadratic Bézier interpolation.
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self;
/// Cubic Bézier interpolation.
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self;
}
/// Set of types that support additions and subtraction.
///
/// The [`Copy`] trait is also a supertrait as its likely to be used everywhere.
pub trait Additive: Copy + Add<Self, Output = Self> + Sub<Self, Output = Self> {}
impl<T> Additive for T where T: Copy + Add<Self, Output = Self> + Sub<Self, Output = Self> {}
/// Set of additive types that support outer multiplication and division, making them linear.
pub trait Linear<T>: Additive {
/// Apply an outer multiplication law.
fn outer_mul(self, t: T) -> Self;
/// Apply an outer division law.
fn outer_div(self, t: T) -> Self;
}
macro_rules! impl_linear_simple {
($t:ty) => {
impl Linear<$t> for $t {
fn outer_mul(self, t: $t) -> Self {
self * t
}
/// Apply an outer division law.
fn outer_div(self, t: $t) -> Self {
self / t
}
}
};
}
impl_linear_simple!(f32);
impl_linear_simple!(f64);
macro_rules! impl_linear_cast {
($t:ty, $q:ty) => {
impl Linear<$t> for $q {
fn outer_mul(self, t: $t) -> Self {
self * t as $q
}
/// Apply an outer division law.
fn outer_div(self, t: $t) -> Self {
self / t as $q
}
}
};
}
impl_linear_cast!(f32, f64);
impl_linear_cast!(f64, f32);
/// Types with a neutral element for multiplication.
pub trait One {
/// The neutral element for the multiplicative monoid — typically called `1`.
fn one() -> Self;
}
macro_rules! impl_one_float {
($t:ty) => {
impl One for $t {
#[inline(always)]
fn one() -> Self {
1.
}
}
};
}
impl_one_float!(f32);
impl_one_float!(f64);
/// Types with a sane definition of π and cosine.
pub trait Trigo {
/// π.
fn pi() -> Self;
/// Cosine of the argument.
fn cos(self) -> Self;
}
impl Trigo for f32 {
#[inline(always)]
fn pi() -> Self {
f32::consts::PI
}
#[inline(always)]
fn cos(self) -> Self {
#[cfg(feature = "std")]
{
self.cos()
}
#[cfg(not(feature = "std"))]
{
unsafe { cosf32(self) }
}
}
}
impl Trigo for f64 {
#[inline(always)]
fn pi() -> Self {
f64::consts::PI
}
#[inline(always)]
fn cos(self) -> Self {
#[cfg(feature = "std")]
{
self.cos()
}
#[cfg(not(feature = "std"))]
{
unsafe { cosf64(self) }
}
}
}
/// Default implementation of [`Interpolate::cubic_hermite`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn cubic_hermite_def<V, T>(x: (V, T), a: (V, T), b: (V, T), y: (V, T), t: T) -> V
where
V: Linear<T>,
T: Additive + Mul<T, Output = T> + One,
{
// some stupid generic constants, because Rust doesnt have polymorphic literals…
let one_t = T::one();
let two_t = one_t + one_t; // lolololol
let three_t = two_t + one_t; // megalol
// sampler stuff
let t2 = t * t;
let t3 = t2 * t;
let two_t3 = t3 * two_t;
let three_t2 = t2 * three_t;
// tangents
let m0 = (b.0 - x.0).outer_div(b.1 - x.1);
let m1 = (y.0 - a.0).outer_div(y.1 - a.1);
a.0.outer_mul(two_t3 - three_t2 + one_t)
+ m0.outer_mul(t3 - t2 * two_t + t)
+ b.0.outer_mul(three_t2 - two_t3)
+ m1.outer_mul(t3 - t2)
}
/// Default implementation of [`Interpolate::quadratic_bezier`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn quadratic_bezier_def<V, T>(a: V, u: V, b: V, t: T) -> V
where
V: Linear<T>,
T: Additive + Mul<T, Output = T> + One,
{
let one_t = T::one() - t;
let one_t_2 = one_t * one_t;
u + (a - u).outer_mul(one_t_2) + (b - u).outer_mul(t * t)
}
/// Default implementation of [`Interpolate::cubic_bezier`].
///
/// `V` is the value being interpolated. `T` is the sampling value (also sometimes called time).
pub fn cubic_bezier_def<V, T>(a: V, u: V, v: V, b: V, t: T) -> V
where
V: Linear<T>,
T: Additive + Mul<T, Output = T> + One,
{
let one_t = T::one() - t;
let one_t_2 = one_t * one_t;
let one_t_3 = one_t_2 * one_t;
let three = T::one() + T::one() + T::one();
a.outer_mul(one_t_3)
+ u.outer_mul(three * one_t_2 * t)
+ v.outer_mul(three * one_t * t * t)
+ b.outer_mul(t * t * t)
}
macro_rules! impl_interpolate_simple {
($t:ty) => {
impl Interpolate<$t> for $t {
fn lerp(a: Self, b: Self, t: $t) -> Self {
a * (1. - t) + b * t
}
fn cubic_hermite(x: (Self, $t), a: (Self, $t), b: (Self, $t), y: (Self, $t), t: $t) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
quadratic_bezier_def(a, u, b, t)
}
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
};
}
impl_interpolate_simple!(f32);
impl_interpolate_simple!(f64);
macro_rules! impl_interpolate_via {
($t:ty, $v:ty) => {
impl Interpolate<$t> for $v {
fn lerp(a: Self, b: Self, t: $t) -> Self {
a * (1. - t as $v) + b * t as $v
}
fn cubic_hermite(
(x, xt): (Self, $t),
(a, at): (Self, $t),
(b, bt): (Self, $t),
(y, yt): (Self, $t),
t: $t,
) -> Self {
cubic_hermite_def(
(x, xt as $v),
(a, at as $v),
(b, bt as $v),
(y, yt as $v),
t as $v,
)
}
fn quadratic_bezier(a: Self, u: Self, b: Self, t: $t) -> Self {
quadratic_bezier_def(a, u, b, t as $v)
}
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: $t) -> Self {
cubic_bezier_def(a, u, v, b, t as $v)
}
}
};
}
impl_interpolate_via!(f32, f64);
impl_interpolate_via!(f64, f32);

65
src/interpolation.rs Normal file
View File

@ -0,0 +1,65 @@
//! Available interpolation modes.
#[cfg(feature = "serialization")]
use serde_derive::{Deserialize, Serialize};
/// Available kind of interpolations.
///
/// Feel free to visit each variant for more documentation.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub enum Interpolation<T, V> {
/// Hold a [`Key`] until the sampling value passes the normalized step threshold, in which
/// case the next key is used.
///
/// > Note: if you set the threshold to `0.5`, the first key will be used until half the time
/// > between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
/// > first key will be kept until the next key. Set it to `0.` and the first key will never be
/// > used.
///
/// [`Key`]: crate::key::Key
Step(T),
/// Linear interpolation between a key and the next one.
Linear,
/// Cosine interpolation between a key and the next one.
Cosine,
/// Catmull-Rom interpolation, performing a cubic Hermite interpolation using four keys.
CatmullRom,
/// Bézier interpolation.
///
/// A control point that uses such an interpolation is associated with an extra point. The segmant
/// connecting both is called the _tangent_ of this point. The part of the spline defined between
/// this control point and the next one will be interpolated across with Bézier interpolation. Two
/// cases are possible:
///
/// - The next control point also has a Bézier interpolation mode. In this case, its tangent is
/// used for the interpolation process. This is called _cubic Bézier interpolation_ and it
/// kicks ass.
/// - The next control point doesnt have a Bézier interpolation mode set. In this case, the
/// tangent used for the next control point is defined as the segment connecting that control
/// point and the current control points associated point. This is called _quadratic Bézer
/// interpolation_ and it kicks ass too, but a bit less than cubic.
Bezier(V),
/// A special Bézier interpolation using an _input tangent_ and an _output tangent_.
///
/// With this kind of interpolation, a control point has an input tangent, which has the same role
/// as the one defined by [`Interpolation::Bezier`], and an output tangent, which has the same
/// role defined by the next keys [`Interpolation::Bezier`] if present, normally.
///
/// What it means is that instead of setting the output tangent as the next keys Bézier tangent,
/// this interpolation mode allows you to manually set the output tangent. That will yield more
/// control on the tangents but might generate discontinuities. Use with care.
///
/// Stroke Bézier interpolation is always a cubic Bézier interpolation by default.
StrokeBezier(V, V),
#[doc(hidden)]
__NonExhaustive,
}
impl<T, V> Default for Interpolation<T, V> {
/// [`Interpolation::Linear`] is the default.
fn default() -> Self {
Interpolation::Linear
}
}

44
src/iter.rs Normal file
View File

@ -0,0 +1,44 @@
//! Spline [`Iterator`], in a nutshell.
//!
//! You can iterate over a [`Spline<K, V>`]s keys with the [`IntoIterator`] trait on
//! `&Spline<K, V>`. This gives you iterated [`Key<K, V>`] keys.
//!
//! [`Spline<K, V>`]: crate::spline::Spline
//! [`Key<K, V>`]: crate::key::Key
use crate::{Key, Spline};
/// Iterator over spline keys.
///
/// This iterator type is guaranteed to iterate over sorted keys.
pub struct Iter<'a, T, V>
where
T: 'a,
V: 'a,
{
spline: &'a Spline<T, V>,
i: usize,
}
impl<'a, T, V> Iterator for Iter<'a, T, V> {
type Item = &'a Key<T, V>;
fn next(&mut self) -> Option<Self::Item> {
let r = self.spline.0.get(self.i);
if let Some(_) = r {
self.i += 1;
}
r
}
}
impl<'a, T, V> IntoIterator for &'a Spline<T, V> {
type Item = &'a Key<T, V>;
type IntoIter = Iter<'a, T, V>;
fn into_iter(self) -> Self::IntoIter {
Iter { spline: self, i: 0 }
}
}

42
src/key.rs Normal file
View File

@ -0,0 +1,42 @@
//! Spline control points.
//!
//! A control point associates to a “sampling value” (a.k.a. time) a carriede value that can be
//! interpolated along the curve made by the control points.
//!
//! Splines constructed with this crate have the property that its possible to change the
//! interpolation mode on a key-based way, allowing you to implement and encode complex curves.
#[cfg(feature = "serialization")]
use serde_derive::{Deserialize, Serialize};
use crate::interpolation::Interpolation;
/// A spline control point.
///
/// This type associates a value at a given interpolation parameter value. It also contains an
/// interpolation mode used to determine how to interpolate values on the segment defined by this
/// key and the next one if existing. Have a look at [`Interpolation`] for further details.
///
/// [`Interpolation`]: crate::interpolation::Interpolation
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub struct Key<T, V> {
/// Interpolation parameter at which the [`Key`] should be reached.
pub t: T,
/// Carried value.
pub value: V,
/// Interpolation mode.
pub interpolation: Interpolation<T, V>,
}
impl<T, V> Key<T, V> {
/// Create a new key.
pub fn new(t: T, value: V, interpolation: Interpolation<T, V>) -> Self {
Key {
t,
value,
interpolation,
}
}
}

View File

@ -33,11 +33,11 @@
//! # Interpolate values
//!
//! The whole purpose of splines is to interpolate discrete values to yield continuous ones. This is
//! usually done with the `Spline::sample` method. This method expects the interpolation parameter
//! usually done with the [`Spline::sample`] method. This method expects the sampling parameter
//! (often, this will be the time of your simulation) as argument and will yield an interpolated
//! value.
//!
//! If you try to sample in out-of-bounds interpolation parameter, youll get no value.
//! If you try to sample in out-of-bounds sampling parameter, youll get no value.
//!
//! ```
//! # use splines::{Interpolation, Key, Spline};
@ -45,7 +45,7 @@
//! # let end = Key::new(1., 10., Interpolation::Linear);
//! # let spline = Spline::from_vec(vec![start, end]);
//! assert_eq!(spline.sample(0.), Some(0.));
//! assert_eq!(spline.clamped_sample(1.), 10.);
//! assert_eq!(spline.clamped_sample(1.), Some(10.));
//! assert_eq!(spline.sample(1.1), None);
//! ```
//!
@ -58,13 +58,21 @@
//! # let start = Key::new(0., 0., Interpolation::Linear);
//! # let end = Key::new(1., 10., Interpolation::Linear);
//! # let spline = Spline::from_vec(vec![start, end]);
//! assert_eq!(spline.clamped_sample(-0.9), 0.); // clamped to the first key
//! assert_eq!(spline.clamped_sample(1.1), 10.); // clamped to the last key
//! assert_eq!(spline.clamped_sample(-0.9), Some(0.)); // clamped to the first key
//! assert_eq!(spline.clamped_sample(1.1), Some(10.)); // clamped to the last key
//! ```
//!
//! # Polymorphic sampling types
//!
//! [`Spline`] curves are parametered both by the carried value (being interpolated) but also the
//! sampling type. Its very typical to use `f32` or `f64` but really, you can in theory use any
//! kind of type; that type must, however, implement a contract defined by a set of traits to
//! implement. See [the documentation of this module](crate::interpolate) for further details.
//!
//! # Features and customization
//!
//! This crate was written with features baked in and hidden behind feature-gates. The idea is that
//! the default configuration (i.e. you just add `"spline = …"` to your `Cargo.toml`) will always
//! the default configuration (i.e. you just add `"splines = …"` to your `Cargo.toml`) will always
//! give you the minimal, core and raw concepts of what splines, keys / knots and interpolation
//! modes are. However, you might want more. Instead of letting other people do the extra work to
//! add implementations for very famous and useful traits and do it in less efficient way, because
@ -77,432 +85,41 @@
//! So heres a list of currently supported features and how to enable them:
//!
//! - **Serialization / deserialization.**
//! + This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
//! - This feature implements both the `Serialize` and `Deserialize` traits from `serde` for all
//! types exported by this crate.
//! + Enable with the `"serialization"` feature.
//! - Enable with the `"serialization"` feature.
//! - **[cgmath](https://crates.io/crates/cgmath) implementors.**
//! + Adds some useful implementations of `Interpolate` for some cgmath types.
//! + Enable with the `"impl-cgmath"` feature.
//! - Adds some useful implementations of `Interpolate` for some cgmath types.
//! - Enable with the `"impl-cgmath"` feature.
//! - **[nalgebra](https://crates.io/crates/nalgebra) implementors.**
//! + Adds some useful implementations of `Interpolate` for some nalgebra types.
//! + Enable with the `"impl-nalgebra"` feature.
//! - Adds some useful implementations of `Interpolate` for some nalgebra types.
//! - Enable with the `"impl-nalgebra"` feature.
//! - **Standard library / no standard library.**
//! + Its possible to compile against the standard library or go on your own without it.
//! + Compiling with the standard library is enabled by default.
//! + Use `default-features = []` in your `Cargo.toml` to disable.
//! + Enable explicitly with the `"std"` feature.
//! - Its possible to compile against the standard library or go on your own without it.
//! - Compiling with the standard library is enabled by default.
//! - Use `default-features = []` in your `Cargo.toml` to disable.
//! - Enable explicitly with the `"std"` feature.
//!
//! [`Interpolation`]: crate::interpolation::Interpolation
#![cfg_attr(not(feature = "std"), no_std)]
#![cfg_attr(not(feature = "std"), feature(alloc))]
#![cfg_attr(not(feature = "std"), feature(core_intrinsics))]
// on no_std, we also need the alloc crate for Vec
#[cfg(not(feature = "std"))] extern crate alloc;
#[cfg(feature = "impl-cgmath")] extern crate cgmath;
#[cfg(feature = "impl-nalgebra")] extern crate nalgebra;
#[cfg(feature = "serialization")] extern crate serde;
#[cfg(feature = "serialization")] #[macro_use] extern crate serde_derive;
#[cfg(feature = "impl-cgmath")] use cgmath::{InnerSpace, Quaternion, Vector2, Vector3, Vector4};
#[cfg(feature = "impl-nalgebra")] use nalgebra as na;
#[cfg(feature = "impl-nalgebra")] use nalgebra::core::{DimName, DefaultAllocator, Scalar};
#[cfg(feature = "impl-nalgebra")] use nalgebra::core::allocator::Allocator;
#[cfg(feature = "std")] use std::cmp::Ordering;
#[cfg(feature = "std")] use std::f32::consts;
#[cfg(feature = "std")] use std::ops::{Add, Div, Mul, Sub};
#[cfg(not(feature = "std"))] use alloc::vec::Vec;
#[cfg(not(feature = "std"))] use core::cmp::Ordering;
#[cfg(not(feature = "std"))] use core::f32::consts;
#[cfg(not(feature = "std"))] use core::ops::{Add, Div, Mul, Sub};
/// A spline control point.
///
/// This type associates a value at a given interpolation parameter value. It also contains an
/// interpolation hint used to determine how to interpolate values on the segment defined by this
/// key and the next one if existing.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub struct Key<T> {
/// Interpolation parameter at which the [`Key`] should be reached.
pub t: f32,
/// Held value.
pub value: T,
/// Interpolation mode.
pub interpolation: Interpolation
}
impl<T> Key<T> {
/// Create a new key.
pub fn new(t: f32, value: T, interpolation: Interpolation) -> Self {
Key {
t: t,
value: value,
interpolation: interpolation
}
}
}
/// Interpolation mode.
#[derive(Copy, Clone, Debug)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
#[cfg_attr(feature = "serialization", serde(rename_all = "snake_case"))]
pub enum Interpolation {
/// Hold a [`Key`] until the time passes the normalized step threshold, in which case the next
/// key is used.
///
/// *Note: if you set the threshold to `0.5`, the first key will be used until the time is half
/// between the two keys; the second key will be in used afterwards. If you set it to `1.0`, the
/// first key will be kept until the next key. Set it to `0.` and the first key will never be
/// used.*
Step(f32),
/// Linear interpolation between a key and the next one.
Linear,
/// Cosine interpolation between a key and the next one.
Cosine,
/// Catmull-Rom interpolation.
CatmullRom
}
impl Default for Interpolation {
/// `Interpolation::Linear` is the default.
fn default() -> Self {
Interpolation::Linear
}
}
/// Spline curve used to provide interpolation between control points (keys).
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
pub struct Spline<T>(Vec<Key<T>>);
impl<T> Spline<T> {
/// Create a new spline out of keys. The keys dont have to be sorted even though its recommended
/// to provide ascending sorted ones (for performance purposes).
pub fn from_vec(mut keys: Vec<Key<T>>) -> Self {
keys.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
Spline(keys)
}
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys dont have to be
/// sorted.
///
/// # Note on iterators
///
/// Its valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
/// use `Spline::from_vec` if you are passing a `Vec<_>`. This will remove dynamic allocations.
pub fn from_iter<I>(iter: I) -> Self where I: Iterator<Item = Key<T>> {
Self::from_vec(iter.collect())
}
/// Retrieve the keys of a spline.
pub fn keys(&self) -> &[Key<T>] {
&self.0
}
/// Sample a spline at a given time.
///
/// The current implementation, based on immutability, cannot perform in constant time. This means
/// that samplings processing complexity is currently *O(log n)*. Its possible to achieve *O(1)*
/// performance by using a slightly different spline type. If you are interested by this feature,
/// an implementation for a dedicated type is foreseen yet not started yet.
///
/// # Return
///
/// `None` if you try to sample a value at a time that has no key associated with. That can also
/// happen if you try to sample between two keys with a specific interpolation mode that make the
/// sampling impossible. For instance, `Interpolate::CatmullRom` requires *four* keys. If youre
/// near the beginning of the spline or its end, ensure you have enough keys around to make the
/// sampling.
pub fn sample(&self, t: f32) -> Option<T> where T: Interpolate {
let keys = &self.0;
let i = search_lower_cp(keys, t)?;
let cp0 = &keys[i];
match cp0.interpolation {
Interpolation::Step(threshold) => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
Some(if nt < threshold { cp0.value } else { cp1.value })
},
Interpolation::Linear => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::lerp(cp0.value, cp1.value, nt))
},
Interpolation::Cosine => {
let cp1 = &keys[i+1];
let nt = normalize_time(t, cp0, cp1);
let cos_nt = {
#[cfg(feature = "std")]
{
(1. - f32::cos(nt * consts::PI)) * 0.5
}
#[cfg(not(feature = "std"))]
{
use core::intrinsics::cosf32;
unsafe { (1. - cosf32(nt * consts::PI)) * 0.5 }
}
};
Some(Interpolate::lerp(cp0.value, cp1.value, cos_nt))
},
Interpolation::CatmullRom => {
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
// None.
if i == 0 || i >= keys.len() - 2 {
None
} else {
let cp1 = &keys[i+1];
let cpm0 = &keys[i-1];
let cpm1 = &keys[i+2];
let nt = normalize_time(t, cp0, cp1);
Some(Interpolate::cubic_hermite((cpm0.value, cpm0.t), (cp0.value, cp0.t), (cp1.value, cp1.t), (cpm1.value, cpm1.t), nt))
}
}
}
}
/// Sample a spline at a given time with clamping.
///
/// # Return
///
/// If you sample before the first key or after the last one, return the first key or the last
/// one, respectively. Otherwise, behave the same way as `Spline::sample`.
///
/// # Panic
///
/// This function panics if you have no key.
pub fn clamped_sample(&self, t: f32) -> T where T: Interpolate {
let first = self.0.first().unwrap();
let last = self.0.last().unwrap();
if t <= first.t {
return first.value;
} else if t >= last.t {
return last.value;
}
self.sample(t).unwrap()
}
}
/// Iterator over spline keys.
///
/// This iterator type assures you to iterate over sorted keys.
pub struct Iter<'a, T> where T: 'a {
anim_param: &'a Spline<T>,
i: usize
}
impl<'a, T> Iterator for Iter<'a, T> {
type Item = &'a Key<T>;
fn next(&mut self) -> Option<Self::Item> {
let r = self.anim_param.0.get(self.i);
if let Some(_) = r {
self.i += 1;
}
r
}
}
impl<'a, T> IntoIterator for &'a Spline<T> {
type Item = &'a Key<T>;
type IntoIter = Iter<'a, T>;
fn into_iter(self) -> Self::IntoIter {
Iter {
anim_param: self,
i: 0
}
}
}
/// Keys that can be interpolated in between. Implementing this trait is required to perform
/// sampling on splines.
pub trait Interpolate: Copy {
/// Linear interpolation.
fn lerp(a: Self, b: Self, t: f32) -> Self;
/// Cubic hermite interpolation.
///
/// Default to `Self::lerp`.
fn cubic_hermite(_: (Self, f32), a: (Self, f32), b: (Self, f32), _: (Self, f32), t: f32) -> Self {
Self::lerp(a.0, b.0, t)
}
}
impl Interpolate for f32 {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a * (1. - t) + b * t
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
#[cfg(not(feature = "std"))]
extern crate alloc;
#[cfg(feature = "impl-cgmath")]
impl Interpolate for Vector2<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a.lerp(b, t)
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
#[cfg(feature = "impl-cgmath")]
impl Interpolate for Vector3<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a.lerp(b, t)
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
#[cfg(feature = "impl-cgmath")]
impl Interpolate for Vector4<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a.lerp(b, t)
}
fn cubic_hermite(x: (Self, f32), a: (Self, f32), b: (Self, f32), y: (Self, f32), t: f32) -> Self {
cubic_hermite(x, a, b, y, t)
}
}
#[cfg(feature = "impl-cgmath")]
impl Interpolate for Quaternion<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
a.nlerp(b, t)
}
}
mod cgmath;
pub mod interpolate;
pub mod interpolation;
pub mod iter;
pub mod key;
#[cfg(feature = "impl-nalgebra")]
impl<N, D> Interpolate for na::Point<N, D>
where D: DimName,
DefaultAllocator: Allocator<N, D>,
<DefaultAllocator as Allocator<N, D>>::Buffer: Copy,
N: Scalar + Interpolate {
fn lerp(a: Self, b: Self, t: f32) -> Self {
// The 'coords' of a point is just a vector, so we can interpolate component-wise
// over these vectors.
let coords = na::Vector::zip_map(&a.coords, &b.coords, |c1, c2| Interpolate::lerp(c1, c2, t));
na::Point::from_coordinates(coords)
}
}
mod nalgebra;
pub mod spline;
#[cfg(feature = "impl-nalgebra")]
impl Interpolate for na::Vector1<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
}
#[cfg(feature = "impl-nalgebra")]
impl Interpolate for na::Vector2<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
}
#[cfg(feature = "impl-nalgebra")]
impl Interpolate for na::Vector3<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
}
#[cfg(feature = "impl-nalgebra")]
impl Interpolate for na::Vector4<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
}
#[cfg(feature = "impl-nalgebra")]
impl Interpolate for na::Vector5<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
}
#[cfg(feature = "impl-nalgebra")]
impl Interpolate for na::Vector6<f32> {
fn lerp(a: Self, b: Self, t: f32) -> Self {
na::Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
}
// Default implementation of Interpolate::cubic_hermit.
pub(crate) fn cubic_hermite<T>(x: (T, f32), a: (T, f32), b: (T, f32), y: (T, f32), t: f32) -> T
where T: Copy + Add<Output = T> + Sub<Output = T> + Mul<f32, Output = T> + Div<f32, Output = T> {
// time stuff
let t2 = t * t;
let t3 = t2 * t;
let two_t3 = 2. * t3;
let three_t2 = 3. * t2;
// tangents
let m0 = (b.0 - x.0) / (b.1 - x.1);
let m1 = (y.0 - a.0) / (y.1 - a.1);
a.0 * (two_t3 - three_t2 + 1.) + m0 * (t3 - 2. * t2 + t) + b.0 * (-two_t3 + three_t2) + m1 * (t3 - t2)
}
// Normalize a time ([0;1]) given two control points.
#[inline(always)]
pub(crate) fn normalize_time<T>(t: f32, cp: &Key<T>, cp1: &Key<T>) -> f32 {
assert!(cp1.t != cp.t, "overlapping keys");
(t - cp.t) / (cp1.t - cp.t)
}
// Find the lower control point corresponding to a given time.
fn search_lower_cp<T>(cps: &[Key<T>], t: f32) -> Option<usize> {
let mut i = 0;
let len = cps.len();
if len < 2 {
return None;
}
loop {
let cp = &cps[i];
let cp1 = &cps[i+1];
if t >= cp1.t {
if i >= len - 2 {
return None;
}
i += 1;
} else if t < cp.t {
if i == 0 {
return None;
}
i -= 1;
} else {
break; // found
}
}
Some(i)
}
pub use crate::interpolate::Interpolate;
pub use crate::interpolation::Interpolation;
pub use crate::key::Key;
pub use crate::spline::Spline;

70
src/nalgebra.rs Normal file
View File

@ -0,0 +1,70 @@
use nalgebra::{Scalar, Vector, Vector1, Vector2, Vector3, Vector4, Vector5, Vector6};
use num_traits as nt;
use simba::scalar::{ClosedAdd, ClosedDiv, ClosedMul, ClosedSub};
use std::ops::Mul;
use crate::interpolate::{
cubic_bezier_def, cubic_hermite_def, quadratic_bezier_def, Additive, Interpolate, Linear, One,
};
macro_rules! impl_interpolate_vector {
($($t:tt)*) => {
// implement Linear
impl<T> Linear<T> for $($t)*<T>
where T: Scalar +
Copy +
ClosedAdd +
ClosedSub +
ClosedMul +
ClosedDiv {
#[inline(always)]
fn outer_mul(self, t: T) -> Self {
self * t
}
#[inline(always)]
fn outer_div(self, t: T) -> Self {
self / t
}
}
impl<T, V> Interpolate<T> for $($t)*<V>
where Self: Linear<T>,
T: Additive + One + Mul<T, Output = T>,
V: nt::One +
nt::Zero +
Additive +
Scalar +
ClosedAdd +
ClosedMul +
ClosedSub +
Interpolate<T> {
#[inline(always)]
fn lerp(a: Self, b: Self, t: T) -> Self {
Vector::zip_map(&a, &b, |c1, c2| Interpolate::lerp(c1, c2, t))
}
#[inline(always)]
fn cubic_hermite(x: (Self, T), a: (Self, T), b: (Self, T), y: (Self, T), t: T) -> Self {
cubic_hermite_def(x, a, b, y, t)
}
#[inline(always)]
fn quadratic_bezier(a: Self, u: Self, b: Self, t: T) -> Self {
quadratic_bezier_def(a, u, b, t)
}
#[inline(always)]
fn cubic_bezier(a: Self, u: Self, v: Self, b: Self, t: T) -> Self {
cubic_bezier_def(a, u, v, b, t)
}
}
}
}
impl_interpolate_vector!(Vector1);
impl_interpolate_vector!(Vector2);
impl_interpolate_vector!(Vector3);
impl_interpolate_vector!(Vector4);
impl_interpolate_vector!(Vector5);
impl_interpolate_vector!(Vector6);

354
src/spline.rs Normal file
View File

@ -0,0 +1,354 @@
//! Spline curves and operations.
#[cfg(not(feature = "std"))]
use alloc::vec::Vec;
#[cfg(not(feature = "std"))]
use core::cmp::Ordering;
#[cfg(not(feature = "std"))]
use core::ops::{Div, Mul};
#[cfg(feature = "serialization")]
use serde_derive::{Deserialize, Serialize};
#[cfg(feature = "std")]
use std::cmp::Ordering;
#[cfg(feature = "std")]
use std::ops::{Div, Mul};
use crate::interpolate::{Additive, Interpolate, One, Trigo};
use crate::interpolation::Interpolation;
use crate::key::Key;
/// Spline curve used to provide interpolation between control points (keys).
///
/// Splines are made out of control points ([`Key`]). When creating a [`Spline`] with
/// [`Spline::from_vec`] or [`Spline::from_iter`], the keys dont have to be sorted (they are sorted
/// automatically by the sampling value).
///
/// You can sample from a spline with several functions:
///
/// - [`Spline::sample`]: allows you to sample from a spline. If not enough keys are available
/// for the required interpolation mode, you get `None`.
/// - [`Spline::clamped_sample`]: behaves like [`Spline::sample`] but will return either the first
/// or last key if out of bound; it will return `None` if not enough key.
#[derive(Debug, Clone)]
#[cfg_attr(feature = "serialization", derive(Deserialize, Serialize))]
pub struct Spline<T, V>(pub(crate) Vec<Key<T, V>>);
impl<T, V> Spline<T, V> {
/// Internal sort to ensure invariant of sorting keys is valid.
fn internal_sort(&mut self)
where
T: PartialOrd,
{
self
.0
.sort_by(|k0, k1| k0.t.partial_cmp(&k1.t).unwrap_or(Ordering::Less));
}
/// Create a new spline out of keys. The keys dont have to be sorted even though its recommended
/// to provide ascending sorted ones (for performance purposes).
pub fn from_vec(keys: Vec<Key<T, V>>) -> Self
where
T: PartialOrd,
{
let mut spline = Spline(keys);
spline.internal_sort();
spline
}
/// Create a new spline by consuming an `Iterater<Item = Key<T>>`. They keys dont have to be
/// sorted.
///
/// # Note on iterators
///
/// Its valid to use any iterator that implements `Iterator<Item = Key<T>>`. However, you should
/// use [`Spline::from_vec`] if you are passing a [`Vec`].
pub fn from_iter<I>(iter: I) -> Self
where
I: Iterator<Item = Key<T, V>>,
T: PartialOrd,
{
Self::from_vec(iter.collect())
}
/// Retrieve the keys of a spline.
pub fn keys(&self) -> &[Key<T, V>] {
&self.0
}
/// Number of keys.
#[inline(always)]
pub fn len(&self) -> usize {
self.0.len()
}
/// Check whether the spline has no key.
#[inline(always)]
pub fn is_empty(&self) -> bool {
self.0.is_empty()
}
/// Sample a spline at a given time, returning the interpolated value along with its associated
/// key.
///
/// The current implementation, based on immutability, cannot perform in constant time. This means
/// that samplings processing complexity is currently *O(log n)*. Its possible to achieve *O(1)*
/// performance by using a slightly different spline type. If you are interested by this feature,
/// an implementation for a dedicated type is foreseen yet not started yet.
///
/// # Return
///
/// `None` if you try to sample a value at a time that has no key associated with. That can also
/// happen if you try to sample between two keys with a specific interpolation mode that makes the
/// sampling impossible. For instance, [`Interpolation::CatmullRom`] requires *four* keys. If
/// youre near the beginning of the spline or its end, ensure you have enough keys around to make
/// the sampling.
pub fn sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
where
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Additive + Interpolate<T>,
{
let keys = &self.0;
let i = search_lower_cp(keys, t)?;
let cp0 = &keys[i];
match cp0.interpolation {
Interpolation::Step(threshold) => {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let value = if nt < threshold { cp0.value } else { cp1.value };
Some((value, cp0, Some(cp1)))
}
Interpolation::Linear => {
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let value = Interpolate::lerp(cp0.value, cp1.value, nt);
Some((value, cp0, Some(cp1)))
}
Interpolation::Cosine => {
let two_t = T::one() + T::one();
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let cos_nt = (T::one() - (nt * T::pi()).cos()) / two_t;
let value = Interpolate::lerp(cp0.value, cp1.value, cos_nt);
Some((value, cp0, Some(cp1)))
}
Interpolation::CatmullRom => {
// We need at least four points for Catmull Rom; ensure we have them, otherwise, return
// None.
if i == 0 || i >= keys.len() - 2 {
None
} else {
let cp1 = &keys[i + 1];
let cpm0 = &keys[i - 1];
let cpm1 = &keys[i + 2];
let nt = normalize_time(t, cp0, cp1);
let value = Interpolate::cubic_hermite(
(cpm0.value, cpm0.t),
(cp0.value, cp0.t),
(cp1.value, cp1.t),
(cpm1.value, cpm1.t),
nt,
);
Some((value, cp0, Some(cp1)))
}
}
Interpolation::Bezier(u) | Interpolation::StrokeBezier(_, u) => {
// We need to check the next control point to see whether we want quadratic or cubic Bezier.
let cp1 = &keys[i + 1];
let nt = normalize_time(t, cp0, cp1);
let value = match cp1.interpolation {
Interpolation::Bezier(v) => {
Interpolate::cubic_bezier(cp0.value, u, cp1.value + cp1.value - v, cp1.value, nt)
}
Interpolation::StrokeBezier(v, _) => {
Interpolate::cubic_bezier(cp0.value, u, v, cp1.value, nt)
}
_ => Interpolate::quadratic_bezier(cp0.value, u, cp1.value, nt),
};
Some((value, cp0, Some(cp1)))
}
Interpolation::__NonExhaustive => unreachable!(),
}
}
/// Sample a spline at a given time.
///
pub fn sample(&self, t: T) -> Option<V>
where
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Additive + Interpolate<T>,
{
self.sample_with_key(t).map(|(v, _, _)| v)
}
/// Sample a spline at a given time with clamping, returning the interpolated value along with its
/// associated key.
///
/// # Return
///
/// If you sample before the first key or after the last one, return the first key or the last
/// one, respectively. Otherwise, behave the same way as [`Spline::sample`].
///
/// # Error
///
/// This function returns [`None`] if you have no key.
pub fn clamped_sample_with_key(&self, t: T) -> Option<(V, &Key<T, V>, Option<&Key<T, V>>)>
where
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Additive + Interpolate<T>,
{
if self.0.is_empty() {
return None;
}
self.sample_with_key(t).or_else(move || {
let first = self.0.first().unwrap();
if t <= first.t {
let second = if self.0.len() >= 2 {
Some(&self.0[1])
} else {
None
};
Some((first.value, &first, second))
} else {
let last = self.0.last().unwrap();
if t >= last.t {
Some((last.value, &last, None))
} else {
None
}
}
})
}
/// Sample a spline at a given time with clamping.
pub fn clamped_sample(&self, t: T) -> Option<V>
where
T: Additive + One + Trigo + Mul<T, Output = T> + Div<T, Output = T> + PartialOrd,
V: Additive + Interpolate<T>,
{
self.clamped_sample_with_key(t).map(|(v, _, _)| v)
}
/// Add a key into the spline.
pub fn add(&mut self, key: Key<T, V>)
where
T: PartialOrd,
{
self.0.push(key);
self.internal_sort();
}
/// Remove a key from the spline.
pub fn remove(&mut self, index: usize) -> Option<Key<T, V>> {
if index >= self.0.len() {
None
} else {
Some(self.0.remove(index))
}
}
/// Update a key and return the key already present.
///
/// The key is updated — if present — with the provided function.
///
/// # Notes
///
/// That function makes sense only if you want to change the interpolator (i.e. [`Key::t`]) of
/// your key. If you just want to change the interpolation mode or the carried value, consider
/// using the [`Spline::get_mut`] method instead as it will be way faster.
pub fn replace<F>(&mut self, index: usize, f: F) -> Option<Key<T, V>>
where
F: FnOnce(&Key<T, V>) -> Key<T, V>,
T: PartialOrd,
{
let key = self.remove(index)?;
self.add(f(&key));
Some(key)
}
/// Get a key at a given index.
pub fn get(&self, index: usize) -> Option<&Key<T, V>> {
self.0.get(index)
}
/// Mutably get a key at a given index.
pub fn get_mut(&mut self, index: usize) -> Option<KeyMut<T, V>> {
self.0.get_mut(index).map(|key| KeyMut {
value: &mut key.value,
interpolation: &mut key.interpolation,
})
}
}
/// A mutable [`Key`].
///
/// Mutable keys allow to edit the carried values and the interpolation mode but not the actual
/// interpolator value as it would invalidate the internal structure of the [`Spline`]. If you
/// want to achieve this, youre advised to use [`Spline::replace`].
pub struct KeyMut<'a, T, V> {
/// Carried value.
pub value: &'a mut V,
/// Interpolation mode to use for that key.
pub interpolation: &'a mut Interpolation<T, V>,
}
// Normalize a time ([0;1]) given two control points.
#[inline(always)]
pub(crate) fn normalize_time<T, V>(t: T, cp: &Key<T, V>, cp1: &Key<T, V>) -> T
where
T: Additive + Div<T, Output = T> + PartialEq,
{
assert!(cp1.t != cp.t, "overlapping keys");
(t - cp.t) / (cp1.t - cp.t)
}
// Find the lower control point corresponding to a given time.
fn search_lower_cp<T, V>(cps: &[Key<T, V>], t: T) -> Option<usize>
where
T: PartialOrd,
{
let mut i = 0;
let len = cps.len();
if len < 2 {
return None;
}
loop {
let cp = &cps[i];
let cp1 = &cps[i + 1];
if t >= cp1.t {
if i >= len - 2 {
return None;
}
i += 1;
} else if t < cp.t {
if i == 0 {
return None;
}
i -= 1;
} else {
break; // found
}
}
Some(i)
}

View File

@ -1,16 +1,15 @@
extern crate splines;
#[cfg(feature = "impl-nalgebra")] extern crate nalgebra;
#[cfg(feature = "impl-nalgebra")] use nalgebra as na;
#[cfg(feature = "impl-nalgebra")] use splines::Interpolate;
use splines::{Interpolation, Key, Spline};
#[cfg(feature = "cgmath")]
use cgmath as cg;
#[cfg(feature = "nalgebra")]
use nalgebra as na;
#[test]
fn step_interpolation_0() {
fn step_interpolation_f32() {
let start = Key::new(0., 0., Interpolation::Step(0.));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::from_vec(vec![start, end]);
let spline = Spline::<f32, _>::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(10.));
assert_eq!(spline.sample(0.1), Some(10.));
@ -18,7 +17,26 @@ fn step_interpolation_0() {
assert_eq!(spline.sample(0.5), Some(10.));
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), 10.);
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
}
#[test]
fn step_interpolation_f64() {
let start = Key::new(0., 0., Interpolation::Step(0.));
let end = Key::new(1., 10., Interpolation::default());
let spline = Spline::<f64, _>::from_vec(vec![start, end]);
assert_eq!(spline.sample(0.), Some(10.));
assert_eq!(spline.sample(0.1), Some(10.));
assert_eq!(spline.sample(0.2), Some(10.));
assert_eq!(spline.sample(0.5), Some(10.));
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), Some(10.));
assert_eq!(spline.sample_with_key(0.2), Some((10., &start, Some(&end))));
assert_eq!(spline.clamped_sample_with_key(1.), Some((10., &end, None)));
}
#[test]
@ -33,7 +51,7 @@ fn step_interpolation_0_5() {
assert_eq!(spline.sample(0.5), Some(10.));
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), 10.);
assert_eq!(spline.clamped_sample(1.), Some(10.));
}
#[test]
@ -48,7 +66,7 @@ fn step_interpolation_0_75() {
assert_eq!(spline.sample(0.5), Some(0.));
assert_eq!(spline.sample(0.9), Some(10.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), 10.);
assert_eq!(spline.clamped_sample(1.), Some(10.));
}
#[test]
@ -63,7 +81,7 @@ fn step_interpolation_1() {
assert_eq!(spline.sample(0.5), Some(0.));
assert_eq!(spline.sample(0.9), Some(0.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), 10.);
assert_eq!(spline.clamped_sample(1.), Some(10.));
}
#[test]
@ -78,7 +96,7 @@ fn linear_interpolation() {
assert_eq!(spline.sample(0.5), Some(5.));
assert_eq!(spline.sample(0.9), Some(9.));
assert_eq!(spline.sample(1.), None);
assert_eq!(spline.clamped_sample(1.), 10.);
assert_eq!(spline.clamped_sample(1.), Some(10.));
}
#[test]
@ -103,7 +121,7 @@ fn linear_interpolation_several_keys() {
assert_eq!(spline.sample(3.), Some(1.));
assert_eq!(spline.sample(6.5), Some(1.5));
assert_eq!(spline.sample(10.), Some(2.));
assert_eq!(spline.clamped_sample(11.), 4.);
assert_eq!(spline.clamped_sample(11.), Some(4.));
}
#[test]
@ -125,29 +143,60 @@ fn several_interpolations_several_keys() {
assert_eq!(spline.sample(1.5), Some(2.5));
assert_eq!(spline.sample(2.), Some(0.));
assert_eq!(spline.sample(2.05), Some(0.));
assert_eq!(spline.sample(2.1), Some(0.));
assert_eq!(spline.sample(2.099), Some(0.));
assert_eq!(spline.sample(2.75), Some(1.));
assert_eq!(spline.sample(3.), Some(1.));
assert_eq!(spline.sample(6.5), Some(1.5));
assert_eq!(spline.sample(10.), Some(2.));
assert_eq!(spline.clamped_sample(11.), 4.);
assert_eq!(spline.clamped_sample(11.), Some(4.));
}
#[cfg(feature = "impl-nalgebra")]
#[cfg(feature = "cgmath")]
#[test]
fn nalgebra_point_interpolation() {
let start = na::Point2::new(0.0, 0.0);
let mid = na::Point2::new(0.5, 0.5);
let end = na::Point2::new(1.0, 1.0);
fn stroke_bezier_straight() {
use float_cmp::approx_eq;
let keys = vec![
Key::new(
0.0,
cg::Vector2::new(0., 1.),
Interpolation::StrokeBezier(cg::Vector2::new(0., 1.), cg::Vector2::new(0., 1.)),
),
Key::new(
5.0,
cg::Vector2::new(5., 1.),
Interpolation::StrokeBezier(cg::Vector2::new(5., 1.), cg::Vector2::new(5., 1.)),
),
];
let spline = Spline::from_vec(keys);
assert!(approx_eq!(f32, spline.clamped_sample(0.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(1.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(2.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(3.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(4.0).unwrap().y, 1.));
assert!(approx_eq!(f32, spline.clamped_sample(5.0).unwrap().y, 1.));
}
#[cfg(feature = "cgmath")]
#[test]
fn cgmath_vector_interpolation() {
use splines::Interpolate;
let start = cg::Vector2::new(0.0, 0.0);
let mid = cg::Vector2::new(0.5, 0.5);
let end = cg::Vector2::new(1.0, 1.0);
assert_eq!(Interpolate::lerp(start, end, 0.0), start);
assert_eq!(Interpolate::lerp(start, end, 1.0), end);
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
}
#[cfg(feature = "impl-nalgebra")]
#[cfg(feature = "nalgebra")]
#[test]
fn nalgebra_vector_interpolation() {
use splines::Interpolate;
let start = na::Vector2::new(0.0, 0.0);
let mid = na::Vector2::new(0.5, 0.5);
let end = na::Vector2::new(1.0, 1.0);
@ -157,3 +206,50 @@ fn nalgebra_vector_interpolation() {
assert_eq!(Interpolate::lerp(start, end, 0.5), mid);
}
#[test]
fn add_key_empty() {
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
spline.add(Key::new(0., 0., Interpolation::Linear));
assert_eq!(spline.keys(), &[Key::new(0., 0., Interpolation::Linear)]);
}
#[test]
fn add_key() {
let start = Key::new(0., 0., Interpolation::Step(0.5));
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let new = Key::new(2.4, 40., Interpolation::Linear);
let mut spline = Spline::from_vec(vec![start, k1, k2.clone(), k3, k4, end]);
assert_eq!(spline.keys(), &[start, k1, k2, k3, k4, end]);
spline.add(new);
assert_eq!(spline.keys(), &[start, k1, k2, new, k3, k4, end]);
}
#[test]
fn remove_element_empty() {
let mut spline: Spline<f32, f32> = Spline::from_vec(vec![]);
let removed = spline.remove(0);
assert_eq!(removed, None);
assert!(spline.is_empty());
}
#[test]
fn remove_element() {
let start = Key::new(0., 0., Interpolation::Step(0.5));
let k1 = Key::new(1., 5., Interpolation::Linear);
let k2 = Key::new(2., 0., Interpolation::Step(0.1));
let k3 = Key::new(3., 1., Interpolation::Linear);
let k4 = Key::new(10., 2., Interpolation::Linear);
let end = Key::new(11., 4., Interpolation::default());
let mut spline = Spline::from_vec(vec![start, k1, k2.clone(), k3, k4, end]);
let removed = spline.remove(2);
assert_eq!(removed, Some(k2));
assert_eq!(spline.len(), 5);
}